github.com/arieschain/arieschain@v0.0.0-20191023063405-37c074544356/core/vm/contracts.go (about)

     1  package vm
     2  
     3  import (
     4  	"crypto/sha256"
     5  	"errors"
     6  	"math/big"
     7  
     8  	"github.com/quickchainproject/quickchain/common"
     9  	"github.com/quickchainproject/quickchain/common/math"
    10  	"github.com/quickchainproject/quickchain/crypto"
    11  	"github.com/quickchainproject/quickchain/crypto/bn256"
    12  	"github.com/quickchainproject/quickchain/params"
    13  	"golang.org/x/crypto/ripemd160"
    14  )
    15  
    16  // PrecompiledContract is the basic interface for native Go contracts. The implementation
    17  // requires a deterministic gas count based on the input size of the Run method of the
    18  // contract.
    19  type PrecompiledContract interface {
    20  	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
    21  	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
    22  }
    23  
    24  // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
    25  // contracts used in the Frontier and Homestead releases.
    26  var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
    27  	common.BytesToAddress([]byte{1}): &ecrecover{},
    28  	common.BytesToAddress([]byte{2}): &sha256hash{},
    29  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    30  	common.BytesToAddress([]byte{4}): &dataCopy{},
    31  }
    32  
    33  // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
    34  // contracts used in the Byzantium release.
    35  var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
    36  	common.BytesToAddress([]byte{1}): &ecrecover{},
    37  	common.BytesToAddress([]byte{2}): &sha256hash{},
    38  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    39  	common.BytesToAddress([]byte{4}): &dataCopy{},
    40  	common.BytesToAddress([]byte{5}): &bigModExp{},
    41  	common.BytesToAddress([]byte{6}): &bn256Add{},
    42  	common.BytesToAddress([]byte{7}): &bn256ScalarMul{},
    43  	common.BytesToAddress([]byte{8}): &bn256Pairing{},
    44  }
    45  
    46  // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
    47  func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
    48  	gas := p.RequiredGas(input)
    49  	if contract.UseGas(gas) {
    50  		return p.Run(input)
    51  	}
    52  	return nil, ErrOutOfGas
    53  }
    54  
    55  // ECRECOVER implemented as a native contract.
    56  type ecrecover struct{}
    57  
    58  func (c *ecrecover) RequiredGas(input []byte) uint64 {
    59  	return params.EcrecoverGas
    60  }
    61  
    62  func (c *ecrecover) Run(input []byte) ([]byte, error) {
    63  	const ecRecoverInputLength = 128
    64  
    65  	input = common.RightPadBytes(input, ecRecoverInputLength)
    66  	// "input" is (hash, v, r, s), each 32 bytes
    67  	// but for ecrecover we want (r, s, v)
    68  
    69  	r := new(big.Int).SetBytes(input[64:96])
    70  	s := new(big.Int).SetBytes(input[96:128])
    71  	v := input[63] - 27
    72  
    73  	// tighter sig s values input homestead only apply to tx sigs
    74  	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
    75  		return nil, nil
    76  	}
    77  	// v needs to be at the end for libsecp256k1
    78  	pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v))
    79  	// make sure the public key is a valid one
    80  	if err != nil {
    81  		return nil, nil
    82  	}
    83  
    84  	// the first byte of pubkey is bitcoin heritage
    85  	return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
    86  }
    87  
    88  // SHA256 implemented as a native contract.
    89  type sha256hash struct{}
    90  
    91  // RequiredGas returns the gas required to execute the pre-compiled contract.
    92  //
    93  // This method does not require any overflow checking as the input size gas costs
    94  // required for anything significant is so high it's impossible to pay for.
    95  func (c *sha256hash) RequiredGas(input []byte) uint64 {
    96  	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
    97  }
    98  func (c *sha256hash) Run(input []byte) ([]byte, error) {
    99  	h := sha256.Sum256(input)
   100  	return h[:], nil
   101  }
   102  
   103  // RIPMED160 implemented as a native contract.
   104  type ripemd160hash struct{}
   105  
   106  // RequiredGas returns the gas required to execute the pre-compiled contract.
