github.com/aswedchain/aswed@v1.0.1/eth/downloader/statesync.go (about)

     1  // Copyright 2017 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package downloader
    18  
    19  import (
    20  	"fmt"
    21  	"hash"
    22  	"sync"
    23  	"time"
    24  
    25  	"github.com/aswedchain/aswed/common"
    26  	"github.com/aswedchain/aswed/core/rawdb"
    27  	"github.com/aswedchain/aswed/core/state"
    28  	"github.com/aswedchain/aswed/ethdb"
    29  	"github.com/aswedchain/aswed/log"
    30  	"github.com/aswedchain/aswed/trie"
    31  	"golang.org/x/crypto/sha3"
    32  )
    33  
    34  // stateReq represents a batch of state fetch requests grouped together into
    35  // a single data retrieval network packet.
    36  type stateReq struct {
    37  	nItems    uint16                    // Number of items requested for download (max is 384, so uint16 is sufficient)
    38  	trieTasks map[common.Hash]*trieTask // Trie node download tasks to track previous attempts
    39  	codeTasks map[common.Hash]*codeTask // Byte code download tasks to track previous attempts
    40  	timeout   time.Duration             // Maximum round trip time for this to complete
    41  	timer     *time.Timer               // Timer to fire when the RTT timeout expires
    42  	peer      *peerConnection           // Peer that we're requesting from
    43  	delivered time.Time                 // Time when the packet was delivered (independent when we process it)
    44  	response  [][]byte                  // Response data of the peer (nil for timeouts)
    45  	dropped   bool                      // Flag whether the peer dropped off early
    46  }
    47  
    48  // timedOut returns if this request timed out.
    49  func (req *stateReq) timedOut() bool {
    50  	return req.response == nil
    51  }
    52  
    53  // stateSyncStats is a collection of progress stats to report during a state trie
    54  // sync to RPC requests as well as to display in user logs.
    55  type stateSyncStats struct {
    56  	processed  uint64 // Number of state entries processed
    57  	duplicate  uint64 // Number of state entries downloaded twice
    58  	unexpected uint64 // Number of non-requested state entries received
    59  	pending    uint64 // Number of still pending state entries
    60  }
    61  
    62  // syncState starts downloading state with the given root hash.
    63  func (d *Downloader) syncState(root common.Hash) *stateSync {
    64  	// Create the state sync
    65  	s := newStateSync(d, root)
    66  	select {
    67  	case d.stateSyncStart <- s:
    68  		// If we tell the statesync to restart with a new root, we also need
    69  		// to wait for it to actually also start -- when old requests have timed
    70  		// out or been delivered
    71  		<-s.started
    72  	case <-d.quitCh:
    73  		s.err = errCancelStateFetch
    74  		close(s.done)
    75  	}
    76  	return s
    77  }
    78  
    79  // stateFetcher manages the active state sync and accepts requests
    80  // on its behalf.
    81  func (d *Downloader) stateFetcher() {
    82  	for {
    83  		select {
    84  		case s := <-d.stateSyncStart:
    85  			for next := s; next != nil; {
    86  				next = d.runStateSync(next)
    87  			}
    88  		case <-d.stateCh:
    89  			// Ignore state responses while no sync is running.
    90  		case <-d.quitCh:
    91  			return
    92  		}
    93  	}
    94  }
    95  
    96  // runStateSync runs a state synchronisation until it completes or another root
    97  // hash is requested to be switched over to.
    98  func (d *Downloader) runStateSync(s *stateSync) *stateSync {
    99  	var (
   100  		active   = make(map[string]*stateReq) // Currently in-flight requests
   101  		finished []*stateReq                  // Completed or failed requests
   102  		timeout  = make(chan *stateReq)       // Timed out active requests
   103  	)
   104  	// Run the state sync.
   105  	log.Trace("State sync starting", "root", s.root)
   106  	go s.run()
   107  	defer s.Cancel()
   108  
   109  	// Listen for peer departure events to cancel assigned tasks
   110  	peerDrop := make(chan *peerConnection, 1024)
   111  	peerSub := s.d.peers.SubscribePeerDrops(peerDrop)
   112  	defer peerSub.Unsubscribe()
   113  
   114  	for {
   115  		// Enable sending of the first buffered element if there is one.
