github.com/aswedchain/aswed@v1.0.1/metrics/sample_test.go (about) 1 package metrics 2 3 import ( 4 "math" 5 "math/rand" 6 "runtime" 7 "testing" 8 "time" 9 ) 10 11 // Benchmark{Compute,Copy}{1000,1000000} demonstrate that, even for relatively 12 // expensive computations like Variance, the cost of copying the Sample, as 13 // approximated by a make and copy, is much greater than the cost of the 14 // computation for small samples and only slightly less for large samples. 15 func BenchmarkCompute1000(b *testing.B) { 16 s := make([]int64, 1000) 17 for i := 0; i < len(s); i++ { 18 s[i] = int64(i) 19 } 20 b.ResetTimer() 21 for i := 0; i < b.N; i++ { 22 SampleVariance(s) 23 } 24 } 25 func BenchmarkCompute1000000(b *testing.B) { 26 s := make([]int64, 1000000) 27 for i := 0; i < len(s); i++ { 28 s[i] = int64(i) 29 } 30 b.ResetTimer() 31 for i := 0; i < b.N; i++ { 32 SampleVariance(s) 33 } 34 } 35 func BenchmarkCopy1000(b *testing.B) { 36 s := make([]int64, 1000) 37 for i := 0; i < len(s); i++ { 38 s[i] = int64(i) 39 } 40 b.ResetTimer() 41 for i := 0; i < b.N; i++ { 42 sCopy := make([]int64, len(s)) 43 copy(sCopy, s) 44 } 45 } 46 func BenchmarkCopy1000000(b *testing.B) { 47 s := make([]int64, 1000000) 48 for i := 0; i < len(s); i++ { 49 s[i] = int64(i) 50 } 51 b.ResetTimer() 52 for i := 0; i < b.N; i++ { 53 sCopy := make([]int64, len(s)) 54 copy(sCopy, s) 55 } 56 } 57 58 func BenchmarkExpDecaySample257(b *testing.B) { 59 benchmarkSample(b, NewExpDecaySample(257, 0.015)) 60 } 61 62 func BenchmarkExpDecaySample514(b *testing.B) { 63 benchmarkSample(b, NewExpDecaySample(514, 0.015)) 64 } 65 66 func BenchmarkExpDecaySample1028(b *testing.B) { 67 benchmarkSample(b, NewExpDecaySample(1028, 0.015)) 68 } 69 70 func BenchmarkUniformSample257(b *testing.B) { 71 benchmarkSample(b, NewUniformSample(257)) 72 } 73 74 func BenchmarkUniformSample514(b *testing.B) { 75 benchmarkSample(b, NewUniformSample(514)) 76 } 77 78 func BenchmarkUniformSample1028(b *testing.B) { 79 benchmarkSample(b, NewUniformSample(1028)) 80 } 81 82 func TestExpDecaySample10(t *testing.T) { 83 rand.Seed(1) 84 s := NewExpDecaySample(100, 0.99) 85 for i := 0; i < 10; i++ { 86 s.Update(int64(i)) 87 } 88 if size := s.Count(); size != 10 { 89 t.Errorf("s.Count(): 10 != %v\n", size) 90 } 91 if size := s.Size(); size != 10 { 92 t.Errorf("s.Size(): 10 != %v\n", size) 93 } 94 if l := len(s.Values()); l != 10 { 95 t.Errorf("len(s.Values()): 10 != %v\n", l) 96 } 97 for _, v := range s.Values() { 98 if v > 10 || v < 0 { 99 t.Errorf("out of range [0, 10): %v\n", v) 100 } 101 } 102 } 103 104 func TestExpDecaySample100(t *testing.T) { 105 rand.Seed(1) 106 s := NewExpDecaySample(1000, 0.01) 107 for i := 0; i < 100; i++ { 108 s.Update(int64(i)) 109 } 110 if size := s.Count(); size != 100 { 111 t.Errorf("s.Count(): 100 != %v\n", size) 112 } 113 if size := s.Size(); size != 100 { 114 t.Errorf("s.Size(): 100 != %v\n", size) 115 } 116 if l := len(s.Values()); l != 100 { 117 t.Errorf("len(s.Values()): 100 != %v\n", l) 118 } 119 for _, v := range s.Values() { 120 if v > 100 || v < 0 { 121 t.Errorf("out of range [0, 100): %v\n", v) 122 } 123 } 124 } 125 126 func TestExpDecaySample1000(t *testing.T) { 127 rand.Seed(1) 128 s := NewExpDecaySample(100, 0.99) 129 for i := 0; i < 1000; i++ { 130 s.Update(int64(i)) 131 } 132 if size := s.Count(); size != 1000 { 133 t.Errorf("s.Count(): 1000 != %v\n", size) 134 } 135 if size := s.Size(); size != 100 { 136 t.Errorf("s.Size(): 100 != %v\n", size) 137 } 138 if l := len(s.Values()); l != 100 { 139 t.Errorf("len(s.Values()): 100 != %v\n", l) 140 } 141 for _, v := range s.Values() { 142 if v > 1000 || v < 0 { 143 t.Errorf("out of range [0, 1000): %v\n", v) 144 } 145 } 146 } 147 148 // This test makes sure that the sample's priority is not amplified by using 149 // nanosecond duration since start rather than second duration since start. 