   107  //
   108  // This method does not require any overflow checking as the input size gas costs
   109  // required for anything significant is so high it's impossible to pay for.
   110  func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
   111  	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
   112  }
   113  func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
   114  	ripemd := ripemd160.New()
   115  	ripemd.Write(input)
   116  	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
   117  }
   118  
   119  // data copy implemented as a native contract.
   120  type dataCopy struct{}
   121  
   122  // RequiredGas returns the gas required to execute the pre-compiled contract.
   123  //
   124  // This method does not require any overflow checking as the input size gas costs
   125  // required for anything significant is so high it's impossible to pay for.
   126  func (c *dataCopy) RequiredGas(input []byte) uint64 {
   127  	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
   128  }
   129  func (c *dataCopy) Run(in []byte) ([]byte, error) {
   130  	return in, nil
   131  }
   132  
   133  // bigModExp implements a native big integer exponential modular operation.
   134  type bigModExp struct{}
   135  
   136  var (
   137  	big1      = big.NewInt(1)
   138  	big4      = big.NewInt(4)
   139  	big8      = big.NewInt(8)
   140  	big16     = big.NewInt(16)
   141  	big32     = big.NewInt(32)
   142  	big64     = big.NewInt(64)
   143  	big96     = big.NewInt(96)
   144  	big480    = big.NewInt(480)
   145  	big1024   = big.NewInt(1024)
   146  	big3072   = big.NewInt(3072)
   147  	big199680 = big.NewInt(199680)
   148  )
   149  
   150  // RequiredGas returns the gas required to execute the pre-compiled contract.
   151  func (c *bigModExp) RequiredGas(input []byte) uint64 {
   152  	var (
   153  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
   154  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
   155  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
   156  	)
   157  	if len(input) > 96 {
   158  		input = input[96:]
   159  	} else {
   160  		input = input[:0]
   161  	}
   162  	// Retrieve the head 32 bytes of exp for the adjusted exponent length
   163  	var expHead *big.Int
   164  	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
   165  		expHead = new(big.Int)
   166  	} else {
   167  		if expLen.Cmp(big32) > 0 {
   168  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
   169  		} else {
   170  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
   171  		}
   172  	}
   173  	// Calculate the adjusted exponent length
   174  	var msb int
   175  	if bitlen := expHead.BitLen(); bitlen > 0 {
   176  		msb = bitlen - 1
   177  	}
   178  	adjExpLen := new(big.Int)
   179  	if expLen.Cmp(big32) > 0 {
   180  		adjExpLen.Sub(expLen, big32)
   181  		adjExpLen.Mul(big8, adjExpLen)
   182  	}
   183  	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
   184  
   185  	// Calculate the gas cost of the operation
   186  	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
   187  	switch {
   188  	case gas.Cmp(big64) <= 0:
   189  		gas.Mul(gas, gas)
   190  	case gas.Cmp(big1024) <= 0:
   191  		gas = new(big.Int).Add(
   192  			new(big.Int).Div(new(big.Int).Mul(gas, gas), big4),
   193  			new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072),
   194  		)
   195  	default:
   196  		gas = new(big.Int).Add(
   197  			new(big.Int).Div(new(big.Int).Mul(gas, gas), big16),
   198  			new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680),
   199  		)
   200  	}
   201  	gas.Mul(gas, math.BigMax(adjExpLen, big1))
   202  	gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))
   203  
   204  	if gas.BitLen() > 64 {
   205  		return math.MaxUint64
   206  	}
   207  	return gas.Uint64()
   208  }
   209  
   210  func (c *bigModExp) Run(input []byte) ([]byte, error) {
   211  	var (
   212  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
   213  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
   214  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
   215  	)
   216  	if len(input) > 96 {
   217  		input = input[96:]
   218  	} else {
   219  		input = input[:0]
   220  	}
   221  	// Handle a special case when both the base and mod length is zero
   222  	if baseLen == 0 && modLen == 0 {
   223  		return []byte{}, nil
   224  	}
   225  	// Retrieve the operands and execute the exponentiation
   226  	var (
   227  		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
   228  		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
   229  		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
   230  	)
   231  	if mod.BitLen() == 0 {
   232  		// Modulo 0 is undefined, return zero
   233  		return common.LeftPadBytes([]byte{}, int(modLen)), nil
   234  	}
   235  	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
   236  }
   237  
   238  // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
   239  // returning it, or an error if the point is invalid.
