github.com/aquanetwork/aquachain@v1.7.8/crypto/secp256k1/libsecp256k1/src/group_impl.h (about) 1 /********************************************************************** 2 * Copyright (c) 2013, 2014 Pieter Wuille * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.* 5 **********************************************************************/ 6 7 #ifndef SECP256K1_GROUP_IMPL_H 8 #define SECP256K1_GROUP_IMPL_H 9 10 #include "num.h" 11 #include "field.h" 12 #include "group.h" 13 14 /* These points can be generated in sage as follows: 15 * 16 * 0. Setup a worksheet with the following parameters. 17 * b = 4 # whatever CURVE_B will be set to 18 * F = FiniteField (0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F) 19 * C = EllipticCurve ([F (0), F (b)]) 20 * 21 * 1. Determine all the small orders available to you. (If there are 22 * no satisfactory ones, go back and change b.) 23 * print C.order().factor(limit=1000) 24 * 25 * 2. Choose an order as one of the prime factors listed in the above step. 26 * (You can also multiply some to get a composite order, though the 27 * tests will crash trying to invert scalars during signing.) We take a 28 * random point and scale it to drop its order to the desired value. 29 * There is some probability this won't work; just try again. 30 * order = 199 31 * P = C.random_point() 32 * P = (int(P.order()) / int(order)) * P 33 * assert(P.order() == order) 34 * 35 * 3. Print the values. You'll need to use a vim macro or something to 36 * split the hex output into 4-byte chunks. 37 * print "%x %x" % P.xy() 38 */ 39 #if defined(EXHAUSTIVE_TEST_ORDER) 40 # if EXHAUSTIVE_TEST_ORDER == 199 41 const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( 42 0xFA7CC9A7, 0x0737F2DB, 0xA749DD39, 0x2B4FB069, 43 0x3B017A7D, 0xA808C2F1, 0xFB12940C, 0x9EA66C18, 44 0x78AC123A, 0x5ED8AEF3, 0x8732BC91, 0x1F3A2868, 45 0x48DF246C, 0x808DAE72, 0xCFE52572, 0x7F0501ED 46 ); 47 48 const int CURVE_B = 4; 49 # elif EXHAUSTIVE_TEST_ORDER == 13 50 const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( 51 0xedc60018, 0xa51a786b, 0x2ea91f4d, 0x4c9416c0, 52 0x9de54c3b, 0xa1316554, 0x6cf4345c, 0x7277ef15, 53 0x54cb1b6b, 0xdc8c1273, 0x087844ea, 0x43f4603e, 54 0x0eaf9a43, 0xf6effe55, 0x939f806d, 0x37adf8ac 55 ); 56 const int CURVE_B = 2; 57 # else 58 # error No known generator for the specified exhaustive test group order. 59 # endif 60 #else 61 /** Generator for secp256k1, value 'g' defined in 62 * "Standards for Efficient Cryptography" (SEC2) 2.7.1. 63 */ 64 static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( 65 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL, 66 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL, 67 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL, 68 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL 69 ); 70 71 const int CURVE_B = 7; 72 #endif 73 74 static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) { 75 secp256k1_fe zi2; 76 secp256k1_fe zi3; 77 secp256k1_fe_sqr(&zi2, zi); 78 secp256k1_fe_mul(&zi3, &zi2, zi); 79 secp256k1_fe_mul(&r->x, &a->x, &zi2); 80 secp256k1_fe_mul(&r->y, &a->y, &zi3); 81 r->infinity = a->infinity; 82 } 83 84 static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) { 85 r->infinity = 0; 86 r->x = *x; 87 r->y = *y; 88 } 89 90 static int secp256k1_ge_is_infinity(const secp256k1_ge *a) { 91 return a->infinity; 92 } 93 94 static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) { 95 *r = *a; 96 secp256k1_fe_normalize_weak(&r->y); 97 secp256k1_fe_negate(&r->y, &r->y, 1); 98 } 99 100 static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) { 101 secp256k1_fe z2, z3; 102 r->infinity = a->infinity; 103 secp256k1_fe_inv(&a->z, &a->z); 104 secp256k1_fe_sqr(&z2, &a->z); 105 secp256k1_fe_mul(&z3, &a->z, &z2); 106 secp256k1_fe_mul(&a->x, &a->x, &z2); 107 secp256k1_fe_mul(&a->y, &a->y, &z3); 108 secp256k1_fe_set_int(&a->z, 1); 109 r->x = a->x; 110 r->y = a->y; 111 } 112 113 static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { 114 secp256k1_fe z2, z3; 115 r->infinity = a->infinity; 116 if (a->infinity) { 117 return; 118 } 119 secp256k1_fe_inv_var(&a->z, &a->z); 120 secp256k1_fe_sqr(&z2, &a->z); 