github.com/aswedchain/aswed@v1.0.1/eth/fetcher/tx_fetcher.go (about)

     1  // Copyright 2020 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package fetcher
    18  
    19  import (
    20  	"bytes"
    21  	"fmt"
    22  	mrand "math/rand"
    23  	"sort"
    24  	"time"
    25  
    26  	mapset "github.com/deckarep/golang-set"
    27  	"github.com/aswedchain/aswed/common"
    28  	"github.com/aswedchain/aswed/common/mclock"
    29  	"github.com/aswedchain/aswed/core"
    30  	"github.com/aswedchain/aswed/core/types"
    31  	"github.com/aswedchain/aswed/log"
    32  	"github.com/aswedchain/aswed/metrics"
    33  )
    34  
    35  const (
    36  	// maxTxAnnounces is the maximum number of unique transaction a peer
    37  	// can announce in a short time.
    38  	maxTxAnnounces = 4096
    39  
    40  	// maxTxRetrievals is the maximum transaction number can be fetched in one
    41  	// request. The rationale to pick 256 is:
    42  	//   - In eth protocol, the softResponseLimit is 2MB. Nowadays according to
    43  	//     Etherscan the average transaction size is around 200B, so in theory
    44  	//     we can include lots of transaction in a single protocol packet.
    45  	//   - However the maximum size of a single transaction is raised to 128KB,
    46  	//     so pick a middle value here to ensure we can maximize the efficiency
    47  	//     of the retrieval and response size overflow won't happen in most cases.
    48  	maxTxRetrievals = 256
    49  
    50  	// maxTxUnderpricedSetSize is the size of the underpriced transaction set that
    51  	// is used to track recent transactions that have been dropped so we don't
    52  	// re-request them.
    53  	maxTxUnderpricedSetSize = 32768
    54  
    55  	// txArriveTimeout is the time allowance before an announced transaction is
    56  	// explicitly requested.
    57  	txArriveTimeout = 500 * time.Millisecond
    58  
    59  	// txGatherSlack is the interval used to collate almost-expired announces
    60  	// with network fetches.
    61  	txGatherSlack = 100 * time.Millisecond
    62  )
    63  
    64  var (
    65  	// txFetchTimeout is the maximum allotted time to return an explicitly
    66  	// requested transaction.
    67  	txFetchTimeout = 5 * time.Second
    68  )
    69  
    70  var (
    71  	txAnnounceInMeter          = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/in", nil)
    72  	txAnnounceKnownMeter       = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/known", nil)
    73  	txAnnounceUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/underpriced", nil)
    74  	txAnnounceDOSMeter         = metrics.NewRegisteredMeter("eth/fetcher/transaction/announces/dos", nil)
    75  
    76  	txBroadcastInMeter          = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/in", nil)
    77  	txBroadcastKnownMeter       = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/known", nil)
    78  	txBroadcastUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/underpriced", nil)
    79  	txBroadcastOtherRejectMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/broadcasts/otherreject", nil)
    80  
    81  	txRequestOutMeter     = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/out", nil)
    82  	txRequestFailMeter    = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/fail", nil)
    83  	txRequestDoneMeter    = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/done", nil)
    84  	txRequestTimeoutMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/request/timeout", nil)
    85  
    86  	txReplyInMeter          = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/in", nil)
    87  	txReplyKnownMeter       = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/known", nil)
    88  	txReplyUnderpricedMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/underpriced", nil)
    89  	txReplyOtherRejectMeter = metrics.NewRegisteredMeter("eth/fetcher/transaction/replies/otherreject", nil)
    90  
    91  	txFetcherWaitingPeers   = metrics.NewRegisteredGauge("eth/fetcher/transaction/waiting/peers", nil)
    92  	txFetcherWaitingHashes  = metrics.NewRegisteredGauge("eth/fetcher/transaction/waiting/hashes", nil)
    93  	txFetcherQueueingPeers  = metrics.NewRegisteredGauge("eth/fetcher/transaction/queueing/peers", nil)
    94  	txFetcherQueueingHashes = metrics.NewRegisteredGauge("eth/fetcher/transaction/queueing/hashes", nil)
    95  	txFetcherFetchingPeers  = metrics.NewRegisteredGauge("eth/fetcher/transaction/fetching/peers", nil)
    96  	txFetcherFetchingHashes = metrics.NewRegisteredGauge("eth/fetcher/transaction/fetching/hashes", nil)
    97  )
    98  
    99  // txAnnounce is the notification of the availability of a batch
   100  // of new transactions in the network.
   101  type txAnnounce struct {
   102  	origin string        // Identifier of the peer originating the notification
   103  	hashes []common.Hash // Batch of transaction hashes being announced
   104  }
   105  
   106  // txRequest represents an in-flight transaction retrieval request destined to
   107  // a specific peers.
