github.com/arieschain/arieschain@v0.0.0-20191023063405-37c074544356/qct/downloader/statesync.go (about) 1 package downloader 2 3 import ( 4 "fmt" 5 "hash" 6 "sync" 7 "time" 8 9 "github.com/quickchainproject/quickchain/common" 10 "github.com/quickchainproject/quickchain/core" 11 "github.com/quickchainproject/quickchain/core/state" 12 "github.com/quickchainproject/quickchain/crypto/sha3" 13 "github.com/quickchainproject/quickchain/qctdb" 14 "github.com/quickchainproject/quickchain/log" 15 "github.com/quickchainproject/quickchain/trie" 16 ) 17 18 // stateReq represents a batch of state fetch requests grouped together into 19 // a single data retrieval network packet. 20 type stateReq struct { 21 items []common.Hash // Hashes of the state items to download 22 tasks map[common.Hash]*stateTask // Download tasks to track previous attempts 23 timeout time.Duration // Maximum round trip time for this to complete 24 timer *time.Timer // Timer to fire when the RTT timeout expires 25 peer *peerConnection // Peer that we're requesting from 26 response [][]byte // Response data of the peer (nil for timeouts) 27 dropped bool // Flag whether the peer dropped off early 28 } 29 30 // timedOut returns if this request timed out. 31 func (req *stateReq) timedOut() bool { 32 return req.response == nil 33 } 34 35 // stateSyncStats is a collection of progress stats to report during a state trie 36 // sync to RPC requests as well as to display in user logs. 37 type stateSyncStats struct { 38 processed uint64 // Number of state entries processed 39 duplicate uint64 // Number of state entries downloaded twice 40 unexpected uint64 // Number of non-requested state entries received 41 pending uint64 // Number of still pending state entries 42 } 43 44 // syncState starts downloading state with the given root hash. 45 func (d *Downloader) syncState(root common.Hash) *stateSync { 46 s := newStateSync(d, root) 47 select { 48 case d.stateSyncStart <- s: 49 case <-d.quitCh: 50 s.err = errCancelStateFetch 51 close(s.done) 52 } 53 return s 54 } 55 56 // stateFetcher manages the active state sync and accepts requests 57 // on its behalf. 58 func (d *Downloader) stateFetcher() { 59 for { 60 select { 61 case s := <-d.stateSyncStart: 62 for next := s; next != nil; { 63 next = d.runStateSync(next) 64 } 65 case <-d.stateCh: 66 // Ignore state responses while no sync is running. 67 case <-d.quitCh: 68 return 69 } 70 } 71 } 72 73 // runStateSync runs a state synchronisation until it completes or another root 74 // hash is requested to be switched over to. 75 func (d *Downloader) runStateSync(s *stateSync) *stateSync { 76 var ( 77 active = make(map[string]*stateReq) // Currently in-flight requests 78 finished []*stateReq // Completed or failed requests 79 timeout = make(chan *stateReq) // Timed out active requests 80 ) 81 defer func() { 82 // Cancel active request timers on exit. Also set peers to idle so they're 83 // available for the next sync. 84 for _, req := range active { 85 req.timer.Stop() 86 req.peer.SetNodeDataIdle(len(req.items)) 87 } 88 }() 89 // Run the state sync. 90 go s.run() 91 defer s.Cancel() 92 93 // Listen for peer departure events to cancel assigned tasks 94 peerDrop := make(chan *peerConnection, 1024) 95 peerSub := s.d.peers.SubscribePeerDrops(peerDrop) 96 defer peerSub.Unsubscribe() 97 98 for { 99 // Enable sending of the first buffered element if there is one. 100 var ( 101 deliverReq *stateReq 102 deliverReqCh chan *stateReq 103 ) 104 if len(finished) > 0 { 105 deliverReq = finished[0] 106 deliverReqCh = s.deliver 107 } 108 109 select { 110 // The stateSync lifecycle: 111 case next := <-d.stateSyncStart: 112 return next 113 114 case <-s.done: 115 return nil 116 117 // Send the next finished request to the current sync: 118 case deliverReqCh <- deliverReq: 119 // Shift out the first request, but also set the emptied slot to nil for GC 120 copy(finished, finished[1:]) 121 finished[len(finished)-1] = nil 122 finished = finished[:len(finished)-1] 123 124 // Handle incoming state packs: 125 case pack := <-d.stateCh: 126 // Discard any data not requested (or previously timed out) 127 req := active[pack.PeerId()] 128 if req == nil { 129 log.Debug("Unrequested node data", "peer", pack.PeerId(), "len", pack.Items()) 130 continue 131 } 132 // Finalize the request and queue up for processing 133 req.timer.Stop() 134 req.response = pack.