121 secp256k1_fe_mul(&z3, &a->z, &z2); 122 secp256k1_fe_mul(&a->x, &a->x, &z2); 123 secp256k1_fe_mul(&a->y, &a->y, &z3); 124 secp256k1_fe_set_int(&a->z, 1); 125 r->x = a->x; 126 r->y = a->y; 127 } 128 129 static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len, const secp256k1_callback *cb) { 130 secp256k1_fe *az; 131 secp256k1_fe *azi; 132 size_t i; 133 size_t count = 0; 134 az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len); 135 for (i = 0; i < len; i++) { 136 if (!a[i].infinity) { 137 az[count++] = a[i].z; 138 } 139 } 140 141 azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count); 142 secp256k1_fe_inv_all_var(azi, az, count); 143 free(az); 144 145 count = 0; 146 for (i = 0; i < len; i++) { 147 r[i].infinity = a[i].infinity; 148 if (!a[i].infinity) { 149 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]); 150 } 151 } 152 free(azi); 153 } 154 155 static void secp256k1_ge_set_table_gej_var(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr, size_t len) { 156 size_t i = len - 1; 157 secp256k1_fe zi; 158 159 if (len > 0) { 160 /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */ 161 secp256k1_fe_inv(&zi, &a[i].z); 162 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); 163 164 /* Work out way backwards, using the z-ratios to scale the x/y values. */ 165 while (i > 0) { 166 secp256k1_fe_mul(&zi, &zi, &zr[i]); 167 i--; 168 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); 169 } 170 } 171 } 172 173 static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) { 174 size_t i = len - 1; 175 secp256k1_fe zs; 176 177 if (len > 0) { 178 /* The z of the final point gives us the "global Z" for the table. */ 179 r[i].x = a[i].x; 180 r[i].y = a[i].y; 181 *globalz = a[i].z; 182 r[i].infinity = 0; 183 zs = zr[i]; 184 185 /* Work our way backwards, using the z-ratios to scale the x/y values. */ 186 while (i > 0) { 187 if (i != len - 1) { 188 secp256k1_fe_mul(&zs, &zs, &zr[i]); 189 } 190 i--; 191 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs); 192 } 193 } 194 } 195 196 static void secp256k1_gej_set_infinity(secp256k1_gej *r) { 197 r->infinity = 1; 198 secp256k1_fe_clear(&r->x); 199 secp256k1_fe_clear(&r->y); 200 secp256k1_fe_clear(&r->z); 201 } 202 203 static void secp256k1_ge_set_infinity(secp256k1_ge *r) { 204 r->infinity = 1; 205 secp256k1_fe_clear(&r->x); 206 secp256k1_fe_clear(&r->y); 207 } 208 209 static void secp256k1_gej_clear(secp256k1_gej *r) { 210 r->infinity = 0; 211 secp256k1_fe_clear(&r->x); 212 secp256k1_fe_clear(&r->y); 213 secp256k1_fe_clear(&r->z); 214 } 215 216 static void secp256k1_ge_clear(secp256k1_ge *r) { 217 r->infinity = 0; 218 secp256k1_fe_clear(&r->x); 219 secp256k1_fe_clear(&r->y); 220 } 221 222 static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) { 223 secp256k1_fe x2, x3, c; 224 r->x = *x; 225 secp256k1_fe_sqr(&x2, x); 226 secp256k1_fe_mul(&x3, x, &x2); 227 r->infinity = 0; 228 secp256k1_fe_set_int(&c, CURVE_B); 229 secp256k1_fe_add(&c, &x3); 230 return secp256k1_fe_sqrt(&r->y, &c); 231 } 232 233 static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { 234 if (!secp256k1_ge_set_xquad(r, x)) { 235 return 0; 236 } 237 secp256k1_fe_normalize_var(&r->y); 238 if (secp256k1_fe_is_odd(&r->y) != odd) { 239 secp256k1_fe_negate(&r->y, &r->y, 1); 240 } 241 return 1; 242 243 } 244 245 static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) { 246 r->infinity = a->infinity; 247 r->x = a->x; 248 r->y = a->y; 249 secp256k1_fe_set_int(&r->z, 1); 250 } 251 252 static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) { 253 secp256k1_fe r, r2; 254 VERIFY_CHECK(!a->infinity); 255 secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); 256 r2 = a->x; secp256k1_fe_normalize_weak(&r2); 257 return secp256k1_fe_equal_var(&r, &r2); 258 } 259 260 static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) { 261 r->infinity = a->infinity; 262 r->x = a->x; 263 r->y = a->y; 264 r->z = a->z; 265 secp256k1_fe_normalize_weak(&r->y); 266 secp256k1_fe_negate(&r->y, &r->y, 1); 267 } 268 269 static int secp256k1_gej_is_infinity(const secp256k1_gej *a) { 270 return a->infinity; 271 } 272 273 