   108  type txRequest struct {
   109  	hashes []common.Hash            // Transactions having been requested
   110  	stolen map[common.Hash]struct{} // Deliveries by someone else (don't re-request)
   111  	time   mclock.AbsTime           // Timestamp of the request
   112  }
   113  
   114  // txDelivery is the notification that a batch of transactions have been added
   115  // to the pool and should be untracked.
   116  type txDelivery struct {
   117  	origin string        // Identifier of the peer originating the notification
   118  	hashes []common.Hash // Batch of transaction hashes having been delivered
   119  	direct bool          // Whether this is a direct reply or a broadcast
   120  }
   121  
   122  // txDrop is the notiication that a peer has disconnected.
   123  type txDrop struct {
   124  	peer string
   125  }
   126  
   127  // TxFetcher is responsible for retrieving new transaction based on announcements.
   128  //
   129  // The fetcher operates in 3 stages:
   130  //   - Transactions that are newly discovered are moved into a wait list.
   131  //   - After ~500ms passes, transactions from the wait list that have not been
   132  //     broadcast to us in whole are moved into a queueing area.
   133  //   - When a connected peer doesn't have in-flight retrieval requests, any
   134  //     transaction queued up (and announced by the peer) are allocated to the
   135  //     peer and moved into a fetching status until it's fulfilled or fails.
   136  //
   137  // The invariants of the fetcher are:
   138  //   - Each tracked transaction (hash) must only be present in one of the
   139  //     three stages. This ensures that the fetcher operates akin to a finite
   140  //     state automata and there's do data leak.
   141  //   - Each peer that announced transactions may be scheduled retrievals, but
   142  //     only ever one concurrently. This ensures we can immediately know what is
   143  //     missing from a reply and reschedule it.
   144  type TxFetcher struct {
   145  	notify  chan *txAnnounce
   146  	cleanup chan *txDelivery
   147  	drop    chan *txDrop
   148  	quit    chan struct{}
   149  
   150  	underpriced mapset.Set // Transactions discarded as too cheap (don't re-fetch)
   151  
   152  	// Stage 1: Waiting lists for newly discovered transactions that might be
   153  	// broadcast without needing explicit request/reply round trips.
   154  	waitlist  map[common.Hash]map[string]struct{} // Transactions waiting for an potential broadcast
   155  	waittime  map[common.Hash]mclock.AbsTime      // Timestamps when transactions were added to the waitlist
   156  	waitslots map[string]map[common.Hash]struct{} // Waiting announcement sgroupped by peer (DoS protection)
   157  
   158  	// Stage 2: Queue of transactions that waiting to be allocated to some peer
   159  	// to be retrieved directly.
   160  	announces map[string]map[common.Hash]struct{} // Set of announced transactions, grouped by origin peer
   161  	announced map[common.Hash]map[string]struct{} // Set of download locations, grouped by transaction hash
   162  
   163  	// Stage 3: Set of transactions currently being retrieved, some which may be
   164  	// fulfilled and some rescheduled. Note, this step shares 'announces' from the
   165  	// previous stage to avoid having to duplicate (need it for DoS checks).
   166  	fetching   map[common.Hash]string              // Transaction set currently being retrieved
   167  	requests   map[string]*txRequest               // In-flight transaction retrievals
   168  	alternates map[common.Hash]map[string]struct{} // In-flight transaction alternate origins if retrieval fails
   169  
   170  	// Callbacks
   171  	hasTx    func(common.Hash) bool             // Retrieves a tx from the local txpool
   172  	addTxs   func([]*types.Transaction) []error // Insert a batch of transactions into local txpool
   173  	fetchTxs func(string, []common.Hash) error  // Retrieves a set of txs from a remote peer
   174  
   175  	step  chan struct{} // Notification channel when the fetcher loop iterates
   176  	clock mclock.Clock  // Time wrapper to simulate in tests
   177  	rand  *mrand.Rand   // Randomizer to use in tests instead of map range loops (soft-random)
   178  }
   179  
   180  // NewTxFetcher creates a transaction fetcher to retrieve transaction
   181  // based on hash announcements.
   182  func NewTxFetcher(hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error) *TxFetcher {
   183  	return NewTxFetcherForTests(hasTx, addTxs, fetchTxs, mclock.System{}, nil)
   184  }
   185  
   186  // NewTxFetcherForTests is a testing method to mock out the realtime clock with
   187  // a simulated version and the internal randomness with a deterministic one.
