github.com/arieschain/arieschain@v0.0.0-20191023063405-37c074544356/core/asm/compiler.go (about)

     1  package asm
     2  
     3  import (
     4  	"fmt"
     5  	"math/big"
     6  	"os"
     7  	"strings"
     8  
     9  	"github.com/quickchainproject/quickchain/common/math"
    10  	"github.com/quickchainproject/quickchain/core/vm"
    11  )
    12  
    13  // Compiler contains information about the parsed source
    14  // and holds the tokens for the program.
    15  type Compiler struct {
    16  	tokens []token
    17  	binary []interface{}
    18  
    19  	labels map[string]int
    20  
    21  	pc, pos int
    22  
    23  	debug bool
    24  }
    25  
    26  // newCompiler returns a new allocated compiler.
    27  func NewCompiler(debug bool) *Compiler {
    28  	return &Compiler{
    29  		labels: make(map[string]int),
    30  		debug:  debug,
    31  	}
    32  }
    33  
    34  // Feed feeds tokens in to ch and are interpreted by
    35  // the compiler.
    36  //
    37  // feed is the first pass in the compile stage as it
    38  // collect the used labels in the program and keeps a
    39  // program counter which is used to determine the locations
    40  // of the jump dests. The labels can than be used in the
    41  // second stage to push labels and determine the right
    42  // position.
    43  func (c *Compiler) Feed(ch <-chan token) {
    44  	for i := range ch {
    45  		switch i.typ {
    46  		case number:
    47  			num := math.MustParseBig256(i.text).Bytes()
    48  			if len(num) == 0 {
    49  				num = []byte{0}
    50  			}
    51  			c.pc += len(num)
    52  		case stringValue:
    53  			c.pc += len(i.text) - 2
    54  		case element:
    55  			c.pc++
    56  		case labelDef:
    57  			c.labels[i.text] = c.pc
    58  			c.pc++
    59  		case label:
    60  			c.pc += 5
    61  		}
    62  
    63  		c.tokens = append(c.tokens, i)
    64  	}
    65  	if c.debug {
    66  		fmt.Fprintln(os.Stderr, "found", len(c.labels), "labels")
    67  	}
    68  }
    69  
    70  // Compile compiles the current tokens and returns a
    71  // binary string that can be interpreted by the EVM
    72  // and an error if it failed.
    73  //
    74  // compile is the second stage in the compile phase
    75  // which compiles the tokens to EVM instructions.
    76  func (c *Compiler) Compile() (string, []error) {
    77  	var errors []error
    78  	// continue looping over the tokens until
    79  	// the stack has been exhausted.
    80  	for c.pos < len(c.tokens) {
    81  		if err := c.compileLine(); err != nil {
    82  			errors = append(errors, err)
    83  		}
    84  	}
    85  
    86  	// turn the binary to hex
    87  	var bin string
    88  	for _, v := range c.binary {
    89  		switch v := v.(type) {
    90  		case vm.OpCode:
    91  			bin += fmt.Sprintf("%x", []byte{byte(v)})
    92  		case []byte:
    93  			bin += fmt.Sprintf("%x", v)
    94  		}
    95  	}
    96  	return bin, errors
    97  }
    98  
    99  // next returns the next token and increments the
   100  // position.
   101  func (c *Compiler) next() token {
   102  	token := c.tokens[c.pos]
   103  	c.pos++
   104  	return token
   105  }
   106  
   107  // compile line compiles a single line instruction e.g.
   108  // "push 1", "jump @label".
   109  func (c *Compiler) compileLine() error {
   110  	n := c.next()
   111  	if n.typ != lineStart {
   112  		return compileErr(n, n.typ.String(), lineStart.String())
   113  	}
   114  
   115  	lvalue := c.next()
   116  	switch lvalue.typ {
   117  	case eof:
   118  		return nil
   119  	case element:
   120  		if err := c.compileElement(lvalue); err != nil {
   121  			return err
   122  		}
   123  	case labelDef:
   124  		c.compileLabel()
   125  	case lineEnd:
   126  		return nil
   127  	default:
   128  		return compileErr(lvalue, lvalue.text, fmt.Sprintf("%v or %v", labelDef, element))
   129  	}
   130  
   131  	if n := c.next(); n.typ != lineEnd {
   132  		return compileErr(n, n.text, lineEnd.String())
   133  	}
   134  
   135  	return nil
   136  }
   137  
   138  // compileNumber compiles the number to bytes
   139  func (c *Compiler) compileNumber(element token) (int, error) {
   140  	num := math.MustParseBig256(element.text).Bytes()
   141  	if len(num) == 0 {
   142  		num = []byte{0}
   143  	}
   144  	c.pushBin(num)
   145  	return len(num), nil
   146  }
   147  
   148  // compileElement compiles the element (push & label or both)
   149  // to a binary representation and may error if incorrect statements
   150  // where fed.