static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) { 274 secp256k1_fe y2, x3, z2, z6; 275 if (a->infinity) { 276 return 0; 277 } 278 /** y^2 = x^3 + 7 279 * (Y/Z^3)^2 = (X/Z^2)^3 + 7 280 * Y^2 / Z^6 = X^3 / Z^6 + 7 281 * Y^2 = X^3 + 7*Z^6 282 */ 283 secp256k1_fe_sqr(&y2, &a->y); 284 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); 285 secp256k1_fe_sqr(&z2, &a->z); 286 secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); 287 secp256k1_fe_mul_int(&z6, CURVE_B); 288 secp256k1_fe_add(&x3, &z6); 289 secp256k1_fe_normalize_weak(&x3); 290 return secp256k1_fe_equal_var(&y2, &x3); 291 } 292 293 static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { 294 secp256k1_fe y2, x3, c; 295 if (a->infinity) { 296 return 0; 297 } 298 /* y^2 = x^3 + 7 */ 299 secp256k1_fe_sqr(&y2, &a->y); 300 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); 301 secp256k1_fe_set_int(&c, CURVE_B); 302 secp256k1_fe_add(&x3, &c); 303 secp256k1_fe_normalize_weak(&x3); 304 return secp256k1_fe_equal_var(&y2, &x3); 305 } 306 307 static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { 308 /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate. 309 * 310 * Note that there is an implementation described at 311 * https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l 312 * which trades a multiply for a square, but in practice this is actually slower, 313 * mainly because it requires more normalizations. 314 */ 315 secp256k1_fe t1,t2,t3,t4; 316 /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, 317 * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have 318 * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. 319 * 320 * Having said this, if this function receives a point on a sextic twist, e.g. by 321 * a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6, 322 * since -6 does have a cube root mod p. For this point, this function will not set 323 * the infinity flag even though the point doubles to infinity, and the result 324 * point will be gibberish (z = 0 but infinity = 0). 325 */ 326 r->infinity = a->infinity; 327 if (r->infinity) { 328 if (rzr != NULL) { 329 secp256k1_fe_set_int(rzr, 1); 330 } 331 return; 332 } 333 334 if (rzr != NULL) { 335 *rzr = a->y; 336 secp256k1_fe_normalize_weak(rzr); 337 secp256k1_fe_mul_int(rzr, 2); 338 } 339 340 secp256k1_fe_mul(&r->z, &a->z, &a->y); 341 secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ 342 secp256k1_fe_sqr(&t1, &a->x); 343 secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */ 344 secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */ 345 secp256k1_fe_sqr(&t3, &a->y); 346 secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */ 347 secp256k1_fe_sqr(&t4, &t3); 348 secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */ 349 secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */ 350 r->x = t3; 351 secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */ 352 secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */ 353 secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */ 354 secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */ 355 secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */ 356 secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */ 357 secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */ 358 secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */ 359 secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ 360 } 361 362 static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { 363 VERIFY_CHECK(!secp256k1_gej_is_infinity(a)); 364 secp256k1_gej_double_var(r, a, rzr); 365 } 366 367 static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) { 368 /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */ 369 secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; 370 371 if (a->infinity) { 372 VERIFY_CHECK(rzr == NULL); 373 *r = *b; 374 return; 375 } 376 377 if (b->infinity) { 378 if (rzr != NULL) { 379 secp256k1_fe_set_int(rzr, 1); 380 } 381 *r = *a; 382 return; 383 } 384 385 r->infinity = 0; 386 secp256k1_fe_sqr(&z22, &b->z); 387 secp256k1_fe_sqr(&z12, &a->z); 388 secp256k1_fe_mul(&u1, &a->x, &z22); 389 secp256k1_fe_mul(&u2, &b->x, &z12); 390 secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); 