   188  func NewTxFetcherForTests(
   189  	hasTx func(common.Hash) bool, addTxs func([]*types.Transaction) []error, fetchTxs func(string, []common.Hash) error,
   190  	clock mclock.Clock, rand *mrand.Rand) *TxFetcher {
   191  	return &TxFetcher{
   192  		notify:      make(chan *txAnnounce),
   193  		cleanup:     make(chan *txDelivery),
   194  		drop:        make(chan *txDrop),
   195  		quit:        make(chan struct{}),
   196  		waitlist:    make(map[common.Hash]map[string]struct{}),
   197  		waittime:    make(map[common.Hash]mclock.AbsTime),
   198  		waitslots:   make(map[string]map[common.Hash]struct{}),
   199  		announces:   make(map[string]map[common.Hash]struct{}),
   200  		announced:   make(map[common.Hash]map[string]struct{}),
   201  		fetching:    make(map[common.Hash]string),
   202  		requests:    make(map[string]*txRequest),
   203  		alternates:  make(map[common.Hash]map[string]struct{}),
   204  		underpriced: mapset.NewSet(),
   205  		hasTx:       hasTx,
   206  		addTxs:      addTxs,
   207  		fetchTxs:    fetchTxs,
   208  		clock:       clock,
   209  		rand:        rand,
   210  	}
   211  }
   212  
   213  // Notify announces the fetcher of the potential availability of a new batch of
   214  // transactions in the network.
   215  func (f *TxFetcher) Notify(peer string, hashes []common.Hash) error {
   216  	// Keep track of all the announced transactions
   217  	txAnnounceInMeter.Mark(int64(len(hashes)))
   218  
   219  	// Skip any transaction announcements that we already know of, or that we've
   220  	// previously marked as cheap and discarded. This check is of course racey,
   221  	// because multiple concurrent notifies will still manage to pass it, but it's
   222  	// still valuable to check here because it runs concurrent  to the internal
   223  	// loop, so anything caught here is time saved internally.
   224  	var (
   225  		unknowns               = make([]common.Hash, 0, len(hashes))
   226  		duplicate, underpriced int64
   227  	)
   228  	for _, hash := range hashes {
   229  		switch {
   230  		case f.hasTx(hash):
   231  			duplicate++
   232  
   233  		case f.underpriced.Contains(hash):
   234  			underpriced++
   235  
   236  		default:
   237  			unknowns = append(unknowns, hash)
   238  		}
   239  	}
   240  	txAnnounceKnownMeter.Mark(duplicate)
   241  	txAnnounceUnderpricedMeter.Mark(underpriced)
   242  
   243  	// If anything's left to announce, push it into the internal loop
   244  	if len(unknowns) == 0 {
   245  		return nil
   246  	}
   247  	announce := &txAnnounce{
   248  		origin: peer,
   249  		hashes: unknowns,
   250  	}
   251  	select {
   252  	case f.notify <- announce:
   253  		return nil
   254  	case <-f.quit:
   255  		return errTerminated
   256  	}
   257  }
   258  
   259  // Enqueue imports a batch of received transaction into the transaction pool
   260  // and the fetcher. This method may be called by both transaction broadcasts and
   261  // direct request replies. The differentiation is important so the fetcher can
   262  // re-shedule missing transactions as soon as possible.
   263  func (f *TxFetcher) Enqueue(peer string, txs []*types.Transaction, direct bool) error {
   264  	// Keep track of all the propagated transactions
   265  	if direct {
   266  		txReplyInMeter.Mark(int64(len(txs)))
   267  	} else {
   268  		txBroadcastInMeter.Mark(int64(len(txs)))
   269  	}
   270  	// Push all the transactions into the pool, tracking underpriced ones to avoid
   271  	// re-requesting them and dropping the peer in case of malicious transfers.
   272  	var (
   273  		added       = make([]common.Hash, 0, len(txs))
   274  		duplicate   int64
   275  		underpriced int64
   276  		otherreject int64
   277  	)
   278  	errs := f.addTxs(txs)
   279  	for i, err := range errs {
   280  		if err != nil {
   281  			// Track the transaction hash if the price is too low for us.
   282  			// Avoid re-request this transaction when we receive another
   283  			// announcement.
   284  			if err == core.ErrUnderpriced || err == core.ErrReplaceUnderpriced {
   285  				for f.underpriced.Cardinality() >= maxTxUnderpricedSetSize {
   286  					f.underpriced.Pop()
   287  				}
   288  				f.underpriced.Add(txs[i].Hash())
   289  			}
   290  			// Track a few interesting failure types
   291  			switch err {
   292  			case nil: // Noop, but need to handle to not count these
   293  
   294  			case core.ErrAlreadyKnown:
   295  				duplicate++
   296  
   297  			case core.ErrUnderpriced, core.ErrReplaceUnderpriced:
   298  				underpriced++
   299  
   300  			default:
   301  				otherreject++
   302  			}
   303  		}
   304  		added = append(added, txs[i].Hash())
   305  	}
   306  	if direct {
   307  		txReplyKnownMeter.Mark(duplicate)
   308  		txReplyUnderpricedMeter.Mark(underpriced)
   309  		txReplyOtherRejectMeter.Mark(otherreject)
   310  	} else {
   311  		txBroadcastKnownMeter.Mark(duplicate)
   312  		txBroadcastUnderpricedMeter.Mark(underpriced)
   313  		txBroadcastOtherRejectMeter.Mark(otherreject)
   314  	}
   315  	select {
   316  	case f.cleanup <- &txDelivery{origin: peer, hashes: added, direct: direct}:
   317  		return nil
   318  	case <-f.quit:
   319  		return errTerminated
   320  	}
   321  }
   322  
   323  // Drop should be called when a peer disconnects. It cleans up all the internal
   324  // data structures of the given node.