(*statePack).states 135 136 finished = append(finished, req) 137 delete(active, pack.PeerId()) 138 139 // Handle dropped peer connections: 140 case p := <-peerDrop: 141 // Skip if no request is currently pending 142 req := active[p.id] 143 if req == nil { 144 continue 145 } 146 // Finalize the request and queue up for processing 147 req.timer.Stop() 148 req.dropped = true 149 150 finished = append(finished, req) 151 delete(active, p.id) 152 153 // Handle timed-out requests: 154 case req := <-timeout: 155 // If the peer is already requesting something else, ignore the stale timeout. 156 // This can happen when the timeout and the delivery happens simultaneously, 157 // causing both pathways to trigger. 158 if active[req.peer.id] != req { 159 continue 160 } 161 // Move the timed out data back into the download queue 162 finished = append(finished, req) 163 delete(active, req.peer.id) 164 165 // Track outgoing state requests: 166 case req := <-d.trackStateReq: 167 // If an active request already exists for this peer, we have a problem. In 168 // theory the trie node schedule must never assign two requests to the same 169 // peer. In practice however, a peer might receive a request, disconnect and 170 // immediately reconnect before the previous times out. In this case the first 171 // request is never honored, alas we must not silently overwrite it, as that 172 // causes valid requests to go missing and sync to get stuck. 173 if old := active[req.peer.id]; old != nil { 174 log.Warn("Busy peer assigned new state fetch", "peer", old.peer.id) 175 176 // Make sure the previous one doesn't get siletly lost 177 old.timer.Stop() 178 old.dropped = true 179 180 finished = append(finished, old) 181 } 182 // Start a timer to notify the sync loop if the peer stalled. 183 req.timer = time.AfterFunc(req.timeout, func() { 184 select { 185 case timeout <- req: 186 case <-s.done: 187 // Prevent leaking of timer goroutines in the unlikely case where a 188 // timer is fired just before exiting runStateSync. 189 } 190 }) 191 active[req.peer.id] = req 192 } 193 } 194 } 195 196 // stateSync schedules requests for downloading a particular state trie defined 197 // by a given state root. 198 type stateSync struct { 199 d *Downloader // Downloader instance to access and manage current peerset 200 201 sched *trie.TrieSync // State trie sync scheduler defining the tasks 202 keccak hash.Hash // Keccak256 hasher to verify deliveries with 203 tasks map[common.Hash]*stateTask // Set of tasks currently queued for retrieval 204 205 numUncommitted int 206 bytesUncommitted int 207 208 deliver chan *stateReq // Delivery channel multiplexing peer responses 209 cancel chan struct{} // Channel to signal a termination request 210 cancelOnce sync.Once // Ensures cancel only ever gets called once 211 done chan struct{} // Channel to signal termination completion 212 err error // Any error hit during sync (set before completion) 213 } 214 215 // stateTask represents a single trie node download task, containing a set of 216 // peers already attempted retrieval from to detect stalled syncs and abort. 217 type stateTask struct { 218 attempts map[string]struct{} 219 } 220 221 // newStateSync creates a new state trie download scheduler. This method does not 222 // yet start the sync. The user needs to call run to initiate. 223 func newStateSync(d *Downloader, root common.Hash) *stateSync { 224 return &stateSync{ 225 d: d, 226 sched: state.NewStateSync(root, d.stateDB), 227 keccak: sha3.NewKeccak256(), 228 tasks: make(map[common.Hash]*stateTask), 229 deliver: make(chan *stateReq), 230 cancel: make(chan struct{}), 231 done: make(chan struct{}), 232 } 233 } 234 235 // run starts the task assignment and response processing loop, blocking until 236 // it finishes, and finally notifying any goroutines waiting for the loop to 237 // finish. 