   116  		var (
   117  			deliverReq   *stateReq
   118  			deliverReqCh chan *stateReq
   119  		)
   120  		if len(finished) > 0 {
   121  			deliverReq = finished[0]
   122  			deliverReqCh = s.deliver
   123  		}
   124  
   125  		select {
   126  		// The stateSync lifecycle:
   127  		case next := <-d.stateSyncStart:
   128  			d.spindownStateSync(active, finished, timeout, peerDrop)
   129  			return next
   130  
   131  		case <-s.done:
   132  			d.spindownStateSync(active, finished, timeout, peerDrop)
   133  			return nil
   134  
   135  		// Send the next finished request to the current sync:
   136  		case deliverReqCh <- deliverReq:
   137  			// Shift out the first request, but also set the emptied slot to nil for GC
   138  			copy(finished, finished[1:])
   139  			finished[len(finished)-1] = nil
   140  			finished = finished[:len(finished)-1]
   141  
   142  		// Handle incoming state packs:
   143  		case pack := <-d.stateCh:
   144  			// Discard any data not requested (or previously timed out)
   145  			req := active[pack.PeerId()]
   146  			if req == nil {
   147  				log.Debug("Unrequested node data", "peer", pack.PeerId(), "len", pack.Items())
   148  				continue
   149  			}
   150  			// Finalize the request and queue up for processing
   151  			req.timer.Stop()
   152  			req.response = pack.(*statePack).states
   153  			req.delivered = time.Now()
   154  
   155  			finished = append(finished, req)
   156  			delete(active, pack.PeerId())
   157  
   158  		// Handle dropped peer connections:
   159  		case p := <-peerDrop:
   160  			// Skip if no request is currently pending
   161  			req := active[p.id]
   162  			if req == nil {
   163  				continue
   164  			}
   165  			// Finalize the request and queue up for processing
   166  			req.timer.Stop()
   167  			req.dropped = true
   168  			req.delivered = time.Now()
   169  
   170  			finished = append(finished, req)
   171  			delete(active, p.id)
   172  
   173  		// Handle timed-out requests:
   174  		case req := <-timeout:
   175  			// If the peer is already requesting something else, ignore the stale timeout.
   176  			// This can happen when the timeout and the delivery happens simultaneously,
   177  			// causing both pathways to trigger.
   178  			if active[req.peer.id] != req {
   179  				continue
   180  			}
   181  			req.delivered = time.Now()
   182  			// Move the timed out data back into the download queue
   183  			finished = append(finished, req)
   184  			delete(active, req.peer.id)
   185  
   186  		// Track outgoing state requests:
   187  		case req := <-d.trackStateReq:
   188  			// If an active request already exists for this peer, we have a problem. In
   189  			// theory the trie node schedule must never assign two requests to the same
   190  			// peer. In practice however, a peer might receive a request, disconnect and
   191  			// immediately reconnect before the previous times out. In this case the first
   192  			// request is never honored, alas we must not silently overwrite it, as that
   193  			// causes valid requests to go missing and sync to get stuck.
   194  			if old := active[req.peer.id]; old != nil {
   195  				log.Warn("Busy peer assigned new state fetch", "peer", old.peer.id)
   196  				// Move the previous request to the finished set
   197  				old.timer.Stop()
   198  				old.dropped = true
   199  				old.delivered = time.Now()
   200  				finished = append(finished, old)
   201  			}
   202  			// Start a timer to notify the sync loop if the peer stalled.
   203  			req.timer = time.AfterFunc(req.timeout, func() {
   204  				timeout <- req
   205  			})
   206  			active[req.peer.id] = req
   207  		}
   208  	}
   209  }
   210  
   211  // spindownStateSync 'drains' the outstanding requests; some will be delivered and other
   212  // will time out. This is to ensure that when the next stateSync starts working, all peers
   213  // are marked as idle and de facto _are_ idle.