   325  func (f *TxFetcher) Drop(peer string) error {
   326  	select {
   327  	case f.drop <- &txDrop{peer: peer}:
   328  		return nil
   329  	case <-f.quit:
   330  		return errTerminated
   331  	}
   332  }
   333  
   334  // Start boots up the announcement based synchroniser, accepting and processing
   335  // hash notifications and block fetches until termination requested.
   336  func (f *TxFetcher) Start() {
   337  	go f.loop()
   338  }
   339  
   340  // Stop terminates the announcement based synchroniser, canceling all pending
   341  // operations.
   342  func (f *TxFetcher) Stop() {
   343  	close(f.quit)
   344  }
   345  
   346  func (f *TxFetcher) loop() {
   347  	var (
   348  		waitTimer    = new(mclock.Timer)
   349  		timeoutTimer = new(mclock.Timer)
   350  
   351  		waitTrigger    = make(chan struct{}, 1)
   352  		timeoutTrigger = make(chan struct{}, 1)
   353  	)
   354  	for {
   355  		select {
   356  		case ann := <-f.notify:
   357  			// Drop part of the new announcements if there are too many accumulated.
   358  			// Note, we could but do not filter already known transactions here as
   359  			// the probability of something arriving between this call and the pre-
   360  			// filter outside is essentially zero.
   361  			used := len(f.waitslots[ann.origin]) + len(f.announces[ann.origin])
   362  			if used >= maxTxAnnounces {
   363  				// This can happen if a set of transactions are requested but not
   364  				// all fulfilled, so the remainder are rescheduled without the cap
   365  				// check. Should be fine as the limit is in the thousands and the
   366  				// request size in the hundreds.
   367  				txAnnounceDOSMeter.Mark(int64(len(ann.hashes)))
   368  				break
   369  			}
   370  			want := used + len(ann.hashes)
   371  			if want > maxTxAnnounces {
   372  				txAnnounceDOSMeter.Mark(int64(want - maxTxAnnounces))
   373  				ann.hashes = ann.hashes[:want-maxTxAnnounces]
   374  			}
   375  			// All is well, schedule the remainder of the transactions
   376  			idleWait := len(f.waittime) == 0
   377  			_, oldPeer := f.announces[ann.origin]
   378  
   379  			for _, hash := range ann.hashes {
   380  				// If the transaction is already downloading, add it to the list
   381  				// of possible alternates (in case the current retrieval fails) and
   382  				// also account it for the peer.
   383  				if f.alternates[hash] != nil {
   384  					f.alternates[hash][ann.origin] = struct{}{}
   385  
   386  					// Stage 2 and 3 share the set of origins per tx
   387  					if announces := f.announces[ann.origin]; announces != nil {
   388  						announces[hash] = struct{}{}
   389  					} else {
   390  						f.announces[ann.origin] = map[common.Hash]struct{}{hash: {}}
   391  					}
   392  					continue
   393  				}
   394  				// If the transaction is not downloading, but is already queued
   395  				// from a different peer, track it for the new peer too.
   396  				if f.announced[hash] != nil {
   397  					f.announced[hash][ann.origin] = struct{}{}
   398  
   399  					// Stage 2 and 3 share the set of origins per tx
   400  					if announces := f.announces[ann.origin]; announces != nil {
   401  						announces[hash] = struct{}{}
   402  					} else {
   403  						f.announces[ann.origin] = map[common.Hash]struct{}{hash: {}}
   404  					}
   405  					continue
   406  				}
   407  				// If the transaction is already known to the fetcher, but not
   408  				// yet downloading, add the peer as an alternate origin in the
   409  				// waiting list.