238 func (s *stateSync) run() { 239 s.err = s.loop() 240 close(s.done) 241 } 242 243 // Wait blocks until the sync is done or canceled. 244 func (s *stateSync) Wait() error { 245 <-s.done 246 return s.err 247 } 248 249 // Cancel cancels the sync and waits until it has shut down. 250 func (s *stateSync) Cancel() error { 251 s.cancelOnce.Do(func() { close(s.cancel) }) 252 return s.Wait() 253 } 254 255 // loop is the main event loop of a state trie sync. It it responsible for the 256 // assignment of new tasks to peers (including sending it to them) as well as 257 // for the processing of inbound data. Note, that the loop does not directly 258 // receive data from peers, rather those are buffered up in the downloader and 259 // pushed here async. The reason is to decouple processing from data receipt 260 // and timeouts. 261 func (s *stateSync) loop() (err error) { 262 // Listen for new peer events to assign tasks to them 263 newPeer := make(chan *peerConnection, 1024) 264 peerSub := s.d.peers.SubscribeNewPeers(newPeer) 265 defer peerSub.Unsubscribe() 266 defer func() { 267 cerr := s.commit(true) 268 if err == nil { 269 err = cerr 270 } 271 }() 272 273 // Keep assigning new tasks until the sync completes or aborts 274 for s.sched.Pending() > 0 { 275 if err = s.commit(false); err != nil { 276 return err 277 } 278 s.assignTasks() 279 // Tasks assigned, wait for something to happen 280 select { 281 case <-newPeer: 282 // New peer arrived, try to assign it download tasks 283 284 case <-s.cancel: 285 return errCancelStateFetch 286 287 case <-s.d.cancelCh: 288 return errCancelStateFetch 289 290 case req := <-s.deliver: 291 // Response, disconnect or timeout triggered, drop the peer if stalling 292 log.Trace("Received node data response", "peer", req.peer.id, "count", len(req.response), "dropped", req.dropped, "timeout", !req.dropped && req.timedOut()) 293 if len(req.items) <= 2 && !req.dropped && req.timedOut() { 294 // 2 items are the minimum requested, if even that times out, we've no use of 295 // this peer at the moment. 296 log.Warn("Stalling state sync, dropping peer", "peer", req.peer.id) 297 s.d.dropPeer(req.peer.id) 298 } 299 // Process all the received blobs and check for stale delivery 300 if err = s.process(req); err != nil { 301 log.Warn("Node data write error", "err", err) 302 return err 303 } 304 req.peer.SetNodeDataIdle(len(req.response)) 305 } 306 } 307 return nil 308 } 309 310 func (s *stateSync) commit(force bool) error { 311 if !force && s.bytesUncommitted < qctdb.IdealBatchSize { 312 return nil 313 } 314 start := time.Now() 315 b := s.d.stateDB.NewBatch() 316 if written, err := s.sched.Commit(b); written == 0 || err != nil { 317 return err 318 } 319 if err := b.Write(); err != nil { 320 return fmt.Errorf("DB write error: %v", err) 321 } 322 s.updateStats(s.numUncommitted, 0, 0, time.Since(start)) 323 s.numUncommitted = 0 324 s.bytesUncommitted = 0 325 return nil 326 } 327 328 // assignTasks attempts to assign new tasks to all idle peers, either from the 329 // batch currently being retried, or fetching new data from the trie sync itself. 330 func (s *stateSync) assignTasks() { 331 // Iterate over all idle peers and try to assign them state fetches 332 peers, _ := s.d.peers.NodeDataIdlePeers() 333 for _, p := range peers { 334 // Assign a batch of fetches proportional to the estimated latency/bandwidth 335 cap := p.NodeDataCapacity(s.d.requestRTT()) 336 req := &stateReq{peer: p, timeout: s.d.requestTTL()} 337 s.fillTasks(cap, req) 338 339 // If the peer was assigned tasks to fetch, send the network request 340 if len(req.items) > 0 { 341 req.peer.log.Trace("Requesting new batch of data", "type", "state", "count", len(req.items)) 342 select { 343 case s.d.trackStateReq <- req: 344 req.peer.FetchNodeData(req.items) 345 case <-s.cancel: 346 case <-s.d.cancelCh: 347 } 348 } 349 } 350 } 351 352 // fillTasks fills the given request object with a maximum of n state download 353 // tasks to send to the remote peer. 354 func (s *stateSync) fillTasks(n int, req *stateReq) { 355 // Refill available tasks from the scheduler. 