github.com/aswedchain/aswed@v1.0.1/core/tx_pool_test.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package core
    18  
    19  import (
    20  	"crypto/ecdsa"
    21  	"errors"
    22  	"fmt"
    23  	"io/ioutil"
    24  	"math/big"
    25  	"math/rand"
    26  	"os"
    27  	"testing"
    28  	"time"
    29  
    30  	"github.com/aswedchain/aswed/common"
    31  	"github.com/aswedchain/aswed/core/rawdb"
    32  	"github.com/aswedchain/aswed/core/state"
    33  	"github.com/aswedchain/aswed/core/types"
    34  	"github.com/aswedchain/aswed/crypto"
    35  	"github.com/aswedchain/aswed/event"
    36  	"github.com/aswedchain/aswed/params"
    37  	"github.com/aswedchain/aswed/trie"
    38  )
    39  
    40  // testTxPoolConfig is a transaction pool configuration without stateful disk
    41  // sideeffects used during testing.
    42  var testTxPoolConfig TxPoolConfig
    43  
    44  func init() {
    45  	testTxPoolConfig = DefaultTxPoolConfig
    46  	testTxPoolConfig.Journal = ""
    47  }
    48  
    49  type testBlockChain struct {
    50  	statedb       *state.StateDB
    51  	gasLimit      uint64
    52  	chainHeadFeed *event.Feed
    53  }
    54  
    55  func (bc *testBlockChain) CurrentBlock() *types.Block {
    56  	return types.NewBlock(&types.Header{
    57  		GasLimit: bc.gasLimit,
    58  	}, nil, nil, nil, new(trie.Trie))
    59  }
    60  
    61  func (bc *testBlockChain) GetBlock(hash common.Hash, number uint64) *types.Block {
    62  	return bc.CurrentBlock()
    63  }
    64  
    65  func (bc *testBlockChain) StateAt(common.Hash) (*state.StateDB, error) {
    66  	return bc.statedb, nil
    67  }
    68  
    69  func (bc *testBlockChain) SubscribeChainHeadEvent(ch chan<- ChainHeadEvent) event.Subscription {
    70  	return bc.chainHeadFeed.Subscribe(ch)
    71  }
    72  
    73  func transaction(nonce uint64, gaslimit uint64, key *ecdsa.PrivateKey) *types.Transaction {
    74  	return pricedTransaction(nonce, gaslimit, big.NewInt(1), key)
    75  }
    76  
    77  func pricedTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey) *types.Transaction {
    78  	tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(100), gaslimit, gasprice, nil), types.HomesteadSigner{}, key)
    79  	return tx
    80  }
    81  
    82  func pricedDataTransaction(nonce uint64, gaslimit uint64, gasprice *big.Int, key *ecdsa.PrivateKey, bytes uint64) *types.Transaction {
    83  	data := make([]byte, bytes)
    84  	rand.Read(data)
    85  
    86  	tx, _ := types.SignTx(types.NewTransaction(nonce, common.Address{}, big.NewInt(0), gaslimit, gasprice, data), types.HomesteadSigner{}, key)
    87  	return tx
    88  }
    89  
    90  func setupTxPool() (*TxPool, *ecdsa.PrivateKey) {
    91  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
    92  	blockchain := &testBlockChain{statedb, 10000000, new(event.Feed)}
    93  
    94  	key, _ := crypto.GenerateKey()
    95  	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
    96  
    97  	return pool, key
    98  }
    99  
   100  // validateTxPoolInternals checks various consistency invariants within the pool.
   101  func validateTxPoolInternals(pool *TxPool) error {
   102  	pool.mu.RLock()
   103  	defer pool.mu.RUnlock()
   104  
   105  	// Ensure the total transaction set is consistent with pending + queued
   106  	pending, queued := pool.stats()
   107  	if total := pool.all.Count(); total != pending+queued {
   108  		return fmt.Errorf("total transaction count %d != %d pending + %d queued", total, pending, queued)
   109  	}
   110  	if priced := pool.priced.items.Len() - pool.priced.stales; priced != pending+queued {
   111  		return fmt.Errorf("total priced transaction count %d != %d pending + %d queued", priced, pending, queued)
   112  	}
   113  
   114  	// Ensure the next nonce to assign is the correct one
   115  	for addr, txs := range pool.pending {
   116  		// Find the last transaction
   117  		var last uint64
   118  		for nonce := range txs.txs.items {
   119  			if last < nonce {
   120  				last = nonce
   121  			}
   122  		}
   123  		if nonce := pool.pendingNonces.get(addr); nonce != last+1 {
   124  			return fmt.Errorf("pending nonce mismatch: have %v, want %v", nonce, last+1)
   125  		}
   126  	}
   127  	return nil
   128  }
   129  
   130  // validateEvents checks that the correct number of transaction addition events
   131  // were fired on the pool's event feed.
   132  func validateEvents(events chan NewTxsEvent, count int) error {
   133  	var received []*types.Transaction
   134  
   135  	for len(received) < count {
   136  		select {
   137  		case ev := <-events:
   138  			received = append(received, ev.Txs...)
   139  		case <-time.After(time.Second):
   140  			return fmt.Errorf("event #%d not fired", len(received))
   141  		}
   142  	}
   143  	if len(received) > count {
   144  		return fmt.Errorf("more than %d events fired: %v", count, received[count:])
   145  	}
   146  	select {
   147  	case ev := <-events:
   148  		return fmt.Errorf("more than %d events fired: %v", count, ev.Txs)
   149  
   150  	case <-time.After(50 * time.Millisecond):
   151  		// This branch should be "default", but it's a data race between goroutines,
   152  		// reading the event channel and pushing into it, so better wait a bit ensuring
   153  		// really nothing gets injected.
   154  	}
   155  	return nil
   156  }
   157  
   158  func deriveSender(tx *types.Transaction) (common.Address, error) {
   159  	return types.Sender(types.HomesteadSigner{}, tx)
   160  }
   161  
   162  type testChain struct {
   163  	*testBlockChain
   164  	address common.Address
   165  	trigger *bool
   166  }
   167  
   168  // testChain.State() is used multiple times to reset the pending state.
   169  // when simulate is true it will create a state that indicates
   170  // that tx0 and tx1 are included in the chain.
   171  func (c *testChain) State() (*state.StateDB, error) {
   172  	// delay "state change" by one. The tx pool fetches the
   173  	// state multiple times and by delaying it a bit we simulate
   174  	// a state change between those fetches.
   175  	stdb := c.statedb
   176  	if *c.trigger {
   177  		c.statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
   178  		// simulate that the new head block included tx0 and tx1
   179  		c.statedb.SetNonce(c.address, 2)
   180  		c.statedb.SetBalance(c.address, new(big.Int).SetUint64(params.Ether))
   181  		*c.trigger = false
   182  	}
   183  	return stdb, nil
   184  }
   185  
   186  // This test simulates a scenario where a new block is imported during a
   187  // state reset and tests whether the pending state is in sync with the
   188  // block head event that initiated the resetState().
   189  func TestStateChangeDuringTransactionPoolReset(t *testing.T) {
   190  	t.Parallel()
   191  
   192  	var (
   193  		key, _     = crypto.GenerateKey()
   194  		address    = crypto.PubkeyToAddress(key.PublicKey)
   195  		statedb, _ = state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
   196  		trigger    = false
   197  	)
   198  
   199  	// setup pool with 2 transaction in it
   200  	statedb.SetBalance(address, new(big.Int).SetUint64(params.Ether))
   201  	blockchain := &testChain{&testBlockChain{statedb, 1000000000, new(event.Feed)}, address, &trigger}
   202  
   203  	tx0 := transaction(0, 100000, key)
   204  	tx1 := transaction(1, 100000, key)
   205  
   206  	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
   207  	defer pool.Stop()
   208  
   209  	nonce := pool.Nonce(address)
   210  	if nonce != 0 {
   211  		t.Fatalf("Invalid nonce, want 0, got %d", nonce)
   212  	}
   213  
   214  	pool.AddRemotesSync([]*types.Transaction{tx0, tx1})
   215  
   216  	nonce = pool.Nonce(address)
   217  	if nonce != 2 {
   218  		t.Fatalf("Invalid nonce, want 2, got %d", nonce)
   219  	}
   220  
   221  	// trigger state change in the background
   222  	trigger = true
   223  	<-pool.requestReset(nil, nil)
   224  
   225  	_, err := pool.Pending()
   226  	if err != nil {
   227  		t.Fatalf("Could not fetch pending transactions: %v", err)
   228  	}
   229  	nonce = pool.Nonce(address)
   230  	if nonce != 2 {
   231  		t.Fatalf("Invalid nonce, want 2, got %d", nonce)
   232  	}
   233  }
   234  
   235  func TestInvalidTransactions(t *testing.T) {
   236  	t.Parallel()
   237  
   238  	pool, key := setupTxPool()
   239  	defer pool.Stop()
   240  
   241  	tx := transaction(0, 100, key)
   242  	from, _ := deriveSender(tx)
   243  
   244  	pool.currentState.AddBalance(from, big.NewInt(1))
   245  	if err := pool.AddRemote(tx); err != ErrInsufficientFunds {
   246  		t.Error("expected", ErrInsufficientFunds)
   247  	}
   248  
   249  	balance := new(big.Int).Add(tx.Value(), new(big.Int).Mul(new(big.Int).SetUint64(tx.Gas()), tx.GasPrice()))
   250  	pool.currentState.AddBalance(from, balance)
   251  	if err := pool.AddRemote(tx); !errors.Is(err, ErrIntrinsicGas) {
   252  		t.Error("expected", ErrIntrinsicGas, "got", err)
   253  	}
   254  
   255  	pool.currentState.SetNonce(from, 1)
   256  	pool.currentState.AddBalance(from, big.NewInt(0xffffffffffffff))
   257  	tx = transaction(0, 100000, key)
   258  	if err := pool.AddRemote(tx); err != ErrNonceTooLow {
   259  		t.Error("expected", ErrNonceTooLow)
   260  	}
   261  
   262  	tx = transaction(1, 100000, key)
   263  	pool.gasPrice = big.NewInt(1000)
   264  	if err := pool.AddRemote(tx); err != ErrUnderpriced {
   265  		t.Error("expected", ErrUnderpriced, "got", err)
   266  	}
   267  	if err := pool.AddLocal(tx); err != nil {
   268  		t.Error("expected", nil, "got", err)
   269  	}
   270  }
   271  
   272  func TestTransactionQueue(t *testing.T) {
   273  	t.Parallel()
   274  
   275  	pool, key := setupTxPool()
   276  	defer pool.Stop()
   277  
   278  	tx := transaction(0, 100, key)
   279  	from, _ := deriveSender(tx)
   280  	pool.currentState.AddBalance(from, big.NewInt(1000))
   281  	<-pool.requestReset(nil, nil)
   282  
   283  	pool.enqueueTx(tx.Hash(), tx)
   284  	<-pool.requestPromoteExecutables(newAccountSet(pool.signer, from))
   285  	if len(pool.pending) != 1 {
   286  		t.Error("expected valid txs to be 1 is", len(pool.pending))
   287  	}
   288  
   289  	tx = transaction(1, 100, key)
   290  	from, _ = deriveSender(tx)
   291  	pool.currentState.SetNonce(from, 2)
   292  	pool.enqueueTx(tx.Hash(), tx)
   293  
   294  	<-pool.requestPromoteExecutables(newAccountSet(pool.signer, from))
   295  	if _, ok := pool.pending[from].txs.items[tx.Nonce()]; ok {
   296  		t.Error("expected transaction to be in tx pool")
   297  	}
   298  	if len(pool.queue) > 0 {
   299  		t.Error("expected transaction queue to be empty. is", len(pool.queue))
   300  	}