   410  				if f.waitlist[hash] != nil {
   411  					f.waitlist[hash][ann.origin] = struct{}{}
   412  
   413  					if waitslots := f.waitslots[ann.origin]; waitslots != nil {
   414  						waitslots[hash] = struct{}{}
   415  					} else {
   416  						f.waitslots[ann.origin] = map[common.Hash]struct{}{hash: {}}
   417  					}
   418  					continue
   419  				}
   420  				// Transaction unknown to the fetcher, insert it into the waiting list
   421  				f.waitlist[hash] = map[string]struct{}{ann.origin: {}}
   422  				f.waittime[hash] = f.clock.Now()
   423  
   424  				if waitslots := f.waitslots[ann.origin]; waitslots != nil {
   425  					waitslots[hash] = struct{}{}
   426  				} else {
   427  					f.waitslots[ann.origin] = map[common.Hash]struct{}{hash: {}}
   428  				}
   429  			}
   430  			// If a new item was added to the waitlist, schedule it into the fetcher
   431  			if idleWait && len(f.waittime) > 0 {
   432  				f.rescheduleWait(waitTimer, waitTrigger)
   433  			}
   434  			// If this peer is new and announced something already queued, maybe
   435  			// request transactions from them
   436  			if !oldPeer && len(f.announces[ann.origin]) > 0 {
   437  				f.scheduleFetches(timeoutTimer, timeoutTrigger, map[string]struct{}{ann.origin: {}})
   438  			}
   439  
   440  		case <-waitTrigger:
   441  			// At least one transaction's waiting time ran out, push all expired
   442  			// ones into the retrieval queues
   443  			actives := make(map[string]struct{})
   444  			for hash, instance := range f.waittime {
   445  				if time.Duration(f.clock.Now()-instance)+txGatherSlack > txArriveTimeout {
   446  					// Transaction expired without propagation, schedule for retrieval
   447  					if f.announced[hash] != nil {
   448  						panic("announce tracker already contains waitlist item")
   449  					}
   450  					f.announced[hash] = f.waitlist[hash]
   451  					for peer := range f.waitlist[hash] {
   452  						if announces := f.announces[peer]; announces != nil {
   453  							announces[hash] = struct{}{}
   454  						} else {
   455  							f.announces[peer] = map[common.Hash]struct{}{hash: {}}
   456  						}
   457  						delete(f.waitslots[peer], hash)
   458  						if len(f.waitslots[peer]) == 0 {
   459  							delete(f.waitslots, peer)
   460  						}
   461  						actives[peer] = struct{}{}
   462  					}
   463  					delete(f.waittime, hash)
   464  					delete(f.waitlist, hash)
   465  				}
   466  			}
   467  			// If transactions are still waiting for propagation, reschedule the wait timer
   468  			if len(f.waittime) > 0 {
   469  				f.rescheduleWait(waitTimer, waitTrigger)
   470  			}
   471  			// If any peers became active and are idle, request transactions from them
   472  			if len(actives) > 0 {
   473  				f.scheduleFetches(timeoutTimer, timeoutTrigger, actives)
   474  			}
   475  
   476  		case <-timeoutTrigger:
   477  			// Clean up any expired retrievals and avoid re-requesting them from the
   478  			// same peer (either overloaded or malicious, useless in both cases). We
   479  			// could also penalize (Drop), but there's nothing to gain, and if could
   480  			// possibly further increase the load on it.
   481  			for peer, req := range f.requests {
   482  				if time.Duration(f.clock.Now()-req.time)+txGatherSlack > txFetchTimeout {
   483  					txRequestTimeoutMeter.Mark(int64(len(req.hashes)))
   484  
   485  					// Reschedule all the not-yet-delivered fetches to alternate peers
   486  					for _, hash := range req.hashes {
   487  						// Skip rescheduling hashes already delivered by someone else
   488  						if req.stolen != nil {
   489  							if _, ok := req.stolen[hash]; ok {
   490  								continue
   491  							}
   492  						}
   493  						// Move the delivery back from fetching to queued
   494  						if _, ok := f.announced[hash]; ok {
   495  							panic("announced tracker already contains alternate item")
   496  						}
   497  						if f.alternates[hash] != nil { // nil if tx was broadcast during fetch
   498  							f.announced[hash] = f.alternates[hash]
   499  						}
   500  						delete(f.announced[hash], peer)
   501  						if len(f.announced[hash]) == 0 {
   502  							delete(f.announced, hash)
   503  						}
   504  						delete(f.announces[peer], hash)
   505  						delete(f.alternates, hash)
   506  						delete(f.fetching, hash)
   507  					}
   508  					if len(f.announces[peer]) == 0 {
   509  						delete(f.announces, peer)
   510  					}
   511  					// Keep track of the request as dangling, but never expire
   512  					f.requests[peer].hashes = nil
   513  				}
   514  			}
   515  			// Schedule a new transaction retrieval
   516  			f.scheduleFetches(timeoutTimer, timeoutTrigger, nil)
   517  
   518  			// No idea if we scheduled something or not, trigger the timer if needed
   519  			// TODO(karalabe): this is kind of lame, can't we dump it into scheduleFetches somehow?
   520  			f.rescheduleTimeout(timeoutTimer, timeoutTrigger)
   521  
   522  		case delivery := <-f.cleanup:
   523  			// Independent if the delivery was direct or broadcast, remove all
   524  			// traces of the hash from internal trackers
   525  			for _, hash := range delivery.hashes {
   526  				if _, ok := f.waitlist[hash]; ok {
   527  					for peer, txset := range f.waitslots {
   528  						delete(txset, hash)
   529  						if len(txset) == 0 {
   530  							delete(f.waitslots, peer)
   531  						}
   532  					}
   533  					delete(f.waitlist, hash)
   534  					delete(f.waittime, hash)
   535  				} else {
   536  					for peer, txset := range f.announces {
   537  						delete(txset, hash)
   538  						if len(txset) == 0 {
   539  							delete(f.announces, peer)
   540  						}
   541  					}
   542  					delete(f.announced, hash)
   543  					delete(f.alternates, hash)
   544  
   545  					// If a transaction currently being fetched from a different
   546  					// origin was delivered (delivery stolen), mark it so the
   547  					// actual delivery won't double schedule it.