   151  func (c *Compiler) compileElement(element token) error {
   152  	// check for a jump. jumps must be read and compiled
   153  	// from right to left.
   154  	if isJump(element.text) {
   155  		rvalue := c.next()
   156  		switch rvalue.typ {
   157  		case number:
   158  			// TODO figure out how to return the error properly
   159  			c.compileNumber(rvalue)
   160  		case stringValue:
   161  			// strings are quoted, remove them.
   162  			c.pushBin(rvalue.text[1 : len(rvalue.text)-2])
   163  		case label:
   164  			c.pushBin(vm.PUSH4)
   165  			pos := big.NewInt(int64(c.labels[rvalue.text])).Bytes()
   166  			pos = append(make([]byte, 4-len(pos)), pos...)
   167  			c.pushBin(pos)
   168  		default:
   169  			return compileErr(rvalue, rvalue.text, "number, string or label")
   170  		}
   171  		// push the operation
   172  		c.pushBin(toBinary(element.text))
   173  		return nil
   174  	} else if isPush(element.text) {
   175  		// handle pushes. pushes are read from left to right.
   176  		var value []byte
   177  
   178  		rvalue := c.next()
   179  		switch rvalue.typ {
   180  		case number:
   181  			value = math.MustParseBig256(rvalue.text).Bytes()
   182  			if len(value) == 0 {
   183  				value = []byte{0}
   184  			}
   185  		case stringValue:
   186  			value = []byte(rvalue.text[1 : len(rvalue.text)-1])
   187  		case label:
   188  			value = make([]byte, 4)
   189  			copy(value, big.NewInt(int64(c.labels[rvalue.text])).Bytes())
   190  		default:
   191  			return compileErr(rvalue, rvalue.text, "number, string or label")
   192  		}
   193  
   194  		if len(value) > 32 {
   195  			return fmt.Errorf("%d type error: unsupported string or number with size > 32", rvalue.lineno)
   196  		}
   197  
   198  		c.pushBin(vm.OpCode(int(vm.PUSH1) - 1 + len(value)))
   199  		c.pushBin(value)
   200  	} else {
   201  		c.pushBin(toBinary(element.text))
   202  	}
   203  
   204  	return nil
   205  }
   206  
   207  // compileLabel pushes a jumpdest to the binary slice.
   208  func (c *Compiler) compileLabel() {
   209  	c.pushBin(vm.JUMPDEST)
   210  }
   211  
   212  // pushBin pushes the value v to the binary stack.
   213  func (c *Compiler) pushBin(v interface{}) {
   214  	if c.debug {
   215  		fmt.Printf("%d: %v\n", len(c.binary), v)
   216  	}
   217  	c.binary = append(c.binary, v)
   218  }
   219  
   220  // isPush returns whether the string op is either any of
   221  // push(N).
   222  func isPush(op string) bool {
   223  	return strings.ToUpper(op) == "PUSH"
   224  }
   225  
   226  // isJump returns whether the string op is jump(i)
   227  func isJump(op string) bool {
   228  	return strings.ToUpper(op) == "JUMPI" || strings.ToUpper(op) == "JUMP"
   229  }
   230  
   231  // toBinary converts text to a vm.OpCode
   232  func toBinary(text string) vm.OpCode {
   233  	return vm.StringToOp(strings.ToUpper(text))
   234  }
   235  
   236  type compileError struct {
   237  	got  string
   238  	want string
   239  
   240  	lineno int
   241  }
   242  
   243  func (err compileError) Error() string {
   244  	return fmt.Sprintf("%d syntax error: unexpected %v, expected %v", err.lineno, err.got, err.want)
   245  }
   246  
   247  func compileErr(c token, got, want string) error {
   248  	return compileError{
   249  		got:    got,
   250  		want:   want,
   251  		lineno: c.lineno,
   252  	}
   253  }