   301  }
   302  
   303  func TestTransactionQueue2(t *testing.T) {
   304  	t.Parallel()
   305  
   306  	pool, key := setupTxPool()
   307  	defer pool.Stop()
   308  
   309  	tx1 := transaction(0, 100, key)
   310  	tx2 := transaction(10, 100, key)
   311  	tx3 := transaction(11, 100, key)
   312  	from, _ := deriveSender(tx1)
   313  	pool.currentState.AddBalance(from, big.NewInt(1000))
   314  	pool.reset(nil, nil)
   315  
   316  	pool.enqueueTx(tx1.Hash(), tx1)
   317  	pool.enqueueTx(tx2.Hash(), tx2)
   318  	pool.enqueueTx(tx3.Hash(), tx3)
   319  
   320  	pool.promoteExecutables([]common.Address{from})
   321  	if len(pool.pending) != 1 {
   322  		t.Error("expected pending length to be 1, got", len(pool.pending))
   323  	}
   324  	if pool.queue[from].Len() != 2 {
   325  		t.Error("expected len(queue) == 2, got", pool.queue[from].Len())
   326  	}
   327  }
   328  
   329  func TestTransactionNegativeValue(t *testing.T) {
   330  	t.Parallel()
   331  
   332  	pool, key := setupTxPool()
   333  	defer pool.Stop()
   334  
   335  	tx, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(-1), 100, big.NewInt(1), nil), types.HomesteadSigner{}, key)
   336  	from, _ := deriveSender(tx)
   337  	pool.currentState.AddBalance(from, big.NewInt(1))
   338  	if err := pool.AddRemote(tx); err != ErrNegativeValue {
   339  		t.Error("expected", ErrNegativeValue, "got", err)
   340  	}
   341  }
   342  
   343  func TestTransactionChainFork(t *testing.T) {
   344  	t.Parallel()
   345  
   346  	pool, key := setupTxPool()
   347  	defer pool.Stop()
   348  
   349  	addr := crypto.PubkeyToAddress(key.PublicKey)
   350  	resetState := func() {
   351  		statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
   352  		statedb.AddBalance(addr, big.NewInt(100000000000000))
   353  
   354  		pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)}
   355  		<-pool.requestReset(nil, nil)
   356  	}
   357  	resetState()
   358  
   359  	tx := transaction(0, 100000, key)
   360  	if _, err := pool.add(tx, false); err != nil {
   361  		t.Error("didn't expect error", err)
   362  	}
   363  	pool.removeTx(tx.Hash(), true)
   364  
   365  	// reset the pool's internal state
   366  	resetState()
   367  	if _, err := pool.add(tx, false); err != nil {
   368  		t.Error("didn't expect error", err)
   369  	}
   370  }
   371  
   372  func TestTransactionDoubleNonce(t *testing.T) {
   373  	t.Parallel()
   374  
   375  	pool, key := setupTxPool()
   376  	defer pool.Stop()
   377  
   378  	addr := crypto.PubkeyToAddress(key.PublicKey)
   379  	resetState := func() {
   380  		statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
   381  		statedb.AddBalance(addr, big.NewInt(100000000000000))
   382  
   383  		pool.chain = &testBlockChain{statedb, 1000000, new(event.Feed)}
   384  		<-pool.requestReset(nil, nil)
   385  	}
   386  	resetState()
   387  
   388  	signer := types.HomesteadSigner{}
   389  	tx1, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 100000, big.NewInt(1), nil), signer, key)
   390  	tx2, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(2), nil), signer, key)
   391  	tx3, _ := types.SignTx(types.NewTransaction(0, common.Address{}, big.NewInt(100), 1000000, big.NewInt(1), nil), signer, key)
   392  
   393  	// Add the first two transaction, ensure higher priced stays only
   394  	if replace, err := pool.add(tx1, false); err != nil || replace {
   395  		t.Errorf("first transaction insert failed (%v) or reported replacement (%v)", err, replace)
   396  	}
   397  	if replace, err := pool.add(tx2, false); err != nil || !replace {
   398  		t.Errorf("second transaction insert failed (%v) or not reported replacement (%v)", err, replace)
   399  	}
   400  	<-pool.requestPromoteExecutables(newAccountSet(signer, addr))
   401  	if pool.pending[addr].Len() != 1 {
   402  		t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
   403  	}
   404  	if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
   405  		t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
   406  	}
   407  
   408  	// Add the third transaction and ensure it's not saved (smaller price)
   409  	pool.add(tx3, false)
   410  	<-pool.requestPromoteExecutables(newAccountSet(signer, addr))
   411  	if pool.pending[addr].Len() != 1 {
   412  		t.Error("expected 1 pending transactions, got", pool.pending[addr].Len())
   413  	}
   414  	if tx := pool.pending[addr].txs.items[0]; tx.Hash() != tx2.Hash() {
   415  		t.Errorf("transaction mismatch: have %x, want %x", tx.Hash(), tx2.Hash())
   416  	}
   417  	// Ensure the total transaction count is correct
   418  	if pool.all.Count() != 1 {
   419  		t.Error("expected 1 total transactions, got", pool.all.Count())
   420  	}
   421  }
   422  
   423  func TestTransactionMissingNonce(t *testing.T) {
   424  	t.Parallel()
   425  
   426  	pool, key := setupTxPool()
   427  	defer pool.Stop()
   428  
   429  	addr := crypto.PubkeyToAddress(key.PublicKey)
   430  	pool.currentState.AddBalance(addr, big.NewInt(100000000000000))
   431  	tx := transaction(1, 100000, key)
   432  	if _, err := pool.add(tx, false); err != nil {
   433  		t.Error("didn't expect error", err)
   434  	}
   435  	if len(pool.pending) != 0 {
   436  		t.Error("expected 0 pending transactions, got", len(pool.pending))
   437  	}
   438  	if pool.queue[addr].Len() != 1 {
   439  		t.Error("expected 1 queued transaction, got", pool.queue[addr].Len())
   440  	}
   441  	if pool.all.Count() != 1 {
   442  		t.Error("expected 1 total transactions, got", pool.all.Count())
   443  	}
   444  }
   445  
   446  func TestTransactionNonceRecovery(t *testing.T) {
   447  	t.Parallel()
   448  
   449  	const n = 10
   450  	pool, key := setupTxPool()
   451  	defer pool.Stop()
   452  
   453  	addr := crypto.PubkeyToAddress(key.PublicKey)
   454  	pool.currentState.SetNonce(addr, n)
   455  	pool.currentState.AddBalance(addr, big.NewInt(100000000000000))
   456  	<-pool.requestReset(nil, nil)
   457  
   458  	tx := transaction(n, 100000, key)
   459  	if err := pool.AddRemote(tx); err != nil {
   460  		t.Error(err)
   461  	}
   462  	// simulate some weird re-order of transactions and missing nonce(s)
   463  	pool.currentState.SetNonce(addr, n-1)
   464  	<-pool.requestReset(nil, nil)
   465  	if fn := pool.Nonce(addr); fn != n-1 {
   466  		t.Errorf("expected nonce to be %d, got %d", n-1, fn)
   467  	}
   468  }
   469  
   470  // Tests that if an account runs out of funds, any pending and queued transactions
   471  // are dropped.
   472  func TestTransactionDropping(t *testing.T) {
   473  	t.Parallel()
   474  
   475  	// Create a test account and fund it
   476  	pool, key := setupTxPool()
   477  	defer pool.Stop()
   478  
   479  	account := crypto.PubkeyToAddress(key.PublicKey)
   480  	pool.currentState.AddBalance(account, big.NewInt(1000))
   481  
   482  	// Add some pending and some queued transactions
   483  	var (
   484  		tx0  = transaction(0, 100, key)
   485  		tx1  = transaction(1, 200, key)
   486  		tx2  = transaction(2, 300, key)
   487  		tx10 = transaction(10, 100, key)
   488  		tx11 = transaction(11, 200, key)
   489  		tx12 = transaction(12, 300, key)
   490  	)
   491  	pool.promoteTx(account, tx0.Hash(), tx0)
   492  	pool.promoteTx(account, tx1.Hash(), tx1)
   493  	pool.promoteTx(account, tx2.Hash(), tx2)
   494  	pool.enqueueTx(tx10.Hash(), tx10)
   495  	pool.enqueueTx(tx11.Hash(), tx11)
   496  	pool.enqueueTx(tx12.Hash(), tx12)
   497  
   498  	// Check that pre and post validations leave the pool as is
   499  	if pool.pending[account].Len() != 3 {
   500  		t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
   501  	}
   502  	if pool.queue[account].Len() != 3 {
   503  		t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
   504  	}
   505  	if pool.all.Count() != 6 {
   506  		t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6)
   507  	}
   508  	<-pool.requestReset(nil, nil)
   509  	if pool.pending[account].Len() != 3 {
   510  		t.Errorf("pending transaction mismatch: have %d, want %d", pool.pending[account].Len(), 3)
   511  	}
   512  	if pool.queue[account].Len() != 3 {
   513  		t.Errorf("queued transaction mismatch: have %d, want %d", pool.queue[account].Len(), 3)
   514  	}
   515  	if pool.all.Count() != 6 {
   516  		t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 6)
   517  	}
   518  	// Reduce the balance of the account, and check that invalidated transactions are dropped
   519  	pool.currentState.AddBalance(account, big.NewInt(-650))
   520  	<-pool.requestReset(nil, nil)
   521  
   522  	if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
   523  		t.Errorf("funded pending transaction missing: %v", tx0)
   524  	}
   525  	if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; !ok {
   526  		t.Errorf("funded pending transaction missing: %v", tx0)
   527  	}
   528  	if _, ok := pool.pending[account].txs.items[tx2.Nonce()]; ok {
   529  		t.Errorf("out-of-fund pending transaction present: %v", tx1)
   530  	}
   531  	if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
   532  		t.Errorf("funded queued transaction missing: %v", tx10)
   533  	}
   534  	if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; !ok {
   535  		t.Errorf("funded queued transaction missing: %v", tx10)
   536  	}
   537  	if _, ok := pool.queue[account].txs.items[tx12.Nonce()]; ok {
   538  		t.Errorf("out-of-fund queued transaction present: %v", tx11)
   539  	}
   540  	if pool.all.Count() != 4 {
   541  		t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 4)
   542  	}
   543  	// Reduce the block gas limit, check that invalidated transactions are dropped
   544  	pool.chain.(*testBlockChain).gasLimit = 100
   545  	<-pool.requestReset(nil, nil)
   546  
   547  	if _, ok := pool.pending[account].txs.items[tx0.Nonce()]; !ok {
   548  		t.Errorf("funded pending transaction missing: %v", tx0)
   549  	}
   550  	if _, ok := pool.pending[account].txs.items[tx1.Nonce()]; ok {
   551  		t.Errorf("over-gased pending transaction present: %v", tx1)
   552  	}
   553  	if _, ok := pool.queue[account].txs.items[tx10.Nonce()]; !ok {
   554  		t.Errorf("funded queued transaction missing: %v", tx10)
   555  	}
   556  	if _, ok := pool.queue[account].txs.items[tx11.Nonce()]; ok {
   557  		t.Errorf("over-gased queued transaction present: %v", tx11)
   558  	}
   559  	if pool.all.Count() != 2 {
   560  		t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), 2)
   561  	}
   562  }
   563  
   564  // Tests that if a transaction is dropped from the current pending pool (e.g. out
   565  // of fund), all consecutive (still valid, but not executable) transactions are
   566  // postponed back into the future queue to prevent broadcasting them.