   214  func (d *Downloader) spindownStateSync(active map[string]*stateReq, finished []*stateReq, timeout chan *stateReq, peerDrop chan *peerConnection) {
   215  	log.Trace("State sync spinning down", "active", len(active), "finished", len(finished))
   216  	for len(active) > 0 {
   217  		var (
   218  			req    *stateReq
   219  			reason string
   220  		)
   221  		select {
   222  		// Handle (drop) incoming state packs:
   223  		case pack := <-d.stateCh:
   224  			req = active[pack.PeerId()]
   225  			reason = "delivered"
   226  		// Handle dropped peer connections:
   227  		case p := <-peerDrop:
   228  			req = active[p.id]
   229  			reason = "peerdrop"
   230  		// Handle timed-out requests:
   231  		case req = <-timeout:
   232  			reason = "timeout"
   233  		}
   234  		if req == nil {
   235  			continue
   236  		}
   237  		req.peer.log.Trace("State peer marked idle (spindown)", "req.items", int(req.nItems), "reason", reason)
   238  		req.timer.Stop()
   239  		delete(active, req.peer.id)
   240  		req.peer.SetNodeDataIdle(int(req.nItems), time.Now())
   241  	}
   242  	// The 'finished' set contains deliveries that we were going to pass to processing.
   243  	// Those are now moot, but we still need to set those peers as idle, which would
   244  	// otherwise have been done after processing
   245  	for _, req := range finished {
   246  		req.peer.SetNodeDataIdle(int(req.nItems), time.Now())
   247  	}
   248  }
   249  
   250  // stateSync schedules requests for downloading a particular state trie defined
   251  // by a given state root.
   252  type stateSync struct {
   253  	d *Downloader // Downloader instance to access and manage current peerset
   254  
   255  	sched  *trie.Sync // State trie sync scheduler defining the tasks
   256  	keccak hash.Hash  // Keccak256 hasher to verify deliveries with
   257  
   258  	trieTasks map[common.Hash]*trieTask // Set of trie node tasks currently queued for retrieval
   259  	codeTasks map[common.Hash]*codeTask // Set of byte code tasks currently queued for retrieval
   260  
   261  	numUncommitted   int
   262  	bytesUncommitted int
   263  
   264  	started chan struct{} // Started is signalled once the sync loop starts
   265  
   266  	deliver    chan *stateReq // Delivery channel multiplexing peer responses
   267  	cancel     chan struct{}  // Channel to signal a termination request
   268  	cancelOnce sync.Once      // Ensures cancel only ever gets called once
   269  	done       chan struct{}  // Channel to signal termination completion
   270  	err        error          // Any error hit during sync (set before completion)
   271  
   272  	root common.Hash
   273  }
   274  
   275  // trieTask represents a single trie node download task, containing a set of
   276  // peers already attempted retrieval from to detect stalled syncs and abort.
   277  type trieTask struct {
   278  	path     [][]byte
   279  	attempts map[string]struct{}
   280  }
   281  
   282  // codeTask represents a single byte code download task, containing a set of
   283  // peers already attempted retrieval from to detect stalled syncs and abort.
   284  type codeTask struct {
   285  	attempts map[string]struct{}
   286  }
   287  
   288  // newStateSync creates a new state trie download scheduler. This method does not
   289  // yet start the sync. The user needs to call run to initiate.
   290  func newStateSync(d *Downloader, root common.Hash) *stateSync {
   291  	return &stateSync{
   292  		d:         d,
   293  		sched:     state.NewStateSync(root, d.stateDB, d.stateBloom),
   294  		keccak:    sha3.NewLegacyKeccak256(),
   295  		trieTasks: make(map[common.Hash]*trieTask),
   296  		codeTasks: make(map[common.Hash]*codeTask),
   297  		deliver:   make(chan *stateReq),
   298  		cancel:    make(chan struct{}),
   299  		done:      make(chan struct{}),
   300  		started:   make(chan struct{}),
   301  		root:      root,
   302  	}
   303  }
   304  
   305  // run starts the task assignment and response processing loop, blocking until
   306  // it finishes, and finally notifying any goroutines waiting for the loop to
   307  // finish.
   308  func (s *stateSync) run() {
   309  	s.err = s.loop()
   310  	close(s.done)
   311  }
   312  
   313  // Wait blocks until the sync is done or canceled.
   314  func (s *stateSync) Wait() error {
   315  	<-s.done
   316  	return s.err
   317  }
   318  
   319  // Cancel cancels the sync and waits until it has shut down.
