github.com/aquanetwork/aquachain@v1.7.8/crypto/secp256k1/libsecp256k1/src/scalar_impl.h (about)

     1  /**********************************************************************
     2   * Copyright (c) 2014 Pieter Wuille                                   *
     3   * Distributed under the MIT software license, see the accompanying   *
     4   * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
     5   **********************************************************************/
     6  
     7  #ifndef SECP256K1_SCALAR_IMPL_H
     8  #define SECP256K1_SCALAR_IMPL_H
     9  
    10  #include "group.h"
    11  #include "scalar.h"
    12  
    13  #if defined HAVE_CONFIG_H
    14  #include "libsecp256k1-config.h"
    15  #endif
    16  
    17  #if defined(EXHAUSTIVE_TEST_ORDER)
    18  #include "scalar_low_impl.h"
    19  #elif defined(USE_SCALAR_4X64)
    20  #include "scalar_4x64_impl.h"
    21  #elif defined(USE_SCALAR_8X32)
    22  #include "scalar_8x32_impl.h"
    23  #else
    24  #error "Please select scalar implementation"
    25  #endif
    26  
    27  #ifndef USE_NUM_NONE
    28  static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) {
    29      unsigned char c[32];
    30      secp256k1_scalar_get_b32(c, a);
    31      secp256k1_num_set_bin(r, c, 32);
    32  }
    33  
    34  /** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
    35  static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
    36  #if defined(EXHAUSTIVE_TEST_ORDER)
    37      static const unsigned char order[32] = {
    38          0,0,0,0,0,0,0,0,
    39          0,0,0,0,0,0,0,0,
    40          0,0,0,0,0,0,0,0,
    41          0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER
    42      };
    43  #else
    44      static const unsigned char order[32] = {
    45          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
    46          0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
    47          0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
    48          0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
    49      };
    50  #endif
    51      secp256k1_num_set_bin(r, order, 32);
    52  }
    53  #endif
    54  
    55  static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
    56  #if defined(EXHAUSTIVE_TEST_ORDER)
    57      int i;
    58      *r = 0;
    59      for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++)
    60          if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1)
    61              *r = i;
    62      /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus
    63       * have a composite group order; fix it in exhaustive_tests.c). */
    64      VERIFY_CHECK(*r != 0);
    65  }
    66  #else
    67      secp256k1_scalar *t;
    68      int i;
    69      /* First compute xN as x ^ (2^N - 1) for some values of N,
    70       * and uM as x ^ M for some values of M. */
    71      secp256k1_scalar x2, x3, x6, x8, x14, x28, x56, x112, x126;
    72      secp256k1_scalar u2, u5, u9, u11, u13;
    73  
    74      secp256k1_scalar_sqr(&u2, x);
    75      secp256k1_scalar_mul(&x2, &u2,  x);
    76      secp256k1_scalar_mul(&u5, &u2, &x2);
    77      secp256k1_scalar_mul(&x3, &u5,  &u2);
    78      secp256k1_scalar_mul(&u9, &x3, &u2);
    79      secp256k1_scalar_mul(&u11, &u9, &u2);
    80      secp256k1_scalar_mul(&u13, &u11, &u2);
    81  
    82      secp256k1_scalar_sqr(&x6, &u13);
    83      secp256k1_scalar_sqr(&x6, &x6);
    84      secp256k1_scalar_mul(&x6, &x6, &u11);
    85  
    86      secp256k1_scalar_sqr(&x8, &x6);
    87      secp256k1_scalar_sqr(&x8, &x8);
    88      secp256k1_scalar_mul(&x8, &x8,  &x2);
    89  
    90      secp256k1_scalar_sqr(&x14, &x8);
    91      for (i = 0; i < 5; i++) {
    92          secp256k1_scalar_sqr(&x14, &x14);
    93      }
    94      secp256k1_scalar_mul(&x14, &x14, &x6);
    95  
    96      secp256k1_scalar_sqr(&x28, &x14);
    97      for (i = 0; i < 13; i++) {
    98          secp256k1_scalar_sqr(&x28, &x28);
    99      }
   100      secp256k1_scalar_mul(&x28, &x28, &x14);
   101  
   102      secp256k1_scalar_sqr(&x56, &x28);
   103      for (i = 0; i < 27; i++) {
   104          secp256k1_scalar_sqr(&x56, &x56);
   105      }
   106      secp256k1_scalar_mul(&x56, &x56, &x28);
   107  
   108      secp256k1_scalar_sqr(&x112, &x56);
   109      for (i = 0; i < 55; i++) {
   110          secp256k1_scalar_sqr(&x112, &x112);
   111      }
   112      secp256k1_scalar_mul(&x112, &x112, &x56);
   113  
   114      secp256k1_scalar_sqr(&x126, &x112);
   115      for (i = 0; i < 13; i++) {
   116          secp256k1_scalar_sqr(&x126, &x126);
   117      }
   118      secp256k1_scalar_mul(&x126, &x126, &x14);