   567  func TestTransactionPostponing(t *testing.T) {
   568  	t.Parallel()
   569  
   570  	// Create the pool to test the postponing with
   571  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
   572  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
   573  
   574  	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
   575  	defer pool.Stop()
   576  
   577  	// Create two test accounts to produce different gap profiles with
   578  	keys := make([]*ecdsa.PrivateKey, 2)
   579  	accs := make([]common.Address, len(keys))
   580  
   581  	for i := 0; i < len(keys); i++ {
   582  		keys[i], _ = crypto.GenerateKey()
   583  		accs[i] = crypto.PubkeyToAddress(keys[i].PublicKey)
   584  
   585  		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(50100))
   586  	}
   587  	// Add a batch consecutive pending transactions for validation
   588  	txs := []*types.Transaction{}
   589  	for i, key := range keys {
   590  
   591  		for j := 0; j < 100; j++ {
   592  			var tx *types.Transaction
   593  			if (i+j)%2 == 0 {
   594  				tx = transaction(uint64(j), 25000, key)
   595  			} else {
   596  				tx = transaction(uint64(j), 50000, key)
   597  			}
   598  			txs = append(txs, tx)
   599  		}
   600  	}
   601  	for i, err := range pool.AddRemotesSync(txs) {
   602  		if err != nil {
   603  			t.Fatalf("tx %d: failed to add transactions: %v", i, err)
   604  		}
   605  	}
   606  	// Check that pre and post validations leave the pool as is
   607  	if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
   608  		t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
   609  	}
   610  	if len(pool.queue) != 0 {
   611  		t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
   612  	}
   613  	if pool.all.Count() != len(txs) {
   614  		t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs))
   615  	}
   616  	<-pool.requestReset(nil, nil)
   617  	if pending := pool.pending[accs[0]].Len() + pool.pending[accs[1]].Len(); pending != len(txs) {
   618  		t.Errorf("pending transaction mismatch: have %d, want %d", pending, len(txs))
   619  	}
   620  	if len(pool.queue) != 0 {
   621  		t.Errorf("queued accounts mismatch: have %d, want %d", len(pool.queue), 0)
   622  	}
   623  	if pool.all.Count() != len(txs) {
   624  		t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs))
   625  	}
   626  	// Reduce the balance of the account, and check that transactions are reorganised
   627  	for _, addr := range accs {
   628  		pool.currentState.AddBalance(addr, big.NewInt(-1))
   629  	}
   630  	<-pool.requestReset(nil, nil)
   631  
   632  	// The first account's first transaction remains valid, check that subsequent
   633  	// ones are either filtered out, or queued up for later.
   634  	if _, ok := pool.pending[accs[0]].txs.items[txs[0].Nonce()]; !ok {
   635  		t.Errorf("tx %d: valid and funded transaction missing from pending pool: %v", 0, txs[0])
   636  	}
   637  	if _, ok := pool.queue[accs[0]].txs.items[txs[0].Nonce()]; ok {
   638  		t.Errorf("tx %d: valid and funded transaction present in future queue: %v", 0, txs[0])
   639  	}
   640  	for i, tx := range txs[1:100] {
   641  		if i%2 == 1 {
   642  			if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
   643  				t.Errorf("tx %d: valid but future transaction present in pending pool: %v", i+1, tx)
   644  			}
   645  			if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; !ok {
   646  				t.Errorf("tx %d: valid but future transaction missing from future queue: %v", i+1, tx)
   647  			}
   648  		} else {
   649  			if _, ok := pool.pending[accs[0]].txs.items[tx.Nonce()]; ok {
   650  				t.Errorf("tx %d: out-of-fund transaction present in pending pool: %v", i+1, tx)
   651  			}
   652  			if _, ok := pool.queue[accs[0]].txs.items[tx.Nonce()]; ok {
   653  				t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", i+1, tx)
   654  			}
   655  		}
   656  	}
   657  	// The second account's first transaction got invalid, check that all transactions
   658  	// are either filtered out, or queued up for later.
   659  	if pool.pending[accs[1]] != nil {
   660  		t.Errorf("invalidated account still has pending transactions")
   661  	}
   662  	for i, tx := range txs[100:] {
   663  		if i%2 == 1 {
   664  			if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; !ok {
   665  				t.Errorf("tx %d: valid but future transaction missing from future queue: %v", 100+i, tx)
   666  			}
   667  		} else {
   668  			if _, ok := pool.queue[accs[1]].txs.items[tx.Nonce()]; ok {
   669  				t.Errorf("tx %d: out-of-fund transaction present in future queue: %v", 100+i, tx)
   670  			}
   671  		}
   672  	}
   673  	if pool.all.Count() != len(txs)/2 {
   674  		t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), len(txs)/2)
   675  	}
   676  }
   677  
   678  // Tests that if the transaction pool has both executable and non-executable
   679  // transactions from an origin account, filling the nonce gap moves all queued
   680  // ones into the pending pool.
   681  func TestTransactionGapFilling(t *testing.T) {
   682  	t.Parallel()
   683  
   684  	// Create a test account and fund it
   685  	pool, key := setupTxPool()
   686  	defer pool.Stop()
   687  
   688  	account := crypto.PubkeyToAddress(key.PublicKey)
   689  	pool.currentState.AddBalance(account, big.NewInt(1000000))
   690  
   691  	// Keep track of transaction events to ensure all executables get announced
   692  	events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5)
   693  	sub := pool.txFeed.Subscribe(events)
   694  	defer sub.Unsubscribe()
   695  
   696  	// Create a pending and a queued transaction with a nonce-gap in between
   697  	pool.AddRemotesSync([]*types.Transaction{
   698  		transaction(0, 100000, key),
   699  		transaction(2, 100000, key),
   700  	})
   701  	pending, queued := pool.Stats()
   702  	if pending != 1 {
   703  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1)
   704  	}
   705  	if queued != 1 {
   706  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
   707  	}
   708  	if err := validateEvents(events, 1); err != nil {
   709  		t.Fatalf("original event firing failed: %v", err)
   710  	}
   711  	if err := validateTxPoolInternals(pool); err != nil {
   712  		t.Fatalf("pool internal state corrupted: %v", err)
   713  	}
   714  	// Fill the nonce gap and ensure all transactions become pending
   715  	if err := pool.addRemoteSync(transaction(1, 100000, key)); err != nil {
   716  		t.Fatalf("failed to add gapped transaction: %v", err)
   717  	}
   718  	pending, queued = pool.Stats()
   719  	if pending != 3 {
   720  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
   721  	}
   722  	if queued != 0 {
   723  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
   724  	}
   725  	if err := validateEvents(events, 2); err != nil {
   726  		t.Fatalf("gap-filling event firing failed: %v", err)
   727  	}
   728  	if err := validateTxPoolInternals(pool); err != nil {
   729  		t.Fatalf("pool internal state corrupted: %v", err)
   730  	}
   731  }
   732  
   733  // Tests that if the transaction count belonging to a single account goes above
   734  // some threshold, the higher transactions are dropped to prevent DOS attacks.
   735  func TestTransactionQueueAccountLimiting(t *testing.T) {
   736  	t.Parallel()
   737  
   738  	// Create a test account and fund it
   739  	pool, key := setupTxPool()
   740  	defer pool.Stop()
   741  
   742  	account := crypto.PubkeyToAddress(key.PublicKey)
   743  	pool.currentState.AddBalance(account, big.NewInt(1000000))
   744  
   745  	// Keep queuing up transactions and make sure all above a limit are dropped
   746  	for i := uint64(1); i <= testTxPoolConfig.AccountQueue+5; i++ {
   747  		if err := pool.addRemoteSync(transaction(i, 100000, key)); err != nil {
   748  			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
   749  		}
   750  		if len(pool.pending) != 0 {
   751  			t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, len(pool.pending), 0)
   752  		}
   753  		if i <= testTxPoolConfig.AccountQueue {
   754  			if pool.queue[account].Len() != int(i) {
   755  				t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), i)
   756  			}
   757  		} else {
   758  			if pool.queue[account].Len() != int(testTxPoolConfig.AccountQueue) {
   759  				t.Errorf("tx %d: queue limit mismatch: have %d, want %d", i, pool.queue[account].Len(), testTxPoolConfig.AccountQueue)
   760  			}
   761  		}
   762  	}
   763  	if pool.all.Count() != int(testTxPoolConfig.AccountQueue) {
   764  		t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue)
   765  	}
   766  }
   767  
   768  // Tests that if the transaction count belonging to multiple accounts go above
   769  // some threshold, the higher transactions are dropped to prevent DOS attacks.
   770  //
   771  // This logic should not hold for local transactions, unless the local tracking
   772  // mechanism is disabled.