   320  func (s *stateSync) Cancel() error {
   321  	s.cancelOnce.Do(func() { close(s.cancel) })
   322  	return s.Wait()
   323  }
   324  
   325  // loop is the main event loop of a state trie sync. It it responsible for the
   326  // assignment of new tasks to peers (including sending it to them) as well as
   327  // for the processing of inbound data. Note, that the loop does not directly
   328  // receive data from peers, rather those are buffered up in the downloader and
   329  // pushed here async. The reason is to decouple processing from data receipt
   330  // and timeouts.
   331  func (s *stateSync) loop() (err error) {
   332  	close(s.started)
   333  	// Listen for new peer events to assign tasks to them
   334  	newPeer := make(chan *peerConnection, 1024)
   335  	peerSub := s.d.peers.SubscribeNewPeers(newPeer)
   336  	defer peerSub.Unsubscribe()
   337  	defer func() {
   338  		cerr := s.commit(true)
   339  		if err == nil {
   340  			err = cerr
   341  		}
   342  	}()
   343  
   344  	// Keep assigning new tasks until the sync completes or aborts
   345  	for s.sched.Pending() > 0 {
   346  		if err = s.commit(false); err != nil {
   347  			return err
   348  		}
   349  		s.assignTasks()
   350  		// Tasks assigned, wait for something to happen
   351  		select {
   352  		case <-newPeer:
   353  			// New peer arrived, try to assign it download tasks
   354  
   355  		case <-s.cancel:
   356  			return errCancelStateFetch
   357  
   358  		case <-s.d.cancelCh:
   359  			return errCanceled
   360  
   361  		case req := <-s.deliver:
   362  			// Response, disconnect or timeout triggered, drop the peer if stalling
   363  			log.Trace("Received node data response", "peer", req.peer.id, "count", len(req.response), "dropped", req.dropped, "timeout", !req.dropped && req.timedOut())
   364  			if req.nItems <= 2 && !req.dropped && req.timedOut() {
   365  				// 2 items are the minimum requested, if even that times out, we've no use of
   366  				// this peer at the moment.
   367  				log.Warn("Stalling state sync, dropping peer", "peer", req.peer.id)
   368  				if s.d.dropPeer == nil {
   369  					// The dropPeer method is nil when `--copydb` is used for a local copy.
   370  					// Timeouts can occur if e.g. compaction hits at the wrong time, and can be ignored
   371  					req.peer.log.Warn("Downloader wants to drop peer, but peerdrop-function is not set", "peer", req.peer.id)
   372  				} else {
   373  					s.d.dropPeer(req.peer.id)
   374  
   375  					// If this peer was the master peer, abort sync immediately
   376  					s.d.cancelLock.RLock()
   377  					master := req.peer.id == s.d.cancelPeer
   378  					s.d.cancelLock.RUnlock()
   379  
   380  					if master {
   381  						s.d.cancel()
   382  						return errTimeout
   383  					}
   384  				}
   385  			}
   386  			// Process all the received blobs and check for stale delivery
   387  			delivered, err := s.process(req)
   388  			req.peer.SetNodeDataIdle(delivered, req.delivered)
   389  			if err != nil {
   390  				log.Warn("Node data write error", "err", err)
   391  				return err
   392  			}
   393  		}
   394  	}
   395  	return nil
   396  }
   397  
   398  func (s *stateSync) commit(force bool) error {
   399  	if !force && s.bytesUncommitted < ethdb.IdealBatchSize {
   400  		return nil
   401  	}
   402  	start := time.Now()
   403  	b := s.d.stateDB.NewBatch()
   404  	if err := s.sched.Commit(b); err != nil {
   405  		return err
   406  	}
   407  	if err := b.Write(); err != nil {
   408  		return fmt.Errorf("DB write error: %v", err)
   409  	}
   410  	s.updateStats(s.numUncommitted, 0, 0, time.Since(start))
   411  	s.numUncommitted = 0
   412  	s.bytesUncommitted = 0
   413  	return nil
   414  }
   415  
   416  // assignTasks attempts to assign new tasks to all idle peers, either from the
   417  // batch currently being retried, or fetching new data from the trie sync itself.
