github.com/aquanetwork/aquachain@v1.7.8/crypto/secp256k1/libsecp256k1/src/scalar_impl.h (about) 1 /********************************************************************** 2 * Copyright (c) 2014 Pieter Wuille * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.* 5 **********************************************************************/ 6 7 #ifndef SECP256K1_SCALAR_IMPL_H 8 #define SECP256K1_SCALAR_IMPL_H 9 10 #include "group.h" 11 #include "scalar.h" 12 13 #if defined HAVE_CONFIG_H 14 #include "libsecp256k1-config.h" 15 #endif 16 17 #if defined(EXHAUSTIVE_TEST_ORDER) 18 #include "scalar_low_impl.h" 19 #elif defined(USE_SCALAR_4X64) 20 #include "scalar_4x64_impl.h" 21 #elif defined(USE_SCALAR_8X32) 22 #include "scalar_8x32_impl.h" 23 #else 24 #error "Please select scalar implementation" 25 #endif 26 27 #ifndef USE_NUM_NONE 28 static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) { 29 unsigned char c[32]; 30 secp256k1_scalar_get_b32(c, a); 31 secp256k1_num_set_bin(r, c, 32); 32 } 33 34 /** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */ 35 static void secp256k1_scalar_order_get_num(secp256k1_num *r) { 36 #if defined(EXHAUSTIVE_TEST_ORDER) 37 static const unsigned char order[32] = { 38 0,0,0,0,0,0,0,0, 39 0,0,0,0,0,0,0,0, 40 0,0,0,0,0,0,0,0, 41 0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER 42 }; 43 #else 44 static const unsigned char order[32] = { 45 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 46 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, 47 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, 48 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 49 }; 50 #endif 51 secp256k1_num_set_bin(r, order, 32); 52 } 53 #endif 54 55 static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) { 56 #if defined(EXHAUSTIVE_TEST_ORDER) 57 int i; 58 *r = 0; 59 for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) 60 if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1) 61 *r = i; 62 /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus 63 * have a composite group order; fix it in exhaustive_tests.c). */ 64 VERIFY_CHECK(*r != 0); 65 } 66 #else 67 secp256k1_scalar *t; 68 int i; 69 /* First compute xN as x ^ (2^N - 1) for some values of N, 70 * and uM as x ^ M for some values of M. */ 71 secp256k1_scalar x2, x3, x6, x8, x14, x28, x56, x112, x126; 72 secp256k1_scalar u2, u5, u9, u11, u13; 73 74 secp256k1_scalar_sqr(&u2, x); 75 secp256k1_scalar_mul(&x2, &u2, x); 76 secp256k1_scalar_mul(&u5, &u2, &x2); 77 secp256k1_scalar_mul(&x3, &u5, &u2); 78 secp256k1_scalar_mul(&u9, &x3, &u2); 79 secp256k1_scalar_mul(&u11, &u9, &u2); 80 secp256k1_scalar_mul(&u13, &u11, &u2); 81 82 secp256k1_scalar_sqr(&x6, &u13); 83 secp256k1_scalar_sqr(&x6, &x6); 84 secp256k1_scalar_mul(&x6, &x6, &u11); 85 86 secp256k1_scalar_sqr(&x8, &x6); 87 secp256k1_scalar_sqr(&x8, &x8); 88 secp256k1_scalar_mul(&x8, &x8, &x2); 89 90 secp256k1_scalar_sqr(&x14, &x8); 91 for (i = 0; i < 5; i++) { 92 secp256k1_scalar_sqr(&x14, &x14); 93 } 94 secp256k1_scalar_mul(&x14, &x14, &x6); 95 96 secp256k1_scalar_sqr(&x28, &x14); 97 for (i = 0; i < 13; i++) { 98 secp256k1_scalar_sqr(&x28, &x28); 99 } 100 secp256k1_scalar_mul(&x28, &x28, &x14); 101 102 secp256k1_scalar_sqr(&x56, &x28); 103 for (i = 0; i < 27; i++) { 104 secp256k1_scalar_sqr(&x56, &x56); 105 } 106 secp256k1_scalar_mul(&x56, &x56, &x28); 107 108 secp256k1_scalar_sqr(&x112, &x56); 109 for (i = 0; i < 55; i++) { 110 secp256k1_scalar_sqr(&x112, &x112); 111 } 112 secp256k1_scalar_mul(&x112, &x112, &x56); 113 114 secp256k1_scalar_sqr(&x126, &x112); 115 for (i = 0; i < 13; i++) { 116 secp256k1_scalar_sqr(&x126, &x126); 117 } 118 secp256k1_scalar_mul(&x126, &x126, &x14); 119 120 /* Then accumulate the final result (t starts at x126). */ 121 t = &x126; 122 for (i = 0; i < 3; i++) { 123 secp256k1_scalar_sqr(t, t); 124 } 125 