github.com/aquanetwork/aquachain@v1.7.8/crypto/secp256k1/curve.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Copyright 2011 ThePiachu. All rights reserved.
     3  //
     4  // Redistribution and use in source and binary forms, with or without
     5  // modification, are permitted provided that the following conditions are
     6  // met:
     7  //
     8  // * Redistributions of source code must retain the above copyright
     9  //   notice, this list of conditions and the following disclaimer.
    10  // * Redistributions in binary form must reproduce the above
    11  //   copyright notice, this list of conditions and the following disclaimer
    12  //   in the documentation and/or other materials provided with the
    13  //   distribution.
    14  // * Neither the name of Google Inc. nor the names of its
    15  //   contributors may be used to endorse or promote products derived from
    16  //   this software without specific prior written permission.
    17  // * The name of ThePiachu may not be used to endorse or promote products
    18  //   derived from this software without specific prior written permission.
    19  //
    20  // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    21  // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    22  // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
    23  // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
    24  // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
    25  // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
    26  // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
    27  // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
    28  // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
    29  // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
    30  // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    31  
    32  // +build gccgo cgo !nocgo
    33  
    34  package secp256k1
    35  
    36  import (
    37  	"crypto/elliptic"
    38  	"math/big"
    39  	"unsafe"
    40  
    41  	"gitlab.com/aquachain/aquachain/common/math"
    42  )
    43  
    44  /*
    45  #include "libsecp256k1/include/secp256k1.h"
    46  extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar);
    47  */
    48  import "C"
    49  
    50  // This code is from https://github.com/ThePiachu/GoBit and implements
    51  // several Koblitz elliptic curves over prime fields.
    52  //
    53  // The curve methods, internally, on Jacobian coordinates. For a given
    54  // (x, y) position on the curve, the Jacobian coordinates are (x1, y1,
    55  // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come
    56  // when the whole calculation can be performed within the transform
    57  // (as in ScalarMult and ScalarBaseMult). But even for Add and Double,
    58  // it's faster to apply and reverse the transform than to operate in
    59  // affine coordinates.
    60  
    61  // A BitCurve represents a Koblitz Curve with a=0.
    62  // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
    63  type BitCurve struct {
    64  	P       *big.Int // the order of the underlying field
    65  	N       *big.Int // the order of the base point
    66  	B       *big.Int // the constant of the BitCurve equation
    67  	Gx, Gy  *big.Int // (x,y) of the base point
    68  	BitSize int      // the size of the underlying field
    69  }
    70  
    71  func (BitCurve *BitCurve) Params() *elliptic.CurveParams {
    72  	return &elliptic.CurveParams{
    73  		P:       BitCurve.P,
    74  		N:       BitCurve.N,
    75  		B:       BitCurve.B,
    76  		Gx:      BitCurve.Gx,
    77  		Gy:      BitCurve.Gy,
    78  		BitSize: BitCurve.BitSize,
    79  	}
    80  }
    81  
    82  // IsOnBitCurve returns true if the given (x,y) lies on the BitCurve.
    83  func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool {
    84  	// y² = x³ + b
    85  	y2 := new(big.Int).Mul(y, y) //y²
    86  	y2.Mod(y2, BitCurve.P)       //y²%P
    87  
    88  	x3 := new(big.Int).Mul(x, x) //x²
    89  	x3.Mul(x3, x)                //x³
    90  
    91  	x3.Add(x3, BitCurve.B) //x³+B
    92  	x3.Mod(x3, BitCurve.P) //(x³+B)%P
    93  
    94  	return x3.Cmp(y2) == 0
    95  }
    96  
    97  //TODO: double check if the function is okay
    98  // affineFromJacobian reverses the Jacobian transform. See the comment at the
    99  // top of the file.