   548  					if origin, ok := f.fetching[hash]; ok && (origin != delivery.origin || !delivery.direct) {
   549  						stolen := f.requests[origin].stolen
   550  						if stolen == nil {
   551  							f.requests[origin].stolen = make(map[common.Hash]struct{})
   552  							stolen = f.requests[origin].stolen
   553  						}
   554  						stolen[hash] = struct{}{}
   555  					}
   556  					delete(f.fetching, hash)
   557  				}
   558  			}
   559  			// In case of a direct delivery, also reschedule anything missing
   560  			// from the original query
   561  			if delivery.direct {
   562  				// Mark the reqesting successful (independent of individual status)
   563  				txRequestDoneMeter.Mark(int64(len(delivery.hashes)))
   564  
   565  				// Make sure something was pending, nuke it
   566  				req := f.requests[delivery.origin]
   567  				if req == nil {
   568  					log.Warn("Unexpected transaction delivery", "peer", delivery.origin)
   569  					break
   570  				}
   571  				delete(f.requests, delivery.origin)
   572  
   573  				// Anything not delivered should be re-scheduled (with or without
   574  				// this peer, depending on the response cutoff)
   575  				delivered := make(map[common.Hash]struct{})
   576  				for _, hash := range delivery.hashes {
   577  					delivered[hash] = struct{}{}
   578  				}
   579  				cutoff := len(req.hashes) // If nothing is delivered, assume everything is missing, don't retry!!!
   580  				for i, hash := range req.hashes {
   581  					if _, ok := delivered[hash]; ok {
   582  						cutoff = i
   583  					}
   584  				}
   585  				// Reschedule missing hashes from alternates, not-fulfilled from alt+self
   586  				for i, hash := range req.hashes {
   587  					// Skip rescheduling hashes already delivered by someone else
   588  					if req.stolen != nil {
   589  						if _, ok := req.stolen[hash]; ok {
   590  							continue
   591  						}
   592  					}
   593  					if _, ok := delivered[hash]; !ok {
   594  						if i < cutoff {
   595  							delete(f.alternates[hash], delivery.origin)
   596  							delete(f.announces[delivery.origin], hash)
   597  							if len(f.announces[delivery.origin]) == 0 {
   598  								delete(f.announces, delivery.origin)
   599  							}
   600  						}
   601  						if len(f.alternates[hash]) > 0 {
   602  							if _, ok := f.announced[hash]; ok {
   603  								panic(fmt.Sprintf("announced tracker already contains alternate item: %v", f.announced[hash]))
   604  							}
   605  							f.announced[hash] = f.alternates[hash]
   606  						}
   607  					}
   608  					delete(f.alternates, hash)
   609  					delete(f.fetching, hash)
   610  				}
   611  				// Something was delivered, try to rechedule requests
   612  				f.scheduleFetches(timeoutTimer, timeoutTrigger, nil) // Partial delivery may enable others to deliver too
   613  			}
   614  
   615  		case drop := <-f.drop:
   616  			// A peer was dropped, remove all traces of it
   617  			if _, ok := f.waitslots[drop.peer]; ok {
   618  				for hash := range f.waitslots[drop.peer] {
   619  					delete(f.waitlist[hash], drop.peer)
   620  					if len(f.waitlist[hash]) == 0 {
   621  						delete(f.waitlist, hash)
   622  						delete(f.waittime, hash)
   623  					}
   624  				}
   625  				delete(f.waitslots, drop.peer)
   626  				if len(f.waitlist) > 0 {
   627  					f.rescheduleWait(waitTimer, waitTrigger)
   628  				}
   629  			}
   630  			// Clean up any active requests
   631  			var request *txRequest
   632  			if request = f.requests[drop.peer]; request != nil {
   633  				for _, hash := range request.hashes {
   634  					// Skip rescheduling hashes already delivered by someone else
   635  					if request.stolen != nil {
   636  						if _, ok := request.stolen[hash]; ok {
   637  							continue
   638  						}
   639  					}
   640  					// Undelivered hash, reschedule if there's an alternative origin available
   641  					delete(f.alternates[hash], drop.peer)
   642  					if len(f.alternates[hash]) == 0 {
   643  						delete(f.alternates, hash)
   644  					} else {
   645  						f.announced[hash] = f.alternates[hash]
   646  						delete(f.alternates, hash)
   647  					}
   648  					delete(f.fetching, hash)
   649  				}
   650  				delete(f.requests, drop.peer)
   651  			}
   652  			// Clean up general announcement tracking
   653  			if _, ok := f.announces[drop.peer]; ok {
   654  				for hash := range f.announces[drop.peer] {
   655  					delete(f.announced[hash], drop.peer)
   656  					if len(f.announced[hash]) == 0 {
   657  						delete(f.announced, hash)
   658  					}
   659  				}
   660  				delete(f.announces, drop.peer)
   661  			}
   662  			// If a request was cancelled, check if anything needs to be rescheduled
   663  			if request != nil {
   664  				f.scheduleFetches(timeoutTimer, timeoutTrigger, nil)
   665  				f.rescheduleTimeout(timeoutTimer, timeoutTrigger)
   666  			}
   667  
   668  		case <-f.quit:
   669  			return
   670  		}
   671  		// No idea what happened, but bump some sanity metrics
   672  		txFetcherWaitingPeers.Update(int64(len(f.waitslots)))
   673  		txFetcherWaitingHashes.Update(int64(len(f.waitlist)))
   674  		txFetcherQueueingPeers.Update(int64(len(f.announces) - len(f.requests)))
   675  		txFetcherQueueingHashes.Update(int64(len(f.announced)))
   676  		txFetcherFetchingPeers.Update(int64(len(f.requests)))
   677  		txFetcherFetchingHashes.Update(int64(len(f.fetching)))
   678  
   679  		// Loop did something, ping the step notifier if needed (tests)
   680  		if f.step != nil {
   681  			f.step <- struct{}{}
   682  		}
   683  	}
   684  }
   685  
   686  // rescheduleWait iterates over all the transactions currently in the waitlist
   687  // and schedules the movement into the fetcher for the earliest.