secp256k1_scalar_mul(t, t, &u5); /* 101 */ 126 for (i = 0; i < 4; i++) { /* 0 */ 127 secp256k1_scalar_sqr(t, t); 128 } 129 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 130 for (i = 0; i < 4; i++) { /* 0 */ 131 secp256k1_scalar_sqr(t, t); 132 } 133 secp256k1_scalar_mul(t, t, &u5); /* 101 */ 134 for (i = 0; i < 5; i++) { /* 0 */ 135 secp256k1_scalar_sqr(t, t); 136 } 137 secp256k1_scalar_mul(t, t, &u11); /* 1011 */ 138 for (i = 0; i < 4; i++) { 139 secp256k1_scalar_sqr(t, t); 140 } 141 secp256k1_scalar_mul(t, t, &u11); /* 1011 */ 142 for (i = 0; i < 4; i++) { /* 0 */ 143 secp256k1_scalar_sqr(t, t); 144 } 145 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 146 for (i = 0; i < 5; i++) { /* 00 */ 147 secp256k1_scalar_sqr(t, t); 148 } 149 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 150 for (i = 0; i < 6; i++) { /* 00 */ 151 secp256k1_scalar_sqr(t, t); 152 } 153 secp256k1_scalar_mul(t, t, &u13); /* 1101 */ 154 for (i = 0; i < 4; i++) { /* 0 */ 155 secp256k1_scalar_sqr(t, t); 156 } 157 secp256k1_scalar_mul(t, t, &u5); /* 101 */ 158 for (i = 0; i < 3; i++) { 159 secp256k1_scalar_sqr(t, t); 160 } 161 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 162 for (i = 0; i < 5; i++) { /* 0 */ 163 secp256k1_scalar_sqr(t, t); 164 } 165 secp256k1_scalar_mul(t, t, &u9); /* 1001 */ 166 for (i = 0; i < 6; i++) { /* 000 */ 167 secp256k1_scalar_sqr(t, t); 168 } 169 secp256k1_scalar_mul(t, t, &u5); /* 101 */ 170 for (i = 0; i < 10; i++) { /* 0000000 */ 171 secp256k1_scalar_sqr(t, t); 172 } 173 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 174 for (i = 0; i < 4; i++) { /* 0 */ 175 secp256k1_scalar_sqr(t, t); 176 } 177 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 178 for (i = 0; i < 9; i++) { /* 0 */ 179 secp256k1_scalar_sqr(t, t); 180 } 181 secp256k1_scalar_mul(t, t, &x8); /* 11111111 */ 182 for (i = 0; i < 5; i++) { /* 0 */ 183 secp256k1_scalar_sqr(t, t); 184 } 185 secp256k1_scalar_mul(t, t, &u9); /* 1001 */ 186 for (i = 0; i < 6; i++) { /* 00 */ 187 secp256k1_scalar_sqr(t, t); 188 } 189 secp256k1_scalar_mul(t, t, &u11); /* 1011 */ 190 for (i = 0; i < 4; i++) { 191 secp256k1_scalar_sqr(t, t); 192 } 193 secp256k1_scalar_mul(t, t, &u13); /* 1101 */ 194 for (i = 0; i < 5; i++) { 195 secp256k1_scalar_sqr(t, t); 196 } 197 secp256k1_scalar_mul(t, t, &x2); /* 11 */ 198 for (i = 0; i < 6; i++) { /* 00 */ 199 secp256k1_scalar_sqr(t, t); 200 } 201 secp256k1_scalar_mul(t, t, &u13); /* 1101 */ 202 for (i = 0; i < 10; i++) { /* 000000 */ 203 secp256k1_scalar_sqr(t, t); 204 } 205 secp256k1_scalar_mul(t, t, &u13); /* 1101 */ 206 for (i = 0; i < 4; i++) { 207 secp256k1_scalar_sqr(t, t); 208 } 209 secp256k1_scalar_mul(t, t, &u9); /* 1001 */ 210 for (i = 0; i < 6; i++) { /* 00000 */ 211 secp256k1_scalar_sqr(t, t); 212 } 213 secp256k1_scalar_mul(t, t, x); /* 1 */ 214 for (i = 0; i < 8; i++) { /* 00 */ 215 secp256k1_scalar_sqr(t, t); 216 } 217 secp256k1_scalar_mul(r, t, &x6); /* 111111 */ 218 } 219 220 SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { 221 return !(a->d[0] & 1); 222 } 223 #endif 224 225 static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) { 226 #if defined(USE_SCALAR_INV_BUILTIN) 227 secp256k1_scalar_inverse(r, x); 228 #elif defined(USE_SCALAR_INV_NUM) 229 unsigned char b[32]; 230 secp256k1_num n, m; 231 secp256k1_scalar t = *x; 232 secp256k1_scalar_get_b32(b, &t); 233 secp256k1_num_set_bin(&n, b, 32); 234 secp256k1_scalar_order_get_num(&m); 235 secp256k1_num_mod_inverse(&n, &n, &m); 236 secp256k1_num_get_bin(b, 32, &n); 237 secp256k1_scalar_set_b32(r, b, NULL); 238 /* Verify that the inverse was computed correctly, without GMP code. */ 239 secp256k1_scalar_mul(&t, &t, r); 240 CHECK(secp256k1_scalar_is_one(&t)); 241 #else 242 #error "Please select scalar inverse implementation" 243 #endif 244 } 245 246 #ifdef USE_ENDOMORPHISM 247 #if