   773  func TestTransactionQueueGlobalLimiting(t *testing.T) {
   774  	testTransactionQueueGlobalLimiting(t, false)
   775  }
   776  func TestTransactionQueueGlobalLimitingNoLocals(t *testing.T) {
   777  	testTransactionQueueGlobalLimiting(t, true)
   778  }
   779  
   780  func testTransactionQueueGlobalLimiting(t *testing.T, nolocals bool) {
   781  	t.Parallel()
   782  
   783  	// Create the pool to test the limit enforcement with
   784  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
   785  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
   786  
   787  	config := testTxPoolConfig
   788  	config.NoLocals = nolocals
   789  	config.GlobalQueue = config.AccountQueue*3 - 1 // reduce the queue limits to shorten test time (-1 to make it non divisible)
   790  
   791  	pool := NewTxPool(config, params.TestChainConfig, blockchain)
   792  	defer pool.Stop()
   793  
   794  	// Create a number of test accounts and fund them (last one will be the local)
   795  	keys := make([]*ecdsa.PrivateKey, 5)
   796  	for i := 0; i < len(keys); i++ {
   797  		keys[i], _ = crypto.GenerateKey()
   798  		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
   799  	}
   800  	local := keys[len(keys)-1]
   801  
   802  	// Generate and queue a batch of transactions
   803  	nonces := make(map[common.Address]uint64)
   804  
   805  	txs := make(types.Transactions, 0, 3*config.GlobalQueue)
   806  	for len(txs) < cap(txs) {
   807  		key := keys[rand.Intn(len(keys)-1)] // skip adding transactions with the local account
   808  		addr := crypto.PubkeyToAddress(key.PublicKey)
   809  
   810  		txs = append(txs, transaction(nonces[addr]+1, 100000, key))
   811  		nonces[addr]++
   812  	}
   813  	// Import the batch and verify that limits have been enforced
   814  	pool.AddRemotesSync(txs)
   815  
   816  	queued := 0
   817  	for addr, list := range pool.queue {
   818  		if list.Len() > int(config.AccountQueue) {
   819  			t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
   820  		}
   821  		queued += list.Len()
   822  	}
   823  	if queued > int(config.GlobalQueue) {
   824  		t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
   825  	}
   826  	// Generate a batch of transactions from the local account and import them
   827  	txs = txs[:0]
   828  	for i := uint64(0); i < 3*config.GlobalQueue; i++ {
   829  		txs = append(txs, transaction(i+1, 100000, local))
   830  	}
   831  	pool.AddLocals(txs)
   832  
   833  	// If locals are disabled, the previous eviction algorithm should apply here too
   834  	if nolocals {
   835  		queued := 0
   836  		for addr, list := range pool.queue {
   837  			if list.Len() > int(config.AccountQueue) {
   838  				t.Errorf("addr %x: queued accounts overflown allowance: %d > %d", addr, list.Len(), config.AccountQueue)
   839  			}
   840  			queued += list.Len()
   841  		}
   842  		if queued > int(config.GlobalQueue) {
   843  			t.Fatalf("total transactions overflow allowance: %d > %d", queued, config.GlobalQueue)
   844  		}
   845  	} else {
   846  		// Local exemptions are enabled, make sure the local account owned the queue
   847  		if len(pool.queue) != 1 {
   848  			t.Errorf("multiple accounts in queue: have %v, want %v", len(pool.queue), 1)
   849  		}
   850  		// Also ensure no local transactions are ever dropped, even if above global limits
   851  		if queued := pool.queue[crypto.PubkeyToAddress(local.PublicKey)].Len(); uint64(queued) != 3*config.GlobalQueue {
   852  			t.Fatalf("local account queued transaction count mismatch: have %v, want %v", queued, 3*config.GlobalQueue)
   853  		}
   854  	}
   855  }
   856  
   857  // Tests that if an account remains idle for a prolonged amount of time, any
   858  // non-executable transactions queued up are dropped to prevent wasting resources
   859  // on shuffling them around.
   860  //
   861  // This logic should not hold for local transactions, unless the local tracking
   862  // mechanism is disabled.
   863  func TestTransactionQueueTimeLimiting(t *testing.T) {
   864  	testTransactionQueueTimeLimiting(t, false)
   865  }
   866  func TestTransactionQueueTimeLimitingNoLocals(t *testing.T) {
   867  	testTransactionQueueTimeLimiting(t, true)
   868  }
   869  
   870  func testTransactionQueueTimeLimiting(t *testing.T, nolocals bool) {
   871  	// Reduce the eviction interval to a testable amount
   872  	defer func(old time.Duration) { evictionInterval = old }(evictionInterval)
   873  	evictionInterval = time.Millisecond * 100
   874  
   875  	// Create the pool to test the non-expiration enforcement
   876  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
   877  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
   878  
   879  	config := testTxPoolConfig
   880  	config.Lifetime = time.Second
   881  	config.NoLocals = nolocals
   882  
   883  	pool := NewTxPool(config, params.TestChainConfig, blockchain)
   884  	defer pool.Stop()
   885  
   886  	// Create two test accounts to ensure remotes expire but locals do not
   887  	local, _ := crypto.GenerateKey()
   888  	remote, _ := crypto.GenerateKey()
   889  
   890  	pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000))
   891  	pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000))
   892  
   893  	// Add the two transactions and ensure they both are queued up
   894  	if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil {
   895  		t.Fatalf("failed to add local transaction: %v", err)
   896  	}
   897  	if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), remote)); err != nil {
   898  		t.Fatalf("failed to add remote transaction: %v", err)
   899  	}
   900  	pending, queued := pool.Stats()
   901  	if pending != 0 {
   902  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
   903  	}
   904  	if queued != 2 {
   905  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
   906  	}
   907  	if err := validateTxPoolInternals(pool); err != nil {
   908  		t.Fatalf("pool internal state corrupted: %v", err)
   909  	}
   910  
   911  	// Allow the eviction interval to run
   912  	time.Sleep(2 * evictionInterval)
   913  
   914  	// Transactions should not be evicted from the queue yet since lifetime duration has not passed
   915  	pending, queued = pool.Stats()
   916  	if pending != 0 {
   917  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
   918  	}
   919  	if queued != 2 {
   920  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
   921  	}
   922  	if err := validateTxPoolInternals(pool); err != nil {
   923  		t.Fatalf("pool internal state corrupted: %v", err)
   924  	}
   925  
   926  	// Wait a bit for eviction to run and clean up any leftovers, and ensure only the local remains
   927  	time.Sleep(2 * config.Lifetime)
   928  
   929  	pending, queued = pool.Stats()
   930  	if pending != 0 {
   931  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
   932  	}
   933  	if nolocals {
   934  		if queued != 0 {
   935  			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
   936  		}
   937  	} else {
   938  		if queued != 1 {
   939  			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
   940  		}
   941  	}
   942  	if err := validateTxPoolInternals(pool); err != nil {
   943  		t.Fatalf("pool internal state corrupted: %v", err)
   944  	}
   945  
   946  	// remove current transactions and increase nonce to prepare for a reset and cleanup
   947  	statedb.SetNonce(crypto.PubkeyToAddress(remote.PublicKey), 2)
   948  	statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2)
   949  	<-pool.requestReset(nil, nil)
   950  
   951  	// make sure queue, pending are cleared
   952  	pending, queued = pool.Stats()
   953  	if pending != 0 {
   954  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
   955  	}
   956  	if queued != 0 {
   957  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
   958  	}
   959  	if err := validateTxPoolInternals(pool); err != nil {
   960  		t.Fatalf("pool internal state corrupted: %v", err)
   961  	}
   962  
   963  	// Queue gapped transactions
   964  	if err := pool.AddLocal(pricedTransaction(4, 100000, big.NewInt(1), local)); err != nil {
   965  		t.Fatalf("failed to add remote transaction: %v", err)
   966  	}
   967  	if err := pool.addRemoteSync(pricedTransaction(4, 100000, big.NewInt(1), remote)); err != nil {
   968  		t.Fatalf("failed to add remote transaction: %v", err)
   969  	}
   970  	time.Sleep(5 * evictionInterval) // A half lifetime pass
   971  
   972  	// Queue executable transactions, the life cycle should be restarted.
   973  	if err := pool.AddLocal(pricedTransaction(2, 100000, big.NewInt(1), local)); err != nil {
   974  		t.Fatalf("failed to add remote transaction: %v", err)
   975  	}
   976  	if err := pool.addRemoteSync(pricedTransaction(2, 100000, big.NewInt(1), remote)); err != nil {
   977  		t.Fatalf("failed to add remote transaction: %v", err)
   978  	}
   979  	time.Sleep(6 * evictionInterval)
   980  
   981  	// All gapped transactions shouldn't be kicked out
   982  	pending, queued = pool.Stats()
   983  	if pending != 2 {
   984  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
   985  	}
   986  	if queued != 2 {
   987  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3)
   988  	}
   989  	if err := validateTxPoolInternals(pool); err != nil {
   990  		t.Fatalf("pool internal state corrupted: %v", err)
   991  	}
   992  
   993  	// The whole life time pass after last promotion, kick out stale transactions
   994  	time.Sleep(2 * config.Lifetime)
   995  	pending, queued = pool.Stats()
   996  	if pending != 2 {
   997  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
   998  	}
   999  	if nolocals {
  1000  		if queued != 0 {
  1001  			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
  1002  		}
  1003  	} else {
  1004  		if queued != 1 {
  1005  			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
  1006  		}
  1007  	}
  1008  	if err := validateTxPoolInternals(pool); err != nil {
  1009  		t.Fatalf("pool internal state corrupted: %v", err)
  1010  	}
  1011  }
  1012  
  1013  // Tests that even if the transaction count belonging to a single account goes
  1014  // above some threshold, as long as the transactions are executable, they are
  1015  // accepted.
  1016  func TestTransactionPendingLimiting(t *testing.T) {
  1017  	t.Parallel()
  1018  
  1019  	// Create a test account and fund it
  1020  	pool, key := setupTxPool()
  1021  	defer pool.Stop()
  1022  
  1023  	account := crypto.PubkeyToAddress(key.PublicKey)
  1024  	pool.currentState.AddBalance(account, big.NewInt(1000000))
  1025  
  1026  	// Keep track of transaction events to ensure all executables get announced
  1027  	events := make(chan NewTxsEvent, testTxPoolConfig.AccountQueue+5)
  1028  	sub := pool.txFeed.Subscribe(events)
  1029  	defer sub.Unsubscribe()
  1030  
  1031  	// Keep queuing up transactions and make sure all above a limit are dropped
  1032  	for i := uint64(0); i < testTxPoolConfig.AccountQueue+5; i++ {
  1033  		if err := pool.addRemoteSync(transaction(i, 100000, key)); err != nil {
  1034  			t.Fatalf("tx %d: failed to add transaction: %v", i, err)
  1035  		}
  1036  		if pool.pending[account].Len() != int(i)+1 {
  1037  			t.Errorf("tx %d: pending pool size mismatch: have %d, want %d", i, pool.pending[account].Len(), i+1)
  1038  		}
  1039  		if len(pool.queue) != 0 {
  1040  			t.Errorf("tx %d: queue size mismatch: have %d, want %d", i, pool.queue[account].Len(), 0)
  1041  		}
  1042  	}
  1043  	if pool.all.Count() != int(testTxPoolConfig.AccountQueue+5) {
  1044  		t.Errorf("total transaction mismatch: have %d, want %d", pool.all.Count(), testTxPoolConfig.AccountQueue+5)
  1045  	}
  1046  	if err := validateEvents(events, int(testTxPoolConfig.AccountQueue+5)); err != nil {
  1047  		t.Fatalf("event firing failed: %v", err)
  1048  	}
  1049  	if err := validateTxPoolInternals(pool); err != nil {
  1050  		t.Fatalf("pool internal state corrupted: %v", err)
  1051  	}
  1052  }
  1053  
  1054  // Tests that if the transaction count belonging to multiple accounts go above
  1055  // some hard threshold, the higher transactions are dropped to prevent DOS
  1056  // attacks.