   418  func (s *stateSync) assignTasks() {
   419  	// Iterate over all idle peers and try to assign them state fetches
   420  	peers, _ := s.d.peers.NodeDataIdlePeers()
   421  	for _, p := range peers {
   422  		// Assign a batch of fetches proportional to the estimated latency/bandwidth
   423  		cap := p.NodeDataCapacity(s.d.requestRTT())
   424  		req := &stateReq{peer: p, timeout: s.d.requestTTL()}
   425  
   426  		nodes, _, codes := s.fillTasks(cap, req)
   427  
   428  		// If the peer was assigned tasks to fetch, send the network request
   429  		if len(nodes)+len(codes) > 0 {
   430  			req.peer.log.Trace("Requesting batch of state data", "nodes", len(nodes), "codes", len(codes), "root", s.root)
   431  			select {
   432  			case s.d.trackStateReq <- req:
   433  				req.peer.FetchNodeData(append(nodes, codes...)) // Unified retrieval under eth/6x
   434  			case <-s.cancel:
   435  			case <-s.d.cancelCh:
   436  			}
   437  		}
   438  	}
   439  }
   440  
   441  // fillTasks fills the given request object with a maximum of n state download
   442  // tasks to send to the remote peer.
   443  func (s *stateSync) fillTasks(n int, req *stateReq) (nodes []common.Hash, paths []trie.SyncPath, codes []common.Hash) {
   444  	// Refill available tasks from the scheduler.
   445  	if fill := n - (len(s.trieTasks) + len(s.codeTasks)); fill > 0 {
   446  		nodes, paths, codes := s.sched.Missing(fill)
   447  		for i, hash := range nodes {
   448  			s.trieTasks[hash] = &trieTask{
   449  				path:     paths[i],
   450  				attempts: make(map[string]struct{}),
   451  			}
   452  		}
   453  		for _, hash := range codes {
   454  			s.codeTasks[hash] = &codeTask{
   455  				attempts: make(map[string]struct{}),
   456  			}
   457  		}
   458  	}
   459  	// Find tasks that haven't been tried with the request's peer. Prefer code
   460  	// over trie nodes as those can be written to disk and forgotten about.
   461  	nodes = make([]common.Hash, 0, n)
   462  	paths = make([]trie.SyncPath, 0, n)
   463  	codes = make([]common.Hash, 0, n)
   464  
   465  	req.trieTasks = make(map[common.Hash]*trieTask, n)
   466  	req.codeTasks = make(map[common.Hash]*codeTask, n)
   467  
   468  	for hash, t := range s.codeTasks {
   469  		// Stop when we've gathered enough requests
   470  		if len(nodes)+len(codes) == n {
   471  			break
   472  		}
   473  		// Skip any requests we've already tried from this peer
   474  		if _, ok := t.attempts[req.peer.id]; ok {
   475  			continue
   476  		}
   477  		// Assign the request to this peer
   478  		t.attempts[req.peer.id] = struct{}{}
   479  		codes = append(codes, hash)
   480  		req.codeTasks[hash] = t
   481  		delete(s.codeTasks, hash)
   482  	}
   483  	for hash, t := range s.trieTasks {
   484  		// Stop when we've gathered enough requests
   485  		if len(nodes)+len(codes) == n {
   486  			break
   487  		}
   488  		// Skip any requests we've already tried from this peer
   489  		if _, ok := t.attempts[req.peer.id]; ok {
   490  			continue
   491  		}
   492  		// Assign the request to this peer
   493  		t.attempts[req.peer.id] = struct{}{}
   494  
   495  		nodes = append(nodes, hash)
   496  		paths = append(paths, t.path)
   497  
   498  		req.trieTasks[hash] = t
   499  		delete(s.trieTasks, hash)
   500  	}
   501  	req.nItems = uint16(len(nodes) + len(codes))
   502  	return nodes, paths, codes
   503  }
   504  
   505  // process iterates over a batch of delivered state data, injecting each item
   506  // into a running state sync, re-queuing any items that were requested but not
   507  // delivered. Returns whether the peer actually managed to deliver anything of
   508  // value, and any error that occurred.