defined(EXHAUSTIVE_TEST_ORDER) 248 /** 249 * Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the 250 * full case we don't bother making k1 and k2 be small, we just want them to be 251 * nontrivial to get full test coverage for the exhaustive tests. We therefore 252 * (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda. 253 */ 254 static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { 255 *r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER; 256 *r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER; 257 } 258 #else 259 /** 260 * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where 261 * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, 262 * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72} 263 * 264 * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm 265 * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 266 * and k2 have a small size. 267 * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are: 268 * 269 * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} 270 * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} 271 * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} 272 * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} 273 * 274 * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives 275 * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and 276 * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2. 277 * 278 * g1, g2 are precomputed constants used to replace division with a rounded multiplication 279 * when decomposing the scalar for an endomorphism-based point multiplication. 280 * 281 * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve 282 * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. 283 * 284 * The derivation is described in the paper "Efficient Software Implementation of Public-Key 285 * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), 286 * Section 4.3 (here we use a somewhat higher-precision estimate): 287 * d = a1*b2 - b1*a2 288 * g1 = round((2^272)*b2/d) 289 * g2 = round((2^272)*b1/d) 290 * 291 * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found 292 * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda'). 293 * 294 * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order). 295 */ 296 297 static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { 298 secp256k1_scalar c1, c2; 299 static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST( 300 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL, 301 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL 302 ); 303 static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST( 304 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, 305 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL 306 ); 307 static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST( 308 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 309 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL 310 ); 311 static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST( 312 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL, 313 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL 314 ); 315 static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST( 316 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL, 317 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL 318 ); 319 VERIFY_CHECK(r1 != a); 320 VERIFY_CHECK(r2 != a); 321 /* these _var calls are constant time since the shift amount is constant */ 322 secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272); 323 secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272); 324 secp256k1_scalar_mul(&c1, &c1, &minus_b1); 325 secp256k1_scalar_mul(&c2, &c2, &minus_b2); 326 secp256k1_scalar_add(r2, &c1, &c2); 327 secp256k1_scalar_mul(r1, r2, &minus_lambda); 328 secp256k1_scalar_add(r1, r1, a); 329 } 330 #endif 331 #endif 332 333 #endif /* SECP256K1_SCALAR_IMPL_H */