391 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); 392 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); 393 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); 394 if (secp256k1_fe_normalizes_to_zero_var(&h)) { 395 if (secp256k1_fe_normalizes_to_zero_var(&i)) { 396 secp256k1_gej_double_var(r, a, rzr); 397 } else { 398 if (rzr != NULL) { 399 secp256k1_fe_set_int(rzr, 0); 400 } 401 r->infinity = 1; 402 } 403 return; 404 } 405 secp256k1_fe_sqr(&i2, &i); 406 secp256k1_fe_sqr(&h2, &h); 407 secp256k1_fe_mul(&h3, &h, &h2); 408 secp256k1_fe_mul(&h, &h, &b->z); 409 if (rzr != NULL) { 410 *rzr = h; 411 } 412 secp256k1_fe_mul(&r->z, &a->z, &h); 413 secp256k1_fe_mul(&t, &u1, &h2); 414 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); 415 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); 416 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); 417 secp256k1_fe_add(&r->y, &h3); 418 } 419 420 static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) { 421 /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ 422 secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; 423 if (a->infinity) { 424 VERIFY_CHECK(rzr == NULL); 425 secp256k1_gej_set_ge(r, b); 426 return; 427 } 428 if (b->infinity) { 429 if (rzr != NULL) { 430 secp256k1_fe_set_int(rzr, 1); 431 } 432 *r = *a; 433 return; 434 } 435 r->infinity = 0; 436 437 secp256k1_fe_sqr(&z12, &a->z); 438 u1 = a->x; secp256k1_fe_normalize_weak(&u1); 439 secp256k1_fe_mul(&u2, &b->x, &z12); 440 s1 = a->y; secp256k1_fe_normalize_weak(&s1); 441 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); 442 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); 443 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); 444 if (secp256k1_fe_normalizes_to_zero_var(&h)) { 445 if (secp256k1_fe_normalizes_to_zero_var(&i)) { 446 secp256k1_gej_double_var(r, a, rzr); 447 } else { 448 if (rzr != NULL) { 449 secp256k1_fe_set_int(rzr, 0); 450 } 451 r->infinity = 1; 452 } 453 return; 454 } 455 secp256k1_fe_sqr(&i2, &i); 456 secp256k1_fe_sqr(&h2, &h); 457 secp256k1_fe_mul(&h3, &h, &h2); 458 if (rzr != NULL) { 459 *rzr = h; 460 } 461 secp256k1_fe_mul(&r->z, &a->z, &h); 462 secp256k1_fe_mul(&t, &u1, &h2); 463 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); 464 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); 465 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); 466 secp256k1_fe_add(&r->y, &h3); 467 } 468 469 static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) { 470 /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ 471 secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; 472 473 if (b->infinity) { 474 *r = *a; 475 return; 476 } 477 if (a->infinity) { 478 secp256k1_fe bzinv2, bzinv3; 479 r->infinity = b->infinity; 480 secp256k1_fe_sqr(&bzinv2, bzinv); 481 secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv); 482 secp256k1_fe_mul(&r->x, &b->x, &bzinv2); 483 secp256k1_fe_mul(&r->y, &b->y, &bzinv3); 484 secp256k1_fe_set_int(&r->z, 1); 485 return; 486 } 487 r->infinity = 0; 488 489 /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to 490 * secp256k1's isomorphism we can multiply the Z coordinates on both sides 491 * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1). 492 * This means that (rx,ry,rz) can be calculated as 493 * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz. 494 * The variable az below holds the modified Z coordinate for a, which is used 495 * for the computation of rx and ry, but not for rz. 496 */ 497 secp256k1_fe_mul(&az, &a->z, bzinv); 498 499 secp256k1_fe_sqr(&z12, &az); 500 u1 = a->x; secp256k1_fe_normalize_weak(&u1); 501 secp256k1_fe_mul(&u2, &b->x, &z12); 502 s1 = a->y; secp256k1_fe_normalize_weak(&s1); 503 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az); 504 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); 505 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); 506 if (secp256k1_fe_normalizes_to_zero_var(&h)) { 507 if (secp256k1_fe_normalizes_to_zero_var(&i)) { 508 secp256k1_gej_double_var(r, a, NULL); 509 } else { 510 r->infinity = 1; 511 } 512 return; 513 } 514 secp256k1_fe_sqr(&i2, &i); 515 