   509  func (s *stateSync) process(req *stateReq) (int, error) {
   510  	// Collect processing stats and update progress if valid data was received
   511  	duplicate, unexpected, successful := 0, 0, 0
   512  
   513  	defer func(start time.Time) {
   514  		if duplicate > 0 || unexpected > 0 {
   515  			s.updateStats(0, duplicate, unexpected, time.Since(start))
   516  		}
   517  	}(time.Now())
   518  
   519  	// Iterate over all the delivered data and inject one-by-one into the trie
   520  	for _, blob := range req.response {
   521  		hash, err := s.processNodeData(blob)
   522  		switch err {
   523  		case nil:
   524  			s.numUncommitted++
   525  			s.bytesUncommitted += len(blob)
   526  			successful++
   527  		case trie.ErrNotRequested:
   528  			unexpected++
   529  		case trie.ErrAlreadyProcessed:
   530  			duplicate++
   531  		default:
   532  			return successful, fmt.Errorf("invalid state node %s: %v", hash.TerminalString(), err)
   533  		}
   534  		// Delete from both queues (one delivery is enough for the syncer)
   535  		delete(req.trieTasks, hash)
   536  		delete(req.codeTasks, hash)
   537  	}
   538  	// Put unfulfilled tasks back into the retry queue
   539  	npeers := s.d.peers.Len()
   540  	for hash, task := range req.trieTasks {
   541  		// If the node did deliver something, missing items may be due to a protocol
   542  		// limit or a previous timeout + delayed delivery. Both cases should permit
   543  		// the node to retry the missing items (to avoid single-peer stalls).
   544  		if len(req.response) > 0 || req.timedOut() {
   545  			delete(task.attempts, req.peer.id)
   546  		}
   547  		// If we've requested the node too many times already, it may be a malicious
   548  		// sync where nobody has the right data. Abort.
   549  		if len(task.attempts) >= npeers {
   550  			return successful, fmt.Errorf("trie node %s failed with all peers (%d tries, %d peers)", hash.TerminalString(), len(task.attempts), npeers)
   551  		}
   552  		// Missing item, place into the retry queue.
   553  		s.trieTasks[hash] = task
   554  	}
   555  	for hash, task := range req.codeTasks {
   556  		// If the node did deliver something, missing items may be due to a protocol
   557  		// limit or a previous timeout + delayed delivery. Both cases should permit
   558  		// the node to retry the missing items (to avoid single-peer stalls).
   559  		if len(req.response) > 0 || req.timedOut() {
   560  			delete(task.attempts, req.peer.id)
   561  		}
   562  		// If we've requested the node too many times already, it may be a malicious
   563  		// sync where nobody has the right data. Abort.
   564  		if len(task.attempts) >= npeers {
   565  			return successful, fmt.Errorf("byte code %s failed with all peers (%d tries, %d peers)", hash.TerminalString(), len(task.attempts), npeers)
   566  		}
   567  		// Missing item, place into the retry queue.
   568  		s.codeTasks[hash] = task
   569  	}
   570  	return successful, nil
   571  }
   572  
   573  // processNodeData tries to inject a trie node data blob delivered from a remote
   574  // peer into the state trie, returning whether anything useful was written or any
   575  // error occurred.
   576  func (s *stateSync) processNodeData(blob []byte) (common.Hash, error) {
   577  	res := trie.SyncResult{Data: blob}
   578  	s.keccak.Reset()
   579  	s.keccak.Write(blob)
   580  	s.keccak.Sum(res.Hash[:0])
   581  	err := s.sched.Process(res)
   582  	return res.Hash, err
   583  }
   584  
   585  // updateStats bumps the various state sync progress counters and displays a log
   586  // message for the user to see.
   587  func (s *stateSync) updateStats(written, duplicate, unexpected int, duration time.Duration) {
   588  	s.d.syncStatsLock.Lock()
   589  	defer s.d.syncStatsLock.Unlock()
   590  
   591  	s.d.syncStatsState.pending = uint64(s.sched.Pending())
   592  	s.d.syncStatsState.processed += uint64(written)
   593  	s.d.syncStatsState.duplicate += uint64(duplicate)
   594  	s.d.syncStatsState.unexpected += uint64(unexpected)
   595  
   596  	if written > 0 || duplicate > 0 || unexpected > 0 {
   597  		log.Info("Imported new state entries", "count", written, "elapsed", common.PrettyDuration(duration), "processed", s.d.syncStatsState.processed, "pending", s.d.syncStatsState.pending, "trieretry", len(s.trieTasks), "coderetry", len(s.codeTasks), "duplicate", s.d.syncStatsState.duplicate, "unexpected", s.d.syncStatsState.unexpected)
   598  	}
   599  	if written > 0 {
   600  		rawdb.WriteFastTrieProgress(s.d.stateDB, s.d.syncStatsState.processed)
   601  	}
   602  }