  1057  func TestTransactionPendingGlobalLimiting(t *testing.T) {
  1058  	t.Parallel()
  1059  
  1060  	// Create the pool to test the limit enforcement with
  1061  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
  1062  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
  1063  
  1064  	config := testTxPoolConfig
  1065  	config.GlobalSlots = config.AccountSlots * 10
  1066  
  1067  	pool := NewTxPool(config, params.TestChainConfig, blockchain)
  1068  	defer pool.Stop()
  1069  
  1070  	// Create a number of test accounts and fund them
  1071  	keys := make([]*ecdsa.PrivateKey, 5)
  1072  	for i := 0; i < len(keys); i++ {
  1073  		keys[i], _ = crypto.GenerateKey()
  1074  		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
  1075  	}
  1076  	// Generate and queue a batch of transactions
  1077  	nonces := make(map[common.Address]uint64)
  1078  
  1079  	txs := types.Transactions{}
  1080  	for _, key := range keys {
  1081  		addr := crypto.PubkeyToAddress(key.PublicKey)
  1082  		for j := 0; j < int(config.GlobalSlots)/len(keys)*2; j++ {
  1083  			txs = append(txs, transaction(nonces[addr], 100000, key))
  1084  			nonces[addr]++
  1085  		}
  1086  	}
  1087  	// Import the batch and verify that limits have been enforced
  1088  	pool.AddRemotesSync(txs)
  1089  
  1090  	pending := 0
  1091  	for _, list := range pool.pending {
  1092  		pending += list.Len()
  1093  	}
  1094  	if pending > int(config.GlobalSlots) {
  1095  		t.Fatalf("total pending transactions overflow allowance: %d > %d", pending, config.GlobalSlots)
  1096  	}
  1097  	if err := validateTxPoolInternals(pool); err != nil {
  1098  		t.Fatalf("pool internal state corrupted: %v", err)
  1099  	}
  1100  }
  1101  
  1102  // Test the limit on transaction size is enforced correctly.
  1103  // This test verifies every transaction having allowed size
  1104  // is added to the pool, and longer transactions are rejected.
  1105  func TestTransactionAllowedTxSize(t *testing.T) {
  1106  	t.Parallel()
  1107  
  1108  	// Create a test account and fund it
  1109  	pool, key := setupTxPool()
  1110  	defer pool.Stop()
  1111  
  1112  	account := crypto.PubkeyToAddress(key.PublicKey)
  1113  	pool.currentState.AddBalance(account, big.NewInt(1000000000))
  1114  
  1115  	// Compute maximal data size for transactions (lower bound).
  1116  	//
  1117  	// It is assumed the fields in the transaction (except of the data) are:
  1118  	//   - nonce     <= 32 bytes
  1119  	//   - gasPrice  <= 32 bytes
  1120  	//   - gasLimit  <= 32 bytes
  1121  	//   - recipient == 20 bytes
  1122  	//   - value     <= 32 bytes
  1123  	//   - signature == 65 bytes
  1124  	// All those fields are summed up to at most 213 bytes.
  1125  	baseSize := uint64(213)
  1126  	dataSize := txMaxSize - baseSize
  1127  
  1128  	// Try adding a transaction with maximal allowed size
  1129  	tx := pricedDataTransaction(0, pool.currentMaxGas, big.NewInt(1), key, dataSize)
  1130  	if err := pool.addRemoteSync(tx); err != nil {
  1131  		t.Fatalf("failed to add transaction of size %d, close to maximal: %v", int(tx.Size()), err)
  1132  	}
  1133  	// Try adding a transaction with random allowed size
  1134  	if err := pool.addRemoteSync(pricedDataTransaction(1, pool.currentMaxGas, big.NewInt(1), key, uint64(rand.Intn(int(dataSize))))); err != nil {
  1135  		t.Fatalf("failed to add transaction of random allowed size: %v", err)
  1136  	}
  1137  	// Try adding a transaction of minimal not allowed size
  1138  	if err := pool.addRemoteSync(pricedDataTransaction(2, pool.currentMaxGas, big.NewInt(1), key, txMaxSize)); err == nil {
  1139  		t.Fatalf("expected rejection on slightly oversize transaction")
  1140  	}
  1141  	// Try adding a transaction of random not allowed size
  1142  	if err := pool.addRemoteSync(pricedDataTransaction(2, pool.currentMaxGas, big.NewInt(1), key, dataSize+1+uint64(rand.Intn(int(10*txMaxSize))))); err == nil {
  1143  		t.Fatalf("expected rejection on oversize transaction")
  1144  	}
  1145  	// Run some sanity checks on the pool internals
  1146  	pending, queued := pool.Stats()
  1147  	if pending != 2 {
  1148  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
  1149  	}
  1150  	if queued != 0 {
  1151  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
  1152  	}
  1153  	if err := validateTxPoolInternals(pool); err != nil {
  1154  		t.Fatalf("pool internal state corrupted: %v", err)
  1155  	}
  1156  }
  1157  
  1158  // Tests that if transactions start being capped, transactions are also removed from 'all'
  1159  func TestTransactionCapClearsFromAll(t *testing.T) {
  1160  	t.Parallel()
  1161  
  1162  	// Create the pool to test the limit enforcement with
  1163  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
  1164  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
  1165  
  1166  	config := testTxPoolConfig
  1167  	config.AccountSlots = 2
  1168  	config.AccountQueue = 2
  1169  	config.GlobalSlots = 8
  1170  
  1171  	pool := NewTxPool(config, params.TestChainConfig, blockchain)
  1172  	defer pool.Stop()
  1173  
  1174  	// Create a number of test accounts and fund them
  1175  	key, _ := crypto.GenerateKey()
  1176  	addr := crypto.PubkeyToAddress(key.PublicKey)
  1177  	pool.currentState.AddBalance(addr, big.NewInt(1000000))
  1178  
  1179  	txs := types.Transactions{}
  1180  	for j := 0; j < int(config.GlobalSlots)*2; j++ {
  1181  		txs = append(txs, transaction(uint64(j), 100000, key))
  1182  	}
  1183  	// Import the batch and verify that limits have been enforced
  1184  	pool.AddRemotes(txs)
  1185  	if err := validateTxPoolInternals(pool); err != nil {
  1186  		t.Fatalf("pool internal state corrupted: %v", err)
  1187  	}
  1188  }
  1189  
  1190  // Tests that if the transaction count belonging to multiple accounts go above
  1191  // some hard threshold, if they are under the minimum guaranteed slot count then
  1192  // the transactions are still kept.
  1193  func TestTransactionPendingMinimumAllowance(t *testing.T) {
  1194  	t.Parallel()
  1195  
  1196  	// Create the pool to test the limit enforcement with
  1197  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
  1198  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
  1199  
  1200  	config := testTxPoolConfig
  1201  	config.GlobalSlots = 1
  1202  
  1203  	pool := NewTxPool(config, params.TestChainConfig, blockchain)
  1204  	defer pool.Stop()
  1205  
  1206  	// Create a number of test accounts and fund them
  1207  	keys := make([]*ecdsa.PrivateKey, 5)
  1208  	for i := 0; i < len(keys); i++ {
  1209  		keys[i], _ = crypto.GenerateKey()
  1210  		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
  1211  	}
  1212  	// Generate and queue a batch of transactions
  1213  	nonces := make(map[common.Address]uint64)
  1214  
  1215  	txs := types.Transactions{}
  1216  	for _, key := range keys {
  1217  		addr := crypto.PubkeyToAddress(key.PublicKey)
  1218  		for j := 0; j < int(config.AccountSlots)*2; j++ {
  1219  			txs = append(txs, transaction(nonces[addr], 100000, key))
  1220  			nonces[addr]++
  1221  		}
  1222  	}
  1223  	// Import the batch and verify that limits have been enforced
  1224  	pool.AddRemotesSync(txs)
  1225  
  1226  	for addr, list := range pool.pending {
  1227  		if list.Len() != int(config.AccountSlots) {
  1228  			t.Errorf("addr %x: total pending transactions mismatch: have %d, want %d", addr, list.Len(), config.AccountSlots)
  1229  		}
  1230  	}
  1231  	if err := validateTxPoolInternals(pool); err != nil {
  1232  		t.Fatalf("pool internal state corrupted: %v", err)
  1233  	}
  1234  }
  1235  
  1236  // Tests that setting the transaction pool gas price to a higher value correctly
  1237  // discards everything cheaper than that and moves any gapped transactions back
  1238  // from the pending pool to the queue.
  1239  //
  1240  // Note, local transactions are never allowed to be dropped.