secp256k1_fe_sqr(&h2, &h); 516 secp256k1_fe_mul(&h3, &h, &h2); 517 r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); 518 secp256k1_fe_mul(&t, &u1, &h2); 519 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); 520 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); 521 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); 522 secp256k1_fe_add(&r->y, &h3); 523 } 524 525 526 static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) { 527 /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */ 528 static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); 529 secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr; 530 secp256k1_fe m_alt, rr_alt; 531 int infinity, degenerate; 532 VERIFY_CHECK(!b->infinity); 533 VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); 534 535 /** In: 536 * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. 537 * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. 538 * we find as solution for a unified addition/doubling formula: 539 * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. 540 * x3 = lambda^2 - (x1 + x2) 541 * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). 542 * 543 * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: 544 * U1 = X1*Z2^2, U2 = X2*Z1^2 545 * S1 = Y1*Z2^3, S2 = Y2*Z1^3 546 * Z = Z1*Z2 547 * T = U1+U2 548 * M = S1+S2 549 * Q = T*M^2 550 * R = T^2-U1*U2 551 * X3 = 4*(R^2-Q) 552 * Y3 = 4*(R*(3*Q-2*R^2)-M^4) 553 * Z3 = 2*M*Z 554 * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) 555 * 556 * This formula has the benefit of being the same for both addition 557 * of distinct points and doubling. However, it breaks down in the 558 * case that either point is infinity, or that y1 = -y2. We handle 559 * these cases in the following ways: 560 * 561 * - If b is infinity we simply bail by means of a VERIFY_CHECK. 562 * 563 * - If a is infinity, we detect this, and at the end of the 564 * computation replace the result (which will be meaningless, 565 * but we compute to be constant-time) with b.x : b.y : 1. 566 * 567 * - If a = -b, we have y1 = -y2, which is a degenerate case. 568 * But here the answer is infinity, so we simply set the 569 * infinity flag of the result, overriding the computed values 570 * without even needing to cmov. 571 * 572 * - If y1 = -y2 but x1 != x2, which does occur thanks to certain 573 * properties of our curve (specifically, 1 has nontrivial cube 574 * roots in our field, and the curve equation has no x coefficient) 575 * then the answer is not infinity but also not given by the above 576 * equation. In this case, we cmov in place an alternate expression 577 * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these 578 * expressions for lambda are defined, they are equal, and can be 579 * obtained from each other by multiplication by (y1 + y2)/(y1 + y2) 580 * then substitution of x^3 + 7 for y^2 (using the curve equation). 581 * For all pairs of nonzero points (a, b) at least one is defined, 582 * so this covers everything. 583 */ 584 585 secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ 586 u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */ 587 secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ 588 s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */ 589 secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */ 590 secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ 591 t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ 592 m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ 593 secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ 594 secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */ 595 secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */ 596 secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */ 597 /** If lambda = R/M = 0/0 we have a problem (except in the "trivial" 598 * case that Z = z1z2 = 0, and this is special-cased later on). */ 599 degenerate = secp256k1_fe_normalizes_to_zero(&m) & 600 secp256k1_fe_normalizes_to_zero(&rr); 601 /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2. 