   100  func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) {
   101  	if zinv := new(big.Int).ModInverse(z, BitCurve.P); zinv != nil {
   102  		zinvsq := new(big.Int).Mul(zinv, zinv)
   103  
   104  		xOut = new(big.Int).Mul(x, zinvsq)
   105  		xOut.Mod(xOut, BitCurve.P)
   106  		zinvsq.Mul(zinvsq, zinv)
   107  		yOut = new(big.Int).Mul(y, zinvsq)
   108  		yOut.Mod(yOut, BitCurve.P)
   109  	}
   110  	return
   111  }
   112  
   113  // Add returns the sum of (x1,y1) and (x2,y2)
   114  func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
   115  	z := new(big.Int).SetInt64(1)
   116  	return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z))
   117  }
   118  
   119  // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and
   120  // (x2, y2, z2) and returns their sum, also in Jacobian form.
   121  func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) {
   122  	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
   123  	z1z1 := new(big.Int).Mul(z1, z1)
   124  	z1z1.Mod(z1z1, BitCurve.P)
   125  	z2z2 := new(big.Int).Mul(z2, z2)
   126  	z2z2.Mod(z2z2, BitCurve.P)
   127  
   128  	u1 := new(big.Int).Mul(x1, z2z2)
   129  	u1.Mod(u1, BitCurve.P)
   130  	u2 := new(big.Int).Mul(x2, z1z1)
   131  	u2.Mod(u2, BitCurve.P)
   132  	h := new(big.Int).Sub(u2, u1)
   133  	if h.Sign() == -1 {
   134  		h.Add(h, BitCurve.P)
   135  	}
   136  	i := new(big.Int).Lsh(h, 1)
   137  	i.Mul(i, i)
   138  	j := new(big.Int).Mul(h, i)
   139  
   140  	s1 := new(big.Int).Mul(y1, z2)
   141  	s1.Mul(s1, z2z2)
   142  	s1.Mod(s1, BitCurve.P)
   143  	s2 := new(big.Int).Mul(y2, z1)
   144  	s2.Mul(s2, z1z1)
   145  	s2.Mod(s2, BitCurve.P)
   146  	r := new(big.Int).Sub(s2, s1)
   147  	if r.Sign() == -1 {
   148  		r.Add(r, BitCurve.P)
   149  	}
   150  	r.Lsh(r, 1)
   151  	v := new(big.Int).Mul(u1, i)
   152  
   153  	x3 := new(big.Int).Set(r)
   154  	x3.Mul(x3, x3)
   155  	x3.Sub(x3, j)
   156  	x3.Sub(x3, v)
   157  	x3.Sub(x3, v)
   158  	x3.Mod(x3, BitCurve.P)
   159  
   160  	y3 := new(big.Int).Set(r)
   161  	v.Sub(v, x3)
   162  	y3.Mul(y3, v)
   163  	s1.Mul(s1, j)
   164  	s1.Lsh(s1, 1)
   165  	y3.Sub(y3, s1)
   166  	y3.Mod(y3, BitCurve.P)
   167  
   168  	z3 := new(big.Int).Add(z1, z2)
   169  	z3.Mul(z3, z3)
   170  	z3.Sub(z3, z1z1)
   171  	if z3.Sign() == -1 {
   172  		z3.Add(z3, BitCurve.P)
   173  	}
   174  	z3.Sub(z3, z2z2)
   175  	if z3.Sign() == -1 {
   176  		z3.Add(z3, BitCurve.P)
   177  	}
   178  	z3.Mul(z3, h)
   179  	z3.Mod(z3, BitCurve.P)
   180  
   181  	return x3, y3, z3
   182  }
   183  
   184  // Double returns 2*(x,y)
   185  func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
   186  	z1 := new(big.Int).SetInt64(1)
   187  	return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1))
   188  }
   189  
   190  // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and
   191  // returns its double, also in Jacobian form.