  1241  func TestTransactionPoolRepricing(t *testing.T) {
  1242  	t.Parallel()
  1243  
  1244  	// Create the pool to test the pricing enforcement with
  1245  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
  1246  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
  1247  
  1248  	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
  1249  	defer pool.Stop()
  1250  
  1251  	// Keep track of transaction events to ensure all executables get announced
  1252  	events := make(chan NewTxsEvent, 32)
  1253  	sub := pool.txFeed.Subscribe(events)
  1254  	defer sub.Unsubscribe()
  1255  
  1256  	// Create a number of test accounts and fund them
  1257  	keys := make([]*ecdsa.PrivateKey, 4)
  1258  	for i := 0; i < len(keys); i++ {
  1259  		keys[i], _ = crypto.GenerateKey()
  1260  		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
  1261  	}
  1262  	// Generate and queue a batch of transactions, both pending and queued
  1263  	txs := types.Transactions{}
  1264  
  1265  	txs = append(txs, pricedTransaction(0, 100000, big.NewInt(2), keys[0]))
  1266  	txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[0]))
  1267  	txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[0]))
  1268  
  1269  	txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[1]))
  1270  	txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[1]))
  1271  	txs = append(txs, pricedTransaction(2, 100000, big.NewInt(2), keys[1]))
  1272  
  1273  	txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[2]))
  1274  	txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[2]))
  1275  	txs = append(txs, pricedTransaction(3, 100000, big.NewInt(2), keys[2]))
  1276  
  1277  	ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[3])
  1278  
  1279  	// Import the batch and that both pending and queued transactions match up
  1280  	pool.AddRemotesSync(txs)
  1281  	pool.AddLocal(ltx)
  1282  
  1283  	pending, queued := pool.Stats()
  1284  	if pending != 7 {
  1285  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 7)
  1286  	}
  1287  	if queued != 3 {
  1288  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 3)
  1289  	}
  1290  	if err := validateEvents(events, 7); err != nil {
  1291  		t.Fatalf("original event firing failed: %v", err)
  1292  	}
  1293  	if err := validateTxPoolInternals(pool); err != nil {
  1294  		t.Fatalf("pool internal state corrupted: %v", err)
  1295  	}
  1296  	// Reprice the pool and check that underpriced transactions get dropped
  1297  	pool.SetGasPrice(big.NewInt(2))
  1298  
  1299  	pending, queued = pool.Stats()
  1300  	if pending != 2 {
  1301  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
  1302  	}
  1303  	if queued != 5 {
  1304  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 5)
  1305  	}
  1306  	if err := validateEvents(events, 0); err != nil {
  1307  		t.Fatalf("reprice event firing failed: %v", err)
  1308  	}
  1309  	if err := validateTxPoolInternals(pool); err != nil {
  1310  		t.Fatalf("pool internal state corrupted: %v", err)
  1311  	}
  1312  	// Check that we can't add the old transactions back
  1313  	if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(1), keys[0])); err != ErrUnderpriced {
  1314  		t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
  1315  	}
  1316  	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced {
  1317  		t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
  1318  	}
  1319  	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), keys[2])); err != ErrUnderpriced {
  1320  		t.Fatalf("adding underpriced queued transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
  1321  	}
  1322  	if err := validateEvents(events, 0); err != nil {
  1323  		t.Fatalf("post-reprice event firing failed: %v", err)
  1324  	}
  1325  	if err := validateTxPoolInternals(pool); err != nil {
  1326  		t.Fatalf("pool internal state corrupted: %v", err)
  1327  	}
  1328  	// However we can add local underpriced transactions
  1329  	tx := pricedTransaction(1, 100000, big.NewInt(1), keys[3])
  1330  	if err := pool.AddLocal(tx); err != nil {
  1331  		t.Fatalf("failed to add underpriced local transaction: %v", err)
  1332  	}
  1333  	if pending, _ = pool.Stats(); pending != 3 {
  1334  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
  1335  	}
  1336  	if err := validateEvents(events, 1); err != nil {
  1337  		t.Fatalf("post-reprice local event firing failed: %v", err)
  1338  	}
  1339  	if err := validateTxPoolInternals(pool); err != nil {
  1340  		t.Fatalf("pool internal state corrupted: %v", err)
  1341  	}
  1342  	// And we can fill gaps with properly priced transactions
  1343  	if err := pool.AddRemote(pricedTransaction(1, 100000, big.NewInt(2), keys[0])); err != nil {
  1344  		t.Fatalf("failed to add pending transaction: %v", err)
  1345  	}
  1346  	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(2), keys[1])); err != nil {
  1347  		t.Fatalf("failed to add pending transaction: %v", err)
  1348  	}
  1349  	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(2), keys[2])); err != nil {
  1350  		t.Fatalf("failed to add queued transaction: %v", err)
  1351  	}
  1352  	if err := validateEvents(events, 5); err != nil {
  1353  		t.Fatalf("post-reprice event firing failed: %v", err)
  1354  	}
  1355  	if err := validateTxPoolInternals(pool); err != nil {
  1356  		t.Fatalf("pool internal state corrupted: %v", err)
  1357  	}
  1358  }
  1359  
  1360  // Tests that setting the transaction pool gas price to a higher value does not
  1361  // remove local transactions.
  1362  func TestTransactionPoolRepricingKeepsLocals(t *testing.T) {
  1363  	t.Parallel()
  1364  
  1365  	// Create the pool to test the pricing enforcement with
  1366  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
  1367  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
  1368  
  1369  	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
  1370  	defer pool.Stop()
  1371  
  1372  	// Create a number of test accounts and fund them
  1373  	keys := make([]*ecdsa.PrivateKey, 3)
  1374  	for i := 0; i < len(keys); i++ {
  1375  		keys[i], _ = crypto.GenerateKey()
  1376  		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000*1000000))
  1377  	}
  1378  	// Create transaction (both pending and queued) with a linearly growing gasprice
  1379  	for i := uint64(0); i < 500; i++ {
  1380  		// Add pending transaction.
  1381  		pendingTx := pricedTransaction(i, 100000, big.NewInt(int64(i)), keys[2])
  1382  		if err := pool.AddLocal(pendingTx); err != nil {
  1383  			t.Fatal(err)
  1384  		}
  1385  		// Add queued transaction.
  1386  		queuedTx := pricedTransaction(i+501, 100000, big.NewInt(int64(i)), keys[2])
  1387  		if err := pool.AddLocal(queuedTx); err != nil {
  1388  			t.Fatal(err)
  1389  		}
  1390  	}
  1391  	pending, queued := pool.Stats()
  1392  	expPending, expQueued := 500, 500
  1393  	validate := func() {
  1394  		pending, queued = pool.Stats()
  1395  		if pending != expPending {
  1396  			t.Fatalf("pending transactions mismatched: have %d, want %d", pending, expPending)
  1397  		}
  1398  		if queued != expQueued {
  1399  			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, expQueued)
  1400  		}
  1401  
  1402  		if err := validateTxPoolInternals(pool); err != nil {
  1403  			t.Fatalf("pool internal state corrupted: %v", err)
  1404  		}
  1405  	}
  1406  	validate()
  1407  
  1408  	// Reprice the pool and check that nothing is dropped
  1409  	pool.SetGasPrice(big.NewInt(2))
  1410  	validate()
  1411  
  1412  	pool.SetGasPrice(big.NewInt(2))
  1413  	pool.SetGasPrice(big.NewInt(4))
  1414  	pool.SetGasPrice(big.NewInt(8))
  1415  	pool.SetGasPrice(big.NewInt(100))
  1416  	validate()
  1417  }
  1418  
  1419  // Tests that when the pool reaches its global transaction limit, underpriced
  1420  // transactions are gradually shifted out for more expensive ones and any gapped
  1421  // pending transactions are moved into the queue.
  1422  //
  1423  // Note, local transactions are never allowed to be dropped.
  1424  func TestTransactionPoolUnderpricing(t *testing.T) {
  1425  	t.Parallel()
  1426  
  1427  	// Create the pool to test the pricing enforcement with
  1428  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
  1429  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
  1430  
  1431  	config := testTxPoolConfig
  1432  	config.GlobalSlots = 2
  1433  	config.GlobalQueue = 2
  1434  
  1435  	pool := NewTxPool(config, params.TestChainConfig, blockchain)
  1436  	defer pool.Stop()
  1437  
  1438  	// Keep track of transaction events to ensure all executables get announced
  1439  	events := make(chan NewTxsEvent, 32)
  1440  	sub := pool.txFeed.Subscribe(events)
  1441  	defer sub.Unsubscribe()
  1442  
  1443  	// Create a number of test accounts and fund them
  1444  	keys := make([]*ecdsa.PrivateKey, 4)
  1445  	for i := 0; i < len(keys); i++ {
  1446  		keys[i], _ = crypto.GenerateKey()
  1447  		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
  1448  	}
  1449  	// Generate and queue a batch of transactions, both pending and queued
  1450  	txs := types.Transactions{}
  1451  
  1452  	txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0]))
  1453  	txs = append(txs, pricedTransaction(1, 100000, big.NewInt(2), keys[0]))
  1454  
  1455  	txs = append(txs, pricedTransaction(1, 100000, big.NewInt(1), keys[1]))
  1456  
  1457  	ltx := pricedTransaction(0, 100000, big.NewInt(1), keys[2])
  1458  
  1459  	// Import the batch and that both pending and queued transactions match up
  1460  	pool.AddRemotes(txs)
  1461  	pool.AddLocal(ltx)
  1462  
  1463  	pending, queued := pool.Stats()
  1464  	if pending != 3 {
  1465  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
  1466  	}
  1467  	if queued != 1 {
  1468  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
  1469  	}
  1470  	if err := validateEvents(events, 3); err != nil {
  1471  		t.Fatalf("original event firing failed: %v", err)
  1472  	}
  1473  	if err := validateTxPoolInternals(pool); err != nil {
  1474  		t.Fatalf("pool internal state corrupted: %v", err)
  1475  	}
  1476  	// Ensure that adding an underpriced transaction on block limit fails
  1477  	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(1), keys[1])); err != ErrUnderpriced {
  1478  		t.Fatalf("adding underpriced pending transaction error mismatch: have %v, want %v", err, ErrUnderpriced)
  1479  	}
  1480  	// Ensure that adding high priced transactions drops cheap ones, but not own
  1481  	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(3), keys[1])); err != nil { // +K1:0 => -K1:1 => Pend K0:0, K0:1, K1:0, K2:0; Que -
  1482  		t.Fatalf("failed to add well priced transaction: %v", err)
  1483  	}
  1484  	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(4), keys[1])); err != nil { // +K1:2 => -K0:0 => Pend K1:0, K2:0; Que K0:1 K1:2
  1485  		t.Fatalf("failed to add well priced transaction: %v", err)
  1486  	}
  1487  	if err := pool.AddRemote(pricedTransaction(3, 100000, big.NewInt(5), keys[1])); err != nil { // +K1:3 => -K0:1 => Pend K1:0, K2:0; Que K1:2 K1:3
  1488  		t.Fatalf("failed to add well priced transaction: %v", err)
  1489  	}
  1490  	pending, queued = pool.Stats()
  1491  	if pending != 2 {
  1492  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
  1493  	}
  1494  	if queued != 2 {
  1495  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
  1496  	}
  1497  	if err := validateEvents(events, 1); err != nil {
  1498  		t.Fatalf("additional event firing failed: %v", err)
  1499  	}
  1500  	if err := validateTxPoolInternals(pool); err != nil {
  1501  		t.Fatalf("pool internal state corrupted: %v", err)
  1502  	}
  1503  	// Ensure that adding local transactions can push out even higher priced ones
  1504  	ltx = pricedTransaction(1, 100000, big.NewInt(0), keys[2])
  1505  	if err := pool.AddLocal(ltx); err != nil {
  1506  		t.Fatalf("failed to append underpriced local transaction: %v", err)
  1507  	}
  1508  	ltx = pricedTransaction(0, 100000, big.NewInt(0), keys[3])
  1509  	if err := pool.AddLocal(ltx); err != nil {
  1510  		t.Fatalf("failed to add new underpriced local transaction: %v", err)
  1511  	}
  1512  	pending, queued = pool.Stats()
  1513  	if pending != 3 {
  1514  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 3)
  1515  	}
  1516  	if queued != 1 {
  1517  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
  1518  	}
  1519  	if err := validateEvents(events, 2); err != nil {
  1520  		t.Fatalf("local event firing failed: %v", err)
  1521  	}
  1522  	if err := validateTxPoolInternals(pool); err != nil {
  1523  		t.Fatalf("pool internal state corrupted: %v", err)
  1524  	}
  1525  }
  1526  
  1527  // Tests that more expensive transactions push out cheap ones from the pool, but
  1528  // without producing instability by creating gaps that start jumping transactions
  1529  // back and forth between queued/pending.