602 * This means either x1 == beta*x2 or beta*x1 == x2, where beta is 603 * a nontrivial cube root of one. In either case, an alternate 604 * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2), 605 * so we set R/M equal to this. */ 606 rr_alt = s1; 607 secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */ 608 secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */ 609 610 secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); 611 secp256k1_fe_cmov(&m_alt, &m, !degenerate); 612 /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0. 613 * From here on out Ralt and Malt represent the numerator 614 * and denominator of lambda; R and M represent the explicit 615 * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */ 616 secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */ 617 secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */ 618 /* These two lines use the observation that either M == Malt or M == 0, 619 * so M^3 * Malt is either Malt^4 (which is computed by squaring), or 620 * zero (which is "computed" by cmov). So the cost is one squaring 621 * versus two multiplications. */ 622 secp256k1_fe_sqr(&n, &n); 623 secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */ 624 secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ 625 secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */ 626 infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); 627 secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */ 628 secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ 629 secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */ 630 secp256k1_fe_normalize_weak(&t); 631 r->x = t; /* r->x = Ralt^2-Q (1) */ 632 secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */ 633 secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */ 634 secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */ 635 secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */ 636 secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */ 637 secp256k1_fe_normalize_weak(&r->y); 638 secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */ 639 secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */ 640 641 /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */ 642 secp256k1_fe_cmov(&r->x, &b->x, a->infinity); 643 secp256k1_fe_cmov(&r->y, &b->y, a->infinity); 644 secp256k1_fe_cmov(&r->z, &fe_1, a->infinity); 645 r->infinity = infinity; 646 } 647 648 static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) { 649 /* Operations: 4 mul, 1 sqr */ 650 secp256k1_fe zz; 651 VERIFY_CHECK(!secp256k1_fe_is_zero(s)); 652 secp256k1_fe_sqr(&zz, s); 653 secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */ 654 secp256k1_fe_mul(&r->y, &r->y, &zz); 655 secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */ 656 secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */ 657 } 658 659 static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) { 660 secp256k1_fe x, y; 661 VERIFY_CHECK(!a->infinity); 662 x = a->x; 663 secp256k1_fe_normalize(&x); 664 y = a->y; 665 secp256k1_fe_normalize(&y); 666 secp256k1_fe_to_storage(&r->x, &x); 667 secp256k1_fe_to_storage(&r->y, &y); 668 } 669 670 static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) { 671 secp256k1_fe_from_storage(&r->x, &a->x); 672 secp256k1_fe_from_storage(&r->y, &a->y); 673 r->infinity = 0; 674 } 675 676 static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) { 677 secp256k1_fe_storage_cmov(&r->x, &a->x, flag); 678 secp256k1_fe_storage_cmov(&r->y, &a->y, flag); 679 } 680 681 #ifdef USE_ENDOMORPHISM 682 static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { 683 static const secp256k1_fe beta = SECP256K1_FE_CONST( 684 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, 685 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul 686 ); 687 *r = *a; 688 secp256k1_fe_mul(&r->x, &r->x, &beta); 689 } 690 #endif 691 692 static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) { 693 secp256k1_fe yz; 694 695 if (a->infinity) { 696 return 0; 697 } 698 699 /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as 700 * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z 701 is */ 702 secp256k1_fe_mul(&yz, &a->y, &a->z); 703 return secp256k1_fe_is_quad_var(&yz); 704 } 705 706 #endif /* SECP256K1_GROUP_IMPL_H */