   192  func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) {
   193  	// See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
   194  
   195  	a := new(big.Int).Mul(x, x) //X1²
   196  	b := new(big.Int).Mul(y, y) //Y1²
   197  	c := new(big.Int).Mul(b, b) //B²
   198  
   199  	d := new(big.Int).Add(x, b) //X1+B
   200  	d.Mul(d, d)                 //(X1+B)²
   201  	d.Sub(d, a)                 //(X1+B)²-A
   202  	d.Sub(d, c)                 //(X1+B)²-A-C
   203  	d.Mul(d, big.NewInt(2))     //2*((X1+B)²-A-C)
   204  
   205  	e := new(big.Int).Mul(big.NewInt(3), a) //3*A
   206  	f := new(big.Int).Mul(e, e)             //E²
   207  
   208  	x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D
   209  	x3.Sub(f, x3)                            //F-2*D
   210  	x3.Mod(x3, BitCurve.P)
   211  
   212  	y3 := new(big.Int).Sub(d, x3)                  //D-X3
   213  	y3.Mul(e, y3)                                  //E*(D-X3)
   214  	y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C
   215  	y3.Mod(y3, BitCurve.P)
   216  
   217  	z3 := new(big.Int).Mul(y, z) //Y1*Z1
   218  	z3.Mul(big.NewInt(2), z3)    //3*Y1*Z1
   219  	z3.Mod(z3, BitCurve.P)
   220  
   221  	return x3, y3, z3
   222  }
   223  
   224  func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) {
   225  	// Ensure scalar is exactly 32 bytes. We pad always, even if
   226  	// scalar is 32 bytes long, to avoid a timing side channel.
   227  	if len(scalar) > 32 {
   228  		panic("can't handle scalars > 256 bits")
   229  	}
   230  	// NOTE: potential timing issue
   231  	padded := make([]byte, 32)
   232  	copy(padded[32-len(scalar):], scalar)
   233  	scalar = padded
   234  
   235  	// Do the multiplication in C, updating point.
   236  	point := make([]byte, 64)
   237  	math.ReadBits(Bx, point[:32])
   238  	math.ReadBits(By, point[32:])
   239  	pointPtr := (*C.uchar)(unsafe.Pointer(&point[0]))
   240  	scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0]))
   241  	res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr)
   242  
   243  	// Unpack the result and clear temporaries.
   244  	x := new(big.Int).SetBytes(point[:32])
   245  	y := new(big.Int).SetBytes(point[32:])
   246  	for i := range point {
   247  		point[i] = 0
   248  	}
   249  	for i := range padded {
   250  		scalar[i] = 0
   251  	}
   252  	if res != 1 {
   253  		return nil, nil
   254  	}
   255  	return x, y
   256  }
   257  
   258  // ScalarBaseMult returns k*G, where G is the base point of the group and k is
   259  // an integer in big-endian form.
   260  func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
   261  	return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k)
   262  }
   263  
   264  // Marshal converts a point into the form specified in section 4.3.6 of ANSI
   265  // X9.62.
   266  func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte {
   267  	byteLen := (BitCurve.BitSize + 7) >> 3
   268  	ret := make([]byte, 1+2*byteLen)
   269  	ret[0] = 4 // uncompressed point flag
   270  	math.ReadBits(x, ret[1:1+byteLen])
   271  	math.ReadBits(y, ret[1+byteLen:])
   272  	return ret
   273  }
   274  
   275  // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On
   276  // error, x = nil.
   277  func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) {
   278  	byteLen := (BitCurve.BitSize + 7) >> 3
   279  	if len(data) != 1+2*byteLen {
   280  		return
   281  	}
   282  	if data[0] != 4 { // uncompressed form
   283  		return
   284  	}
   285  	x = new(big.Int).SetBytes(data[1 : 1+byteLen])
   286  	y = new(big.Int).SetBytes(data[1+byteLen:])
   287  	return
   288  }
   289  
   290  var theCurve = new(BitCurve)
   291  
   292  func init() {
   293  	// See SEC 2 section 2.7.1
   294  	// curve parameters taken from:
   295  	// http://www.secg.org/collateral/sec2_final.pdf
   296  	theCurve.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
   297  	theCurve.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
   298  	theCurve.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
   299  	theCurve.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
   300  	theCurve.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
   301  	theCurve.BitSize = 256
   302  }
   303  
   304  // S256 returns a BitCurve which implements secp256k1.
   305  func S256() *BitCurve {
   306  	return theCurve
   307  }