github.com/as/shiny@v0.8.2/math/fixed/fixed.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package fixed implements fixed-point integer types. 6 package fixed 7 8 import ( 9 "fmt" 10 ) 11 12 // TODO: implement fmt.Formatter for %f and %g. 13 14 // I returns the integer value i as an Int26_6. 15 // 16 // For example, passing the integer value 2 yields Int26_6(128). 17 func I(i int) Int26_6 { 18 return Int26_6(i << 6) 19 } 20 21 // Int26_6 is a signed 26.6 fixed-point number. 22 // 23 // The integer part ranges from -33554432 to 33554431, inclusive. The 24 // fractional part has 6 bits of precision. 25 // 26 // For example, the number one-and-a-quarter is Int26_6(1<<6 + 1<<4). 27 type Int26_6 int32 28 29 // String returns a human-readable representation of a 26.6 fixed-point number. 30 // 31 // For example, the number one-and-a-quarter becomes "1:16". 32 func (x Int26_6) String() string { 33 const shift, mask = 6, 1<<6 - 1 34 if x >= 0 { 35 return fmt.Sprintf("%d:%02d", int32(x>>shift), int32(x&mask)) 36 } 37 x = -x 38 if x >= 0 { 39 return fmt.Sprintf("-%d:%02d", int32(x>>shift), int32(x&mask)) 40 } 41 return "-33554432:00" // The minimum value is -(1<<25). 42 } 43 44 // Floor returns the greatest integer value less than or equal to x. 45 // 46 // Its return type is int, not Int26_6. 47 func (x Int26_6) Floor() int { return int((x + 0x00) >> 6) } 48 49 // Round returns the nearest integer value to x. Ties are rounded up. 50 // 51 // Its return type is int, not Int26_6. 52 func (x Int26_6) Round() int { return int((x + 0x20) >> 6) } 53 54 // Ceil returns the least integer value greater than or equal to x. 55 // 56 // Its return type is int, not Int26_6. 57 func (x Int26_6) Ceil() int { return int((x + 0x3f) >> 6) } 58 59 // Mul returns x*y in 26.6 fixed-point arithmetic. 60 func (x Int26_6) Mul(y Int26_6) Int26_6 { 61 return Int26_6((int64(x)*int64(y) + 1<<5) >> 6) 62 } 63 64 // Int52_12 is a signed 52.12 fixed-point number. 65 // 66 // The integer part ranges from -2251799813685248 to 2251799813685247, 67 // inclusive. The fractional part has 12 bits of precision. 68 // 69 // For example, the number one-and-a-quarter is Int52_12(1<<12 + 1<<10). 70 type Int52_12 int64 71 72 // String returns a human-readable representation of a 52.12 fixed-point 73 // number. 74 // 75 // For example, the number one-and-a-quarter becomes "1:1024". 76 func (x Int52_12) String() string { 77 const shift, mask = 12, 1<<12 - 1 78 if x >= 0 { 79 return fmt.Sprintf("%d:%04d", int64(x>>shift), int64(x&mask)) 80 } 81 x = -x 82 if x >= 0 { 83 return fmt.Sprintf("-%d:%04d", int64(x>>shift), int64(x&mask)) 84 } 85 return "-2251799813685248:0000" // The minimum value is -(1<<51). 86 } 87 88 // Floor returns the greatest integer value less than or equal to x. 89 // 90 // Its return type is int, not Int52_12. 91 func (x Int52_12) Floor() int { return int((x + 0x000) >> 12) } 92 93 // Round returns the nearest integer value to x. Ties are rounded up. 94 // 95 // Its return type is int, not Int52_12. 96 func (x Int52_12) Round() int { return int((x + 0x800) >> 12) } 97 98 // Ceil returns the least integer value greater than or equal to x. 99 // 100 // Its return type is int, not Int52_12. 101 func (x Int52_12) Ceil() int { return int((x + 0xfff) >> 12) } 102 103 // Mul returns x*y in 52.12 fixed-point arithmetic. 104 func (x Int52_12) Mul(y Int52_12) Int52_12 { 105 const M, N = 52, 12 106 lo, hi := muli64(int64(x), int64(y)) 107 ret := Int52_12(hi<<M | lo>>N) 108 ret += Int52_12((lo >> (N - 1)) & 1) // Round to nearest, instead of rounding down. 109 return ret 110 } 111 112 // muli64 multiplies two int64 values, returning the 128-bit signed integer 113 // result as two uint64 values. 114 // 115 // This implementation is similar to $GOROOT/src/runtime/softfloat64.go's mullu 116 // function, which is in turn adapted from Hacker's Delight. 117 func muli64(u, v int64) (lo, hi uint64) { 118 const ( 119 s = 32 120 mask = 1<<s - 1 121 ) 122 123 u1 := uint64(u >> s) 124 u0 := uint64(u & mask) 125 v1 := uint64(v >> s) 126 v0 := uint64(v & mask) 127 128 w0 := u0 * v0 129 t := u1*v0 + w0>>s 130 w1 := t & mask 131 w2 := uint64(int64(t) >> s) 132 w1 += u0 * v1 133 return uint64(u) * uint64(v), u1*v1 + w2 + uint64(int64(w1)>>s) 134 } 135 136 // P returns the integer values x and y as a Point26_6. 