   240  func newCurvePoint(blob []byte) (*bn256.G1, error) {
   241  	p := new(bn256.G1)
   242  	if _, err := p.Unmarshal(blob); err != nil {
   243  		return nil, err
   244  	}
   245  	return p, nil
   246  }
   247  
   248  // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
   249  // returning it, or an error if the point is invalid.
   250  func newTwistPoint(blob []byte) (*bn256.G2, error) {
   251  	p := new(bn256.G2)
   252  	if _, err := p.Unmarshal(blob); err != nil {
   253  		return nil, err
   254  	}
   255  	return p, nil
   256  }
   257  
   258  // bn256Add implements a native elliptic curve point addition.
   259  type bn256Add struct{}
   260  
   261  // RequiredGas returns the gas required to execute the pre-compiled contract.
   262  func (c *bn256Add) RequiredGas(input []byte) uint64 {
   263  	return params.Bn256AddGas
   264  }
   265  
   266  func (c *bn256Add) Run(input []byte) ([]byte, error) {
   267  	x, err := newCurvePoint(getData(input, 0, 64))
   268  	if err != nil {
   269  		return nil, err
   270  	}
   271  	y, err := newCurvePoint(getData(input, 64, 64))
   272  	if err != nil {
   273  		return nil, err
   274  	}
   275  	res := new(bn256.G1)
   276  	res.Add(x, y)
   277  	return res.Marshal(), nil
   278  }
   279  
   280  // bn256ScalarMul implements a native elliptic curve scalar multiplication.
   281  type bn256ScalarMul struct{}
   282  
   283  // RequiredGas returns the gas required to execute the pre-compiled contract.
   284  func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 {
   285  	return params.Bn256ScalarMulGas
   286  }
   287  
   288  func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) {
   289  	p, err := newCurvePoint(getData(input, 0, 64))
   290  	if err != nil {
   291  		return nil, err
   292  	}
   293  	res := new(bn256.G1)
   294  	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
   295  	return res.Marshal(), nil
   296  }
   297  
   298  var (
   299  	// true32Byte is returned if the bn256 pairing check succeeds.
   300  	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   301  
   302  	// false32Byte is returned if the bn256 pairing check fails.
   303  	false32Byte = make([]byte, 32)
   304  
   305  	// errBadPairingInput is returned if the bn256 pairing input is invalid.
   306  	errBadPairingInput = errors.New("bad elliptic curve pairing size")
   307  )
   308  
   309  // bn256Pairing implements a pairing pre-compile for the bn256 curve
   310  type bn256Pairing struct{}
   311  
   312  // RequiredGas returns the gas required to execute the pre-compiled contract.
   313  func (c *bn256Pairing) RequiredGas(input []byte) uint64 {
   314  	return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas
   315  }
   316  
   317  func (c *bn256Pairing) Run(input []byte) ([]byte, error) {
   318  	// Handle some corner cases cheaply
   319  	if len(input)%192 > 0 {
   320  		return nil, errBadPairingInput
   321  	}
   322  	// Convert the input into a set of coordinates
   323  	var (
   324  		cs []*bn256.G1
   325  		ts []*bn256.G2
   326  	)
   327  	for i := 0; i < len(input); i += 192 {
   328  		c, err := newCurvePoint(input[i : i+64])
   329  		if err != nil {
   330  			return nil, err
   331  		}
   332  		t, err := newTwistPoint(input[i+64 : i+192])
   333  		if err != nil {
   334  			return nil, err
   335  		}
   336  		cs = append(cs, c)
   337  		ts = append(ts, t)
   338  	}
   339  	// Execute the pairing checks and return the results
   340  	if bn256.PairingCheck(cs, ts) {
   341  		return true32Byte, nil
   342  	}
   343  	return false32Byte, nil
   344  }