   688  //
   689  // The method has a granularity of 'gatherSlack', since there's not much point in
   690  // spinning over all the transactions just to maybe find one that should trigger
   691  // a few ms earlier.
   692  func (f *TxFetcher) rescheduleWait(timer *mclock.Timer, trigger chan struct{}) {
   693  	if *timer != nil {
   694  		(*timer).Stop()
   695  	}
   696  	now := f.clock.Now()
   697  
   698  	earliest := now
   699  	for _, instance := range f.waittime {
   700  		if earliest > instance {
   701  			earliest = instance
   702  			if txArriveTimeout-time.Duration(now-earliest) < gatherSlack {
   703  				break
   704  			}
   705  		}
   706  	}
   707  	*timer = f.clock.AfterFunc(txArriveTimeout-time.Duration(now-earliest), func() {
   708  		trigger <- struct{}{}
   709  	})
   710  }
   711  
   712  // rescheduleTimeout iterates over all the transactions currently in flight and
   713  // schedules a cleanup run when the first would trigger.
   714  //
   715  // The method has a granularity of 'gatherSlack', since there's not much point in
   716  // spinning over all the transactions just to maybe find one that should trigger
   717  // a few ms earlier.
   718  //
   719  // This method is a bit "flaky" "by design". In theory the timeout timer only ever
   720  // should be rescheduled if some request is pending. In practice, a timeout will
   721  // cause the timer to be rescheduled every 5 secs (until the peer comes through or
   722  // disconnects). This is a limitation of the fetcher code because we don't trac
   723  // pending requests and timed out requests separatey. Without double tracking, if
   724  // we simply didn't reschedule the timer on all-timeout then the timer would never
   725  // be set again since len(request) > 0 => something's running.
   726  func (f *TxFetcher) rescheduleTimeout(timer *mclock.Timer, trigger chan struct{}) {
   727  	if *timer != nil {
   728  		(*timer).Stop()
   729  	}
   730  	now := f.clock.Now()
   731  
   732  	earliest := now
   733  	for _, req := range f.requests {
   734  		// If this request already timed out, skip it altogether
   735  		if req.hashes == nil {
   736  			continue
   737  		}
   738  		if earliest > req.time {
   739  			earliest = req.time
   740  			if txFetchTimeout-time.Duration(now-earliest) < gatherSlack {
   741  				break
   742  			}
   743  		}
   744  	}
   745  	*timer = f.clock.AfterFunc(txFetchTimeout-time.Duration(now-earliest), func() {
   746  		trigger <- struct{}{}
   747  	})
   748  }
   749  
   750  // scheduleFetches starts a batch of retrievals for all available idle peers.