137 // 138 // For example, passing the integer values (2, -3) yields Point26_6{128, -192}. 139 func P(x, y int) Point26_6 { 140 return Point26_6{Int26_6(x << 6), Int26_6(y << 6)} 141 } 142 143 // Point26_6 is a 26.6 fixed-point coordinate pair. 144 // 145 // It is analogous to the image.Point type in the standard library. 146 type Point26_6 struct { 147 X, Y Int26_6 148 } 149 150 // Add returns the vector p+q. 151 func (p Point26_6) Add(q Point26_6) Point26_6 { 152 return Point26_6{p.X + q.X, p.Y + q.Y} 153 } 154 155 // Sub returns the vector p-q. 156 func (p Point26_6) Sub(q Point26_6) Point26_6 { 157 return Point26_6{p.X - q.X, p.Y - q.Y} 158 } 159 160 // Mul returns the vector p*k. 161 func (p Point26_6) Mul(k Int26_6) Point26_6 { 162 return Point26_6{p.X * k / 64, p.Y * k / 64} 163 } 164 165 // Div returns the vector p/k. 166 func (p Point26_6) Div(k Int26_6) Point26_6 { 167 return Point26_6{p.X * 64 / k, p.Y * 64 / k} 168 } 169 170 // In returns whether p is in r. 171 func (p Point26_6) In(r Rectangle26_6) bool { 172 return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y 173 } 174 175 // Point52_12 is a 52.12 fixed-point coordinate pair. 176 // 177 // It is analogous to the image.Point type in the standard library. 178 type Point52_12 struct { 179 X, Y Int52_12 180 } 181 182 // Add returns the vector p+q. 183 func (p Point52_12) Add(q Point52_12) Point52_12 { 184 return Point52_12{p.X + q.X, p.Y + q.Y} 185 } 186 187 // Sub returns the vector p-q. 188 func (p Point52_12) Sub(q Point52_12) Point52_12 { 189 return Point52_12{p.X - q.X, p.Y - q.Y} 190 } 191 192 // Mul returns the vector p*k. 193 func (p Point52_12) Mul(k Int52_12) Point52_12 { 194 return Point52_12{p.X * k / 4096, p.Y * k / 4096} 195 } 196 197 // Div returns the vector p/k. 198 func (p Point52_12) Div(k Int52_12) Point52_12 { 199 return Point52_12{p.X * 4096 / k, p.Y * 4096 / k} 200 } 201 202 // In returns whether p is in r. 203 func (p Point52_12) In(r Rectangle52_12) bool { 204 return r.Min.X <= p.X && p.X < r.Max.X && r.Min.Y <= p.Y && p.Y < r.Max.Y 205 } 206 207 // R returns the integer values minX, minY, maxX, maxY as a Rectangle26_6. 208 // 209 // For example, passing the integer values (0, 1, 2, 3) yields 210 // Rectangle26_6{Point26_6{0, 64}, Point26_6{128, 192}}. 211 // 212 // Like the image.Rect function in the standard library, the returned rectangle 213 // has minimum and maximum coordinates swapped if necessary so that it is 214 // well-formed. 215 func R(minX, minY, maxX, maxY int) Rectangle26_6 { 216 if minX > maxX { 217 minX, maxX = maxX, minX 218 } 219 if minY > maxY { 220 minY, maxY = maxY, minY 221 } 222 return Rectangle26_6{ 223 Point26_6{ 224 Int26_6(minX << 6), 225 Int26_6(minY << 6), 226 }, 227 Point26_6{ 228 Int26_6(maxX << 6), 229 Int26_6(maxY << 6), 230 }, 231 } 232 } 233 234 // Rectangle26_6 is a 26.6 fixed-point coordinate rectangle. The Min bound is 235 // inclusive and the Max bound is exclusive. It is well-formed if Min.X <= 236 // Max.X and likewise for Y. 237 // 238 // It is analogous to the image.Rectangle type in the standard library. 239 type Rectangle26_6 struct { 240 Min, Max Point26_6 241 } 242 243 // Add returns the rectangle r translated by p. 244 func (r Rectangle26_6) Add(p Point26_6) Rectangle26_6 { 245 return Rectangle26_6{ 246 Point26_6{r.Min.X + p.X, r.Min.Y + p.Y}, 247 Point26_6{r.Max.X + p.X, r.Max.Y + p.Y}, 248 } 249 } 250 251 // Sub returns the rectangle r translated by -p. 252 func (r Rectangle26_6) Sub(p Point26_6) Rectangle26_6 { 253 return Rectangle26_6{ 254 Point26_6{r.Min.X - p.X, r.Min.Y - p.Y}, 255 Point26_6{r.Max.X - p.X, r.Max.Y - p.Y}, 256 } 257 } 258 259 // Intersect returns the largest rectangle contained by both r and s. If the 260 // two rectangles do not overlap then the zero rectangle will be returned. 