  1530  func TestTransactionPoolStableUnderpricing(t *testing.T) {
  1531  	t.Parallel()
  1532  
  1533  	// Create the pool to test the pricing enforcement with
  1534  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
  1535  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
  1536  
  1537  	config := testTxPoolConfig
  1538  	config.GlobalSlots = 128
  1539  	config.GlobalQueue = 0
  1540  
  1541  	pool := NewTxPool(config, params.TestChainConfig, blockchain)
  1542  	defer pool.Stop()
  1543  
  1544  	// Keep track of transaction events to ensure all executables get announced
  1545  	events := make(chan NewTxsEvent, 32)
  1546  	sub := pool.txFeed.Subscribe(events)
  1547  	defer sub.Unsubscribe()
  1548  
  1549  	// Create a number of test accounts and fund them
  1550  	keys := make([]*ecdsa.PrivateKey, 2)
  1551  	for i := 0; i < len(keys); i++ {
  1552  		keys[i], _ = crypto.GenerateKey()
  1553  		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
  1554  	}
  1555  	// Fill up the entire queue with the same transaction price points
  1556  	txs := types.Transactions{}
  1557  	for i := uint64(0); i < config.GlobalSlots; i++ {
  1558  		txs = append(txs, pricedTransaction(i, 100000, big.NewInt(1), keys[0]))
  1559  	}
  1560  	pool.AddRemotesSync(txs)
  1561  
  1562  	pending, queued := pool.Stats()
  1563  	if pending != int(config.GlobalSlots) {
  1564  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots)
  1565  	}
  1566  	if queued != 0 {
  1567  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
  1568  	}
  1569  	if err := validateEvents(events, int(config.GlobalSlots)); err != nil {
  1570  		t.Fatalf("original event firing failed: %v", err)
  1571  	}
  1572  	if err := validateTxPoolInternals(pool); err != nil {
  1573  		t.Fatalf("pool internal state corrupted: %v", err)
  1574  	}
  1575  	// Ensure that adding high priced transactions drops a cheap, but doesn't produce a gap
  1576  	if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(3), keys[1])); err != nil {
  1577  		t.Fatalf("failed to add well priced transaction: %v", err)
  1578  	}
  1579  	pending, queued = pool.Stats()
  1580  	if pending != int(config.GlobalSlots) {
  1581  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, config.GlobalSlots)
  1582  	}
  1583  	if queued != 0 {
  1584  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
  1585  	}
  1586  	if err := validateEvents(events, 1); err != nil {
  1587  		t.Fatalf("additional event firing failed: %v", err)
  1588  	}
  1589  	if err := validateTxPoolInternals(pool); err != nil {
  1590  		t.Fatalf("pool internal state corrupted: %v", err)
  1591  	}
  1592  }
  1593  
  1594  // Tests that the pool rejects duplicate transactions.
  1595  func TestTransactionDeduplication(t *testing.T) {
  1596  	t.Parallel()
  1597  
  1598  	// Create the pool to test the pricing enforcement with
  1599  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
  1600  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
  1601  
  1602  	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
  1603  	defer pool.Stop()
  1604  
  1605  	// Create a test account to add transactions with
  1606  	key, _ := crypto.GenerateKey()
  1607  	pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000))
  1608  
  1609  	// Create a batch of transactions and add a few of them
  1610  	txs := make([]*types.Transaction, 16)
  1611  	for i := 0; i < len(txs); i++ {
  1612  		txs[i] = pricedTransaction(uint64(i), 100000, big.NewInt(1), key)
  1613  	}
  1614  	var firsts []*types.Transaction
  1615  	for i := 0; i < len(txs); i += 2 {
  1616  		firsts = append(firsts, txs[i])
  1617  	}
  1618  	errs := pool.AddRemotesSync(firsts)
  1619  	if len(errs) != len(firsts) {
  1620  		t.Fatalf("first add mismatching result count: have %d, want %d", len(errs), len(firsts))
  1621  	}
  1622  	for i, err := range errs {
  1623  		if err != nil {
  1624  			t.Errorf("add %d failed: %v", i, err)
  1625  		}
  1626  	}
  1627  	pending, queued := pool.Stats()
  1628  	if pending != 1 {
  1629  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 1)
  1630  	}
  1631  	if queued != len(txs)/2-1 {
  1632  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, len(txs)/2-1)
  1633  	}
  1634  	// Try to add all of them now and ensure previous ones error out as knowns
  1635  	errs = pool.AddRemotesSync(txs)
  1636  	if len(errs) != len(txs) {
  1637  		t.Fatalf("all add mismatching result count: have %d, want %d", len(errs), len(txs))
  1638  	}
  1639  	for i, err := range errs {
  1640  		if i%2 == 0 && err == nil {
  1641  			t.Errorf("add %d succeeded, should have failed as known", i)
  1642  		}
  1643  		if i%2 == 1 && err != nil {
  1644  			t.Errorf("add %d failed: %v", i, err)
  1645  		}
  1646  	}
  1647  	pending, queued = pool.Stats()
  1648  	if pending != len(txs) {
  1649  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, len(txs))
  1650  	}
  1651  	if queued != 0 {
  1652  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
  1653  	}
  1654  	if err := validateTxPoolInternals(pool); err != nil {
  1655  		t.Fatalf("pool internal state corrupted: %v", err)
  1656  	}
  1657  }
  1658  
  1659  // Tests that the pool rejects replacement transactions that don't meet the minimum
  1660  // price bump required.
  1661  func TestTransactionReplacement(t *testing.T) {
  1662  	t.Parallel()
  1663  
  1664  	// Create the pool to test the pricing enforcement with
  1665  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
  1666  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
  1667  
  1668  	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
  1669  	defer pool.Stop()
  1670  
  1671  	// Keep track of transaction events to ensure all executables get announced
  1672  	events := make(chan NewTxsEvent, 32)
  1673  	sub := pool.txFeed.Subscribe(events)
  1674  	defer sub.Unsubscribe()
  1675  
  1676  	// Create a test account to add transactions with
  1677  	key, _ := crypto.GenerateKey()
  1678  	pool.currentState.AddBalance(crypto.PubkeyToAddress(key.PublicKey), big.NewInt(1000000000))
  1679  
  1680  	// Add pending transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
  1681  	price := int64(100)
  1682  	threshold := (price * (100 + int64(testTxPoolConfig.PriceBump))) / 100
  1683  
  1684  	if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(1), key)); err != nil {
  1685  		t.Fatalf("failed to add original cheap pending transaction: %v", err)
  1686  	}
  1687  	if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced {
  1688  		t.Fatalf("original cheap pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
  1689  	}
  1690  	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(2), key)); err != nil {
  1691  		t.Fatalf("failed to replace original cheap pending transaction: %v", err)
  1692  	}
  1693  	if err := validateEvents(events, 2); err != nil {
  1694  		t.Fatalf("cheap replacement event firing failed: %v", err)
  1695  	}
  1696  
  1697  	if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(price), key)); err != nil {
  1698  		t.Fatalf("failed to add original proper pending transaction: %v", err)
  1699  	}
  1700  	if err := pool.AddRemote(pricedTransaction(0, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced {
  1701  		t.Fatalf("original proper pending transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
  1702  	}
  1703  	if err := pool.AddRemote(pricedTransaction(0, 100000, big.NewInt(threshold), key)); err != nil {
  1704  		t.Fatalf("failed to replace original proper pending transaction: %v", err)
  1705  	}
  1706  	if err := validateEvents(events, 2); err != nil {
  1707  		t.Fatalf("proper replacement event firing failed: %v", err)
  1708  	}
  1709  
  1710  	// Add queued transactions, ensuring the minimum price bump is enforced for replacement (for ultra low prices too)
  1711  	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(1), key)); err != nil {
  1712  		t.Fatalf("failed to add original cheap queued transaction: %v", err)
  1713  	}
  1714  	if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(1), key)); err != ErrReplaceUnderpriced {
  1715  		t.Fatalf("original cheap queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
  1716  	}
  1717  	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(2), key)); err != nil {
  1718  		t.Fatalf("failed to replace original cheap queued transaction: %v", err)
  1719  	}
  1720  
  1721  	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(price), key)); err != nil {
  1722  		t.Fatalf("failed to add original proper queued transaction: %v", err)
  1723  	}
  1724  	if err := pool.AddRemote(pricedTransaction(2, 100001, big.NewInt(threshold-1), key)); err != ErrReplaceUnderpriced {
  1725  		t.Fatalf("original proper queued transaction replacement error mismatch: have %v, want %v", err, ErrReplaceUnderpriced)
  1726  	}
  1727  	if err := pool.AddRemote(pricedTransaction(2, 100000, big.NewInt(threshold), key)); err != nil {
  1728  		t.Fatalf("failed to replace original proper queued transaction: %v", err)
  1729  	}
  1730  
  1731  	if err := validateEvents(events, 0); err != nil {
  1732  		t.Fatalf("queued replacement event firing failed: %v", err)
  1733  	}
  1734  	if err := validateTxPoolInternals(pool); err != nil {
  1735  		t.Fatalf("pool internal state corrupted: %v", err)
  1736  	}
  1737  }
  1738  
  1739  // Tests that local transactions are journaled to disk, but remote transactions
  1740  // get discarded between restarts.