   119  
   120      /* Then accumulate the final result (t starts at x126). */
   121      t = &x126;
   122      for (i = 0; i < 3; i++) {
   123          secp256k1_scalar_sqr(t, t);
   124      }
   125      secp256k1_scalar_mul(t, t, &u5); /* 101 */
   126      for (i = 0; i < 4; i++) { /* 0 */
   127          secp256k1_scalar_sqr(t, t);
   128      }
   129      secp256k1_scalar_mul(t, t, &x3); /* 111 */
   130      for (i = 0; i < 4; i++) { /* 0 */
   131          secp256k1_scalar_sqr(t, t);
   132      }
   133      secp256k1_scalar_mul(t, t, &u5); /* 101 */
   134      for (i = 0; i < 5; i++) { /* 0 */
   135          secp256k1_scalar_sqr(t, t);
   136      }
   137      secp256k1_scalar_mul(t, t, &u11); /* 1011 */
   138      for (i = 0; i < 4; i++) {
   139          secp256k1_scalar_sqr(t, t);
   140      }
   141      secp256k1_scalar_mul(t, t, &u11); /* 1011 */
   142      for (i = 0; i < 4; i++) { /* 0 */
   143          secp256k1_scalar_sqr(t, t);
   144      }
   145      secp256k1_scalar_mul(t, t, &x3); /* 111 */
   146      for (i = 0; i < 5; i++) { /* 00 */
   147          secp256k1_scalar_sqr(t, t);
   148      }
   149      secp256k1_scalar_mul(t, t, &x3); /* 111 */
   150      for (i = 0; i < 6; i++) { /* 00 */
   151          secp256k1_scalar_sqr(t, t);
   152      }
   153      secp256k1_scalar_mul(t, t, &u13); /* 1101 */
   154      for (i = 0; i < 4; i++) { /* 0 */
   155          secp256k1_scalar_sqr(t, t);
   156      }
   157      secp256k1_scalar_mul(t, t, &u5); /* 101 */
   158      for (i = 0; i < 3; i++) {
   159          secp256k1_scalar_sqr(t, t);
   160      }
   161      secp256k1_scalar_mul(t, t, &x3); /* 111 */
   162      for (i = 0; i < 5; i++) { /* 0 */
   163          secp256k1_scalar_sqr(t, t);
   164      }
   165      secp256k1_scalar_mul(t, t, &u9); /* 1001 */
   166      for (i = 0; i < 6; i++) { /* 000 */
   167          secp256k1_scalar_sqr(t, t);
   168      }
   169      secp256k1_scalar_mul(t, t, &u5); /* 101 */
   170      for (i = 0; i < 10; i++) { /* 0000000 */
   171          secp256k1_scalar_sqr(t, t);
   172      }
   173      secp256k1_scalar_mul(t, t, &x3); /* 111 */
   174      for (i = 0; i < 4; i++) { /* 0 */
   175          secp256k1_scalar_sqr(t, t);
   176      }
   177      secp256k1_scalar_mul(t, t, &x3); /* 111 */
   178      for (i = 0; i < 9; i++) { /* 0 */
   179          secp256k1_scalar_sqr(t, t);
   180      }
   181      secp256k1_scalar_mul(t, t, &x8); /* 11111111 */
   182      for (i = 0; i < 5; i++) { /* 0 */
   183          secp256k1_scalar_sqr(t, t);
   184      }
   185      secp256k1_scalar_mul(t, t, &u9); /* 1001 */
   186      for (i = 0; i < 6; i++) { /* 00 */
   187          secp256k1_scalar_sqr(t, t);
   188      }
   189      secp256k1_scalar_mul(t, t, &u11); /* 1011 */
   190      for (i = 0; i < 4; i++) {
   191          secp256k1_scalar_sqr(t, t);
   192      }
   193      secp256k1_scalar_mul(t, t, &u13); /* 1101 */
   194      for (i = 0; i < 5; i++) {
   195          secp256k1_scalar_sqr(t, t);
   196      }
   197      secp256k1_scalar_mul(t, t, &x2); /* 11 */
   198      for (i = 0; i < 6; i++) { /* 00 */
   199          secp256k1_scalar_sqr(t, t);
   200      }
   201      secp256k1_scalar_mul(t, t, &u13); /* 1101 */
   202      for (i = 0; i < 10; i++) { /* 000000 */
   203          secp256k1_scalar_sqr(t, t);
   204      }
   205      secp256k1_scalar_mul(t, t, &u13); /* 1101 */
   206      for (i = 0; i < 4; i++) {
   207          secp256k1_scalar_sqr(t, t);
   208      }
   209      secp256k1_scalar_mul(t, t, &u9); /* 1001 */
   210      for (i = 0; i < 6; i++) { /* 00000 */
   211          secp256k1_scalar_sqr(t, t);
   212      }
   213      secp256k1_scalar_mul(t, t, x); /* 1 */
   214      for (i = 0; i < 8; i++) { /* 00 */
   215          secp256k1_scalar_sqr(t, t);
   216      }
   217      secp256k1_scalar_mul(r, t, &x6); /* 111111 */
   218  }
   219  
   220  SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
   221      return !(a->d[0] & 1);
   222  }
   223  #endif
   224  
   225  static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
   226  #if defined(USE_SCALAR_INV_BUILTIN)
   227      secp256k1_scalar_inverse(r, x);
   228  #elif defined(USE_SCALAR_INV_NUM)
   229      unsigned char b[32];
   230      secp256k1_num n, m;
   231      secp256k1_scalar t = *x;
   232      secp256k1_scalar_get_b32(b, &t);
   233      secp256k1_num_set_bin(&n, b, 32);
   234      secp256k1_scalar_order_get_num(&m);
   235      secp256k1_num_mod_inverse(&n, &n, &m);
   236      secp256k1_num_get_bin(b, 32, &n);
   237      secp256k1_scalar_set_b32(r, b, NULL);