261 func (r Rectangle26_6) Intersect(s Rectangle26_6) Rectangle26_6 { 262 if r.Min.X < s.Min.X { 263 r.Min.X = s.Min.X 264 } 265 if r.Min.Y < s.Min.Y { 266 r.Min.Y = s.Min.Y 267 } 268 if r.Max.X > s.Max.X { 269 r.Max.X = s.Max.X 270 } 271 if r.Max.Y > s.Max.Y { 272 r.Max.Y = s.Max.Y 273 } 274 // Letting r0 and s0 be the values of r and s at the time that the method 275 // is called, this next line is equivalent to: 276 // 277 // if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc } 278 if r.Empty() { 279 return Rectangle26_6{} 280 } 281 return r 282 } 283 284 // Union returns the smallest rectangle that contains both r and s. 285 func (r Rectangle26_6) Union(s Rectangle26_6) Rectangle26_6 { 286 if r.Empty() { 287 return s 288 } 289 if s.Empty() { 290 return r 291 } 292 if r.Min.X > s.Min.X { 293 r.Min.X = s.Min.X 294 } 295 if r.Min.Y > s.Min.Y { 296 r.Min.Y = s.Min.Y 297 } 298 if r.Max.X < s.Max.X { 299 r.Max.X = s.Max.X 300 } 301 if r.Max.Y < s.Max.Y { 302 r.Max.Y = s.Max.Y 303 } 304 return r 305 } 306 307 // Empty returns whether the rectangle contains no points. 308 func (r Rectangle26_6) Empty() bool { 309 return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y 310 } 311 312 // In returns whether every point in r is in s. 313 func (r Rectangle26_6) In(s Rectangle26_6) bool { 314 if r.Empty() { 315 return true 316 } 317 // Note that r.Max is an exclusive bound for r, so that r.In(s) 318 // does not require that r.Max.In(s). 319 return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X && 320 s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y 321 } 322 323 // Rectangle52_12 is a 52.12 fixed-point coordinate rectangle. The Min bound is 324 // inclusive and the Max bound is exclusive. It is well-formed if Min.X <= 325 // Max.X and likewise for Y. 326 // 327 // It is analogous to the image.Rectangle type in the standard library. 328 type Rectangle52_12 struct { 329 Min, Max Point52_12 330 } 331 332 // Add returns the rectangle r translated by p. 333 func (r Rectangle52_12) Add(p Point52_12) Rectangle52_12 { 334 return Rectangle52_12{ 335 Point52_12{r.Min.X + p.X, r.Min.Y + p.Y}, 336 Point52_12{r.Max.X + p.X, r.Max.Y + p.Y}, 337 } 338 } 339 340 // Sub returns the rectangle r translated by -p. 341 func (r Rectangle52_12) Sub(p Point52_12) Rectangle52_12 { 342 return Rectangle52_12{ 343 Point52_12{r.Min.X - p.X, r.Min.Y - p.Y}, 344 Point52_12{r.Max.X - p.X, r.Max.Y - p.Y}, 345 } 346 } 347 348 // Intersect returns the largest rectangle contained by both r and s. If the 349 // two rectangles do not overlap then the zero rectangle will be returned. 350 func (r Rectangle52_12) Intersect(s Rectangle52_12) Rectangle52_12 { 351 if r.Min.X < s.Min.X { 352 r.Min.X = s.Min.X 353 } 354 if r.Min.Y < s.Min.Y { 355 r.Min.Y = s.Min.Y 356 } 357 if r.Max.X > s.Max.X { 358 r.Max.X = s.Max.X 359 } 360 if r.Max.Y > s.Max.Y { 361 r.Max.Y = s.Max.Y 362 } 363 // Letting r0 and s0 be the values of r and s at the time that the method 364 // is called, this next line is equivalent to: 365 // 366 // if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc } 367 if r.Empty() { 368 return Rectangle52_12{} 369 } 370 return r 371 } 372 373 // Union returns the smallest rectangle that contains both r and s. 374 func (r Rectangle52_12) Union(s Rectangle52_12) Rectangle52_12 { 375 if r.Empty() { 376 return s 377 } 378 if s.Empty() { 379 return r 380 } 381 if r.Min.X > s.Min.X { 382 r.Min.X = s.Min.X 383 } 384 if r.Min.Y > s.Min.Y { 385 r.Min.Y = s.Min.Y 386 } 387 if r.Max.X < s.Max.X { 388 r.Max.X = s.Max.X 389 } 390 if r.Max.Y < s.Max.Y { 391 r.Max.Y = s.Max.Y 392 } 393 return r 394 } 395 396 // Empty returns whether the rectangle contains no points. 397 func (r Rectangle52_12) Empty() bool { 398 return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y 399 } 400 401 // In returns whether every point in r is in s. 402 func (r Rectangle52_12) In(s Rectangle52_12) bool { 403 if r.Empty() { 404 return true 405 } 406 // Note that r.Max is an exclusive bound for r, so that r.In(s) 407 // does not require that r.Max.In(s). 408 return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X && 409 s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y 410 }