   751  func (f *TxFetcher) scheduleFetches(timer *mclock.Timer, timeout chan struct{}, whitelist map[string]struct{}) {
   752  	// Gather the set of peers we want to retrieve from (default to all)
   753  	actives := whitelist
   754  	if actives == nil {
   755  		actives = make(map[string]struct{})
   756  		for peer := range f.announces {
   757  			actives[peer] = struct{}{}
   758  		}
   759  	}
   760  	if len(actives) == 0 {
   761  		return
   762  	}
   763  	// For each active peer, try to schedule some transaction fetches
   764  	idle := len(f.requests) == 0
   765  
   766  	f.forEachPeer(actives, func(peer string) {
   767  		if f.requests[peer] != nil {
   768  			return // continue in the for-each
   769  		}
   770  		if len(f.announces[peer]) == 0 {
   771  			return // continue in the for-each
   772  		}
   773  		hashes := make([]common.Hash, 0, maxTxRetrievals)
   774  		f.forEachHash(f.announces[peer], func(hash common.Hash) bool {
   775  			if _, ok := f.fetching[hash]; !ok {
   776  				// Mark the hash as fetching and stash away possible alternates
   777  				f.fetching[hash] = peer
   778  
   779  				if _, ok := f.alternates[hash]; ok {
   780  					panic(fmt.Sprintf("alternate tracker already contains fetching item: %v", f.alternates[hash]))
   781  				}
   782  				f.alternates[hash] = f.announced[hash]
   783  				delete(f.announced, hash)
   784  
   785  				// Accumulate the hash and stop if the limit was reached
   786  				hashes = append(hashes, hash)
   787  				if len(hashes) >= maxTxRetrievals {
   788  					return false // break in the for-each
   789  				}
   790  			}
   791  			return true // continue in the for-each
   792  		})
   793  		// If any hashes were allocated, request them from the peer
   794  		if len(hashes) > 0 {
   795  			f.requests[peer] = &txRequest{hashes: hashes, time: f.clock.Now()}
   796  			txRequestOutMeter.Mark(int64(len(hashes)))
   797  
   798  			go func(peer string, hashes []common.Hash) {
   799  				// Try to fetch the transactions, but in case of a request
   800  				// failure (e.g. peer disconnected), reschedule the hashes.
   801  				if err := f.fetchTxs(peer, hashes); err != nil {
   802  					txRequestFailMeter.Mark(int64(len(hashes)))
   803  					f.Drop(peer)
   804  				}
   805  			}(peer, hashes)
   806  		}
   807  	})
   808  	// If a new request was fired, schedule a timeout timer
   809  	if idle && len(f.requests) > 0 {
   810  		f.rescheduleTimeout(timer, timeout)
   811  	}
   812  }
   813  
   814  // forEachPeer does a range loop over a map of peers in production, but during
   815  // testing it does a deterministic sorted random to allow reproducing issues.
   816  func (f *TxFetcher) forEachPeer(peers map[string]struct{}, do func(peer string)) {
   817  	// If we're running production, use whatever Go's map gives us
   818  	if f.rand == nil {
   819  		for peer := range peers {
   820  			do(peer)
   821  		}
   822  		return
   823  	}
   824  	// We're running the test suite, make iteration deterministic
   825  	list := make([]string, 0, len(peers))
   826  	for peer := range peers {
   827  		list = append(list, peer)
   828  	}
   829  	sort.Strings(list)
   830  	rotateStrings(list, f.rand.Intn(len(list)))
   831  	for _, peer := range list {
   832  		do(peer)
   833  	}
   834  }
   835  
   836  // forEachHash does a range loop over a map of hashes in production, but during
   837  // testing it does a deterministic sorted random to allow reproducing issues.
   838  func (f *TxFetcher) forEachHash(hashes map[common.Hash]struct{}, do func(hash common.Hash) bool) {
   839  	// If we're running production, use whatever Go's map gives us
   840  	if f.rand == nil {
   841  		for hash := range hashes {
   842  			if !do(hash) {
   843  				return
   844  			}
   845  		}
   846  		return
   847  	}
   848  	// We're running the test suite, make iteration deterministic
   849  	list := make([]common.Hash, 0, len(hashes))
   850  	for hash := range hashes {
   851  		list = append(list, hash)
   852  	}
   853  	sortHashes(list)
   854  	rotateHashes(list, f.rand.Intn(len(list)))
   855  	for _, hash := range list {
   856  		if !do(hash) {
   857  			return
   858  		}
   859  	}
   860  }
   861  
   862  // rotateStrings rotates the contents of a slice by n steps. This method is only
   863  // used in tests to simulate random map iteration but keep it deterministic.
   864  func rotateStrings(slice []string, n int) {
   865  	orig := make([]string, len(slice))
   866  	copy(orig, slice)
   867  
   868  	for i := 0; i < len(orig); i++ {
   869  		slice[i] = orig[(i+n)%len(orig)]
   870  	}
   871  }
   872  
   873  // sortHashes sorts a slice of hashes. This method is only used in tests in order
   874  // to simulate random map iteration but keep it deterministic.
   875  func sortHashes(slice []common.Hash) {
   876  	for i := 0; i < len(slice); i++ {
   877  		for j := i + 1; j < len(slice); j++ {
   878  			if bytes.Compare(slice[i][:], slice[j][:]) > 0 {
   879  				slice[i], slice[j] = slice[j], slice[i]
   880  			}
   881  		}
   882  	}
   883  }
   884  
   885  // rotateHashes rotates the contents of a slice by n steps. This method is only
   886  // used in tests to simulate random map iteration but keep it deterministic.
   887  func rotateHashes(slice []common.Hash, n int) {
   888  	orig := make([]common.Hash, len(slice))
   889  	copy(orig, slice)
   890  
   891  	for i := 0; i < len(orig); i++ {
   892  		slice[i] = orig[(i+n)%len(orig)]
   893  	}
   894  }