   238      /* Verify that the inverse was computed correctly, without GMP code. */
   239      secp256k1_scalar_mul(&t, &t, r);
   240      CHECK(secp256k1_scalar_is_one(&t));
   241  #else
   242  #error "Please select scalar inverse implementation"
   243  #endif
   244  }
   245  
   246  #ifdef USE_ENDOMORPHISM
   247  #if defined(EXHAUSTIVE_TEST_ORDER)
   248  /**
   249   * Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the
   250   * full case we don't bother making k1 and k2 be small, we just want them to be
   251   * nontrivial to get full test coverage for the exhaustive tests. We therefore
   252   * (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda.
   253   */
   254  static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
   255      *r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER;
   256      *r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
   257  }
   258  #else
   259  /**
   260   * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
   261   * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
   262   *            0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
   263   *
   264   * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
   265   * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
   266   * and k2 have a small size.
   267   * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
   268   *
   269   * - a1 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
   270   * - b1 =     -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
   271   * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
   272   * - b2 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
   273   *
   274   * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
   275   * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
   276   * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
   277   *
   278   * g1, g2 are precomputed constants used to replace division with a rounded multiplication
   279   * when decomposing the scalar for an endomorphism-based point multiplication.
   280   *
   281   * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
   282   * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
   283   *
   284   * The derivation is described in the paper "Efficient Software Implementation of Public-Key
   285   * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
   286   * Section 4.3 (here we use a somewhat higher-precision estimate):
   287   * d = a1*b2 - b1*a2
   288   * g1 = round((2^272)*b2/d)
   289   * g2 = round((2^272)*b1/d)
   290   *
   291   * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
   292   * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
   293   *
   294   * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
   295   */
   296  
   297  static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
   298      secp256k1_scalar c1, c2;
   299      static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST(
   300          0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
   301          0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
   302      );
   303      static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
   304          0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
   305          0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
   306      );
   307      static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
   308          0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
   309          0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
   310      );
   311      static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
   312          0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
   313          0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
   314      );
   315      static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
   316          0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
   317          0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
   318      );
   319      VERIFY_CHECK(r1 != a);
   320      VERIFY_CHECK(r2 != a);
   321      /* these _var calls are constant time since the shift amount is constant */
   322      secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272);
   323      secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272);
   324      secp256k1_scalar_mul(&c1, &c1, &minus_b1);
   325      secp256k1_scalar_mul(&c2, &c2, &minus_b2);
   326      secp256k1_scalar_add(r2, &c1, &c2);
   327      secp256k1_scalar_mul(r1, r2, &minus_lambda);
   328      secp256k1_scalar_add(r1, r1, a);
   329  }
   330  #endif
   331  #endif
   332  
   333  #endif /* SECP256K1_SCALAR_IMPL_H */