356 if len(s.tasks) < n { 357 new := s.sched.Missing(n - len(s.tasks)) 358 for _, hash := range new { 359 s.tasks[hash] = &stateTask{make(map[string]struct{})} 360 } 361 } 362 // Find tasks that haven't been tried with the request's peer. 363 req.items = make([]common.Hash, 0, n) 364 req.tasks = make(map[common.Hash]*stateTask, n) 365 for hash, t := range s.tasks { 366 // Stop when we've gathered enough requests 367 if len(req.items) == n { 368 break 369 } 370 // Skip any requests we've already tried from this peer 371 if _, ok := t.attempts[req.peer.id]; ok { 372 continue 373 } 374 // Assign the request to this peer 375 t.attempts[req.peer.id] = struct{}{} 376 req.items = append(req.items, hash) 377 req.tasks[hash] = t 378 delete(s.tasks, hash) 379 } 380 } 381 382 // process iterates over a batch of delivered state data, injecting each item 383 // into a running state sync, re-queuing any items that were requested but not 384 // delivered. 385 func (s *stateSync) process(req *stateReq) error { 386 // Collect processing stats and update progress if valid data was received 387 duplicate, unexpected := 0, 0 388 389 defer func(start time.Time) { 390 if duplicate > 0 || unexpected > 0 { 391 s.updateStats(0, duplicate, unexpected, time.Since(start)) 392 } 393 }(time.Now()) 394 395 // Iterate over all the delivered data and inject one-by-one into the trie 396 progress := false 397 398 for _, blob := range req.response { 399 prog, hash, err := s.processNodeData(blob) 400 switch err { 401 case nil: 402 s.numUncommitted++ 403 s.bytesUncommitted += len(blob) 404 progress = progress || prog 405 case trie.ErrNotRequested: 406 unexpected++ 407 case trie.ErrAlreadyProcessed: 408 duplicate++ 409 default: 410 return fmt.Errorf("invalid state node %s: %v", hash.TerminalString(), err) 411 } 412 if _, ok := req.tasks[hash]; ok { 413 delete(req.tasks, hash) 414 } 415 } 416 // Put unfulfilled tasks back into the retry queue 417 npeers := s.d.peers.Len() 418 for hash, task := range req.tasks { 419 // If the node did deliver something, missing items may be due to a protocol 420 // limit or a previous timeout + delayed delivery. Both cases should permit 421 // the node to retry the missing items (to avoid single-peer stalls). 422 if len(req.response) > 0 || req.timedOut() { 423 delete(task.attempts, req.peer.id) 424 } 425 // If we've requested the node too many times already, it may be a malicious 426 // sync where nobody has the right data. Abort. 427 if len(task.attempts) >= npeers { 428 return fmt.Errorf("state node %s failed with all peers (%d tries, %d peers)", hash.TerminalString(), len(task.attempts), npeers) 429 } 430 // Missing item, place into the retry queue. 431 s.tasks[hash] = task 432 } 433 return nil 434 } 435 436 // processNodeData tries to inject a trie node data blob delivered from a remote 437 // peer into the state trie, returning whether anything useful was written or any 438 // error occurred. 439 func (s *stateSync) processNodeData(blob []byte) (bool, common.Hash, error) { 440 res := trie.SyncResult{Data: blob} 441 s.keccak.Reset() 442 s.keccak.Write(blob) 443 s.keccak.Sum(res.Hash[:0]) 444 committed, _, err := s.sched.Process([]trie.SyncResult{res}) 445 return committed, res.Hash, err 446 } 447 448 // updateStats bumps the various state sync progress counters and displays a log 449 // message for the user to see. 450 func (s *stateSync) updateStats(written, duplicate, unexpected int, duration time.Duration) { 451 s.d.syncStatsLock.Lock() 452 defer s.d.syncStatsLock.Unlock() 453 454 s.d.syncStatsState.pending = uint64(s.sched.Pending()) 455 s.d.syncStatsState.processed += uint64(written) 456 s.d.syncStatsState.duplicate += uint64(duplicate) 457 s.d.syncStatsState.unexpected += uint64(unexpected) 458 459 if written > 0 || duplicate > 0 || unexpected > 0 { 460 log.Info("Imported new state entries", "count", written, "elapsed", common.PrettyDuration(duration), "processed", s.d.syncStatsState.processed, "pending", s.d.syncStatsState.pending, "retry", len(s.tasks), "duplicate", s.d.syncStatsState.duplicate, "unexpected", s.d.syncStatsState.unexpected) 461 } 462 if written > 0 { 463 core.WriteTrieSyncProgress(s.d.stateDB, s.d.syncStatsState.processed) 464 } 465 }