  1741  func TestTransactionJournaling(t *testing.T)         { testTransactionJournaling(t, false) }
  1742  func TestTransactionJournalingNoLocals(t *testing.T) { testTransactionJournaling(t, true) }
  1743  
  1744  func testTransactionJournaling(t *testing.T, nolocals bool) {
  1745  	t.Parallel()
  1746  
  1747  	// Create a temporary file for the journal
  1748  	file, err := ioutil.TempFile("", "")
  1749  	if err != nil {
  1750  		t.Fatalf("failed to create temporary journal: %v", err)
  1751  	}
  1752  	journal := file.Name()
  1753  	defer os.Remove(journal)
  1754  
  1755  	// Clean up the temporary file, we only need the path for now
  1756  	file.Close()
  1757  	os.Remove(journal)
  1758  
  1759  	// Create the original pool to inject transaction into the journal
  1760  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
  1761  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
  1762  
  1763  	config := testTxPoolConfig
  1764  	config.NoLocals = nolocals
  1765  	config.Journal = journal
  1766  	config.Rejournal = time.Second
  1767  
  1768  	pool := NewTxPool(config, params.TestChainConfig, blockchain)
  1769  
  1770  	// Create two test accounts to ensure remotes expire but locals do not
  1771  	local, _ := crypto.GenerateKey()
  1772  	remote, _ := crypto.GenerateKey()
  1773  
  1774  	pool.currentState.AddBalance(crypto.PubkeyToAddress(local.PublicKey), big.NewInt(1000000000))
  1775  	pool.currentState.AddBalance(crypto.PubkeyToAddress(remote.PublicKey), big.NewInt(1000000000))
  1776  
  1777  	// Add three local and a remote transactions and ensure they are queued up
  1778  	if err := pool.AddLocal(pricedTransaction(0, 100000, big.NewInt(1), local)); err != nil {
  1779  		t.Fatalf("failed to add local transaction: %v", err)
  1780  	}
  1781  	if err := pool.AddLocal(pricedTransaction(1, 100000, big.NewInt(1), local)); err != nil {
  1782  		t.Fatalf("failed to add local transaction: %v", err)
  1783  	}
  1784  	if err := pool.AddLocal(pricedTransaction(2, 100000, big.NewInt(1), local)); err != nil {
  1785  		t.Fatalf("failed to add local transaction: %v", err)
  1786  	}
  1787  	if err := pool.addRemoteSync(pricedTransaction(0, 100000, big.NewInt(1), remote)); err != nil {
  1788  		t.Fatalf("failed to add remote transaction: %v", err)
  1789  	}
  1790  	pending, queued := pool.Stats()
  1791  	if pending != 4 {
  1792  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 4)
  1793  	}
  1794  	if queued != 0 {
  1795  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
  1796  	}
  1797  	if err := validateTxPoolInternals(pool); err != nil {
  1798  		t.Fatalf("pool internal state corrupted: %v", err)
  1799  	}
  1800  	// Terminate the old pool, bump the local nonce, create a new pool and ensure relevant transaction survive
  1801  	pool.Stop()
  1802  	statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1)
  1803  	blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)}
  1804  
  1805  	pool = NewTxPool(config, params.TestChainConfig, blockchain)
  1806  
  1807  	pending, queued = pool.Stats()
  1808  	if queued != 0 {
  1809  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
  1810  	}
  1811  	if nolocals {
  1812  		if pending != 0 {
  1813  			t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
  1814  		}
  1815  	} else {
  1816  		if pending != 2 {
  1817  			t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
  1818  		}
  1819  	}
  1820  	if err := validateTxPoolInternals(pool); err != nil {
  1821  		t.Fatalf("pool internal state corrupted: %v", err)
  1822  	}
  1823  	// Bump the nonce temporarily and ensure the newly invalidated transaction is removed
  1824  	statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 2)
  1825  	<-pool.requestReset(nil, nil)
  1826  	time.Sleep(2 * config.Rejournal)
  1827  	pool.Stop()
  1828  
  1829  	statedb.SetNonce(crypto.PubkeyToAddress(local.PublicKey), 1)
  1830  	blockchain = &testBlockChain{statedb, 1000000, new(event.Feed)}
  1831  	pool = NewTxPool(config, params.TestChainConfig, blockchain)
  1832  
  1833  	pending, queued = pool.Stats()
  1834  	if pending != 0 {
  1835  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 0)
  1836  	}
  1837  	if nolocals {
  1838  		if queued != 0 {
  1839  			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 0)
  1840  		}
  1841  	} else {
  1842  		if queued != 1 {
  1843  			t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 1)
  1844  		}
  1845  	}
  1846  	if err := validateTxPoolInternals(pool); err != nil {
  1847  		t.Fatalf("pool internal state corrupted: %v", err)
  1848  	}
  1849  	pool.Stop()
  1850  }
  1851  
  1852  // TestTransactionStatusCheck tests that the pool can correctly retrieve the
  1853  // pending status of individual transactions.
  1854  func TestTransactionStatusCheck(t *testing.T) {
  1855  	t.Parallel()
  1856  
  1857  	// Create the pool to test the status retrievals with
  1858  	statedb, _ := state.New(common.Hash{}, state.NewDatabase(rawdb.NewMemoryDatabase()), nil)
  1859  	blockchain := &testBlockChain{statedb, 1000000, new(event.Feed)}
  1860  
  1861  	pool := NewTxPool(testTxPoolConfig, params.TestChainConfig, blockchain)
  1862  	defer pool.Stop()
  1863  
  1864  	// Create the test accounts to check various transaction statuses with
  1865  	keys := make([]*ecdsa.PrivateKey, 3)
  1866  	for i := 0; i < len(keys); i++ {
  1867  		keys[i], _ = crypto.GenerateKey()
  1868  		pool.currentState.AddBalance(crypto.PubkeyToAddress(keys[i].PublicKey), big.NewInt(1000000))
  1869  	}
  1870  	// Generate and queue a batch of transactions, both pending and queued
  1871  	txs := types.Transactions{}
  1872  
  1873  	txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[0])) // Pending only
  1874  	txs = append(txs, pricedTransaction(0, 100000, big.NewInt(1), keys[1])) // Pending and queued
  1875  	txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[1]))
  1876  	txs = append(txs, pricedTransaction(2, 100000, big.NewInt(1), keys[2])) // Queued only
  1877  
  1878  	// Import the transaction and ensure they are correctly added
  1879  	pool.AddRemotesSync(txs)
  1880  
  1881  	pending, queued := pool.Stats()
  1882  	if pending != 2 {
  1883  		t.Fatalf("pending transactions mismatched: have %d, want %d", pending, 2)
  1884  	}
  1885  	if queued != 2 {
  1886  		t.Fatalf("queued transactions mismatched: have %d, want %d", queued, 2)
  1887  	}
  1888  	if err := validateTxPoolInternals(pool); err != nil {
  1889  		t.Fatalf("pool internal state corrupted: %v", err)
  1890  	}
  1891  	// Retrieve the status of each transaction and validate them
  1892  	hashes := make([]common.Hash, len(txs))
  1893  	for i, tx := range txs {
  1894  		hashes[i] = tx.Hash()
  1895  	}
  1896  	hashes = append(hashes, common.Hash{})
  1897  
  1898  	statuses := pool.Status(hashes)
  1899  	expect := []TxStatus{TxStatusPending, TxStatusPending, TxStatusQueued, TxStatusQueued, TxStatusUnknown}
  1900  
  1901  	for i := 0; i < len(statuses); i++ {
  1902  		if statuses[i] != expect[i] {
  1903  			t.Errorf("transaction %d: status mismatch: have %v, want %v", i, statuses[i], expect[i])
  1904  		}
  1905  	}
  1906  }
  1907  
  1908  // Test the transaction slots consumption is computed correctly
  1909  func TestTransactionSlotCount(t *testing.T) {
  1910  	t.Parallel()
  1911  
  1912  	key, _ := crypto.GenerateKey()
  1913  
  1914  	// Check that an empty transaction consumes a single slot
  1915  	smallTx := pricedDataTransaction(0, 0, big.NewInt(0), key, 0)
  1916  	if slots := numSlots(smallTx); slots != 1 {
  1917  		t.Fatalf("small transactions slot count mismatch: have %d want %d", slots, 1)
  1918  	}
  1919  	// Check that a large transaction consumes the correct number of slots
  1920  	bigTx := pricedDataTransaction(0, 0, big.NewInt(0), key, uint64(10*txSlotSize))
  1921  	if slots := numSlots(bigTx); slots != 11 {
  1922  		t.Fatalf("big transactions slot count mismatch: have %d want %d", slots, 11)
  1923  	}
  1924  }
  1925  
  1926  // Benchmarks the speed of validating the contents of the pending queue of the
  1927  // transaction pool.
  1928  func BenchmarkPendingDemotion100(b *testing.B)   { benchmarkPendingDemotion(b, 100) }
  1929  func BenchmarkPendingDemotion1000(b *testing.B)  { benchmarkPendingDemotion(b, 1000) }
  1930  func BenchmarkPendingDemotion10000(b *testing.B) { benchmarkPendingDemotion(b, 10000) }
  1931  
  1932  func benchmarkPendingDemotion(b *testing.B, size int) {
  1933  	// Add a batch of transactions to a pool one by one
  1934  	pool, key := setupTxPool()
  1935  	defer pool.Stop()
  1936  
  1937  	account := crypto.PubkeyToAddress(key.PublicKey)
  1938  	pool.currentState.AddBalance(account, big.NewInt(1000000))
  1939  
  1940  	for i := 0; i < size; i++ {
  1941  		tx := transaction(uint64(i), 100000, key)
  1942  		pool.promoteTx(account, tx.Hash(), tx)
  1943  	}
  1944  	// Benchmark the speed of pool validation
  1945  	b.ResetTimer()
  1946  	for i := 0; i < b.N; i++ {
  1947  		pool.demoteUnexecutables()
  1948  	}
  1949  }
  1950  
  1951  // Benchmarks the speed of scheduling the contents of the future queue of the
  1952  // transaction pool.
  1953  func BenchmarkFuturePromotion100(b *testing.B)   { benchmarkFuturePromotion(b, 100) }
  1954  func BenchmarkFuturePromotion1000(b *testing.B)  { benchmarkFuturePromotion(b, 1000) }
  1955  func BenchmarkFuturePromotion10000(b *testing.B) { benchmarkFuturePromotion(b, 10000) }
  1956  
  1957  func benchmarkFuturePromotion(b *testing.B, size int) {
  1958  	// Add a batch of transactions to a pool one by one
  1959  	pool, key := setupTxPool()
  1960  	defer pool.Stop()
  1961  
  1962  	account := crypto.PubkeyToAddress(key.PublicKey)
  1963  	pool.currentState.AddBalance(account, big.NewInt(1000000))
  1964  
  1965  	for i := 0; i < size; i++ {
  1966  		tx := transaction(uint64(1+i), 100000, key)
  1967  		pool.enqueueTx(tx.Hash(), tx)
  1968  	}
  1969  	// Benchmark the speed of pool validation
  1970  	b.ResetTimer()
  1971  	for i := 0; i < b.N; i++ {
  1972  		pool.promoteExecutables(nil)
  1973  	}
  1974  }
  1975  
  1976  // Benchmarks the speed of batched transaction insertion.
  1977  func BenchmarkPoolBatchInsert100(b *testing.B)   { benchmarkPoolBatchInsert(b, 100, false) }
  1978  func BenchmarkPoolBatchInsert1000(b *testing.B)  { benchmarkPoolBatchInsert(b, 1000, false) }
  1979  func BenchmarkPoolBatchInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000, false) }
  1980  
  1981  func BenchmarkPoolBatchLocalInsert100(b *testing.B)   { benchmarkPoolBatchInsert(b, 100, true) }
  1982  func BenchmarkPoolBatchLocalInsert1000(b *testing.B)  { benchmarkPoolBatchInsert(b, 1000, true) }
  1983  func BenchmarkPoolBatchLocalInsert10000(b *testing.B) { benchmarkPoolBatchInsert(b, 10000, true) }
  1984  
  1985  func benchmarkPoolBatchInsert(b *testing.B, size int, local bool) {
  1986  	// Generate a batch of transactions to enqueue into the pool
  1987  	pool, key := setupTxPool()
  1988  	defer pool.Stop()
  1989  
  1990  	account := crypto.PubkeyToAddress(key.PublicKey)
  1991  	pool.currentState.AddBalance(account, big.NewInt(1000000))
  1992  
  1993  	batches := make([]types.Transactions, b.N)
  1994  	for i := 0; i < b.N; i++ {
  1995  		batches[i] = make(types.Transactions, size)
  1996  		for j := 0; j < size; j++ {
  1997  			batches[i][j] = transaction(uint64(size*i+j), 100000, key)
  1998  		}
  1999  	}
  2000  	// Benchmark importing the transactions into the queue
  2001  	b.ResetTimer()
  2002  	for _, batch := range batches {
  2003  		if local {
  2004  			pool.AddLocals(batch)
  2005  		} else {
  2006  			pool.AddRemotes(batch)
  2007  		}
  2008  	}
  2009  }