150 // The priority becomes +Inf quickly after starting if this is done, 151 // effectively freezing the set of samples until a rescale step happens. 152 func TestExpDecaySampleNanosecondRegression(t *testing.T) { 153 rand.Seed(1) 154 s := NewExpDecaySample(100, 0.99) 155 for i := 0; i < 100; i++ { 156 s.Update(10) 157 } 158 time.Sleep(1 * time.Millisecond) 159 for i := 0; i < 100; i++ { 160 s.Update(20) 161 } 162 v := s.Values() 163 avg := float64(0) 164 for i := 0; i < len(v); i++ { 165 avg += float64(v[i]) 166 } 167 avg /= float64(len(v)) 168 if avg > 16 || avg < 14 { 169 t.Errorf("out of range [14, 16]: %v\n", avg) 170 } 171 } 172 173 func TestExpDecaySampleRescale(t *testing.T) { 174 s := NewExpDecaySample(2, 0.001).(*ExpDecaySample) 175 s.update(time.Now(), 1) 176 s.update(time.Now().Add(time.Hour+time.Microsecond), 1) 177 for _, v := range s.values.Values() { 178 if v.k == 0.0 { 179 t.Fatal("v.k == 0.0") 180 } 181 } 182 } 183 184 func TestExpDecaySampleSnapshot(t *testing.T) { 185 now := time.Now() 186 rand.Seed(1) 187 s := NewExpDecaySample(100, 0.99) 188 for i := 1; i <= 10000; i++ { 189 s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i)) 190 } 191 snapshot := s.Snapshot() 192 s.Update(1) 193 testExpDecaySampleStatistics(t, snapshot) 194 } 195 196 func TestExpDecaySampleStatistics(t *testing.T) { 197 now := time.Now() 198 rand.Seed(1) 199 s := NewExpDecaySample(100, 0.99) 200 for i := 1; i <= 10000; i++ { 201 s.(*ExpDecaySample).update(now.Add(time.Duration(i)), int64(i)) 202 } 203 testExpDecaySampleStatistics(t, s) 204 } 205 206 func TestUniformSample(t *testing.T) { 207 rand.Seed(1) 208 s := NewUniformSample(100) 209 for i := 0; i < 1000; i++ { 210 s.Update(int64(i)) 211 } 212 if size := s.Count(); size != 1000 { 213 t.Errorf("s.Count(): 1000 != %v\n", size) 214 } 215 if size := s.Size(); size != 100 { 216 t.Errorf("s.Size(): 100 != %v\n", size) 217 } 218 if l := len(s.Values()); l != 100 { 219 t.Errorf("len(s.Values()): 100 != %v\n", l) 220 } 221 for _, v := range s.Values() { 222 if v > 1000 || v < 0 { 223 t.Errorf("out of range [0, 100): %v\n", v) 224 } 225 } 226 } 227 228 func TestUniformSampleIncludesTail(t *testing.T) { 229 rand.Seed(1) 230 s := NewUniformSample(100) 231 max := 100 232 for i := 0; i < max; i++ { 233 s.Update(int64(i)) 234 } 235 v := s.Values() 236 sum := 0 237 exp := (max - 1) * max / 2 238 for i := 0; i < len(v); i++ { 239 sum += int(v[i]) 240 } 241 if exp != sum { 242 t.Errorf("sum: %v != %v\n", exp, sum) 243 } 244 } 245 246 func TestUniformSampleSnapshot(t *testing.T) { 247 s := NewUniformSample(100) 248 for i := 1; i <= 10000; i++ { 249 s.Update(int64(i)) 250 } 251 snapshot := s.Snapshot() 252 s.Update(1) 253 testUniformSampleStatistics(t, snapshot) 254 } 255 256 func TestUniformSampleStatistics(t *testing.T) { 257 rand.Seed(1) 258 s := NewUniformSample(100) 259 for i := 1; i <= 10000; i++ { 260 s.Update(int64(i)) 261 } 262 testUniformSampleStatistics(t, s) 263 } 264 265 func benchmarkSample(b *testing.B, s Sample) { 266 var memStats runtime.MemStats 267 runtime.ReadMemStats(&memStats) 268 pauseTotalNs := memStats.PauseTotalNs 269 b.ResetTimer() 270 for i := 0; i < b.N; i++ { 271 s.Update(1) 272 } 273 b.StopTimer() 274 runtime.GC() 275 runtime.ReadMemStats(&memStats) 276 b.Logf("GC cost: %d ns/op", int(memStats.PauseTotalNs-pauseTotalNs)/b.N) 277 } 278 279 func testExpDecaySampleStatistics(t *testing.T, s Sample) { 280 if count := s.Count(); count != 10000 { 281 t.Errorf("s.Count(): 10000 != %v\n", count) 282 } 283 if min := s.Min(); min != 107 { 284 t.Errorf("s.Min(): 107 != %v\n", min) 285 } 286 if max := s.Max(); max != 10000 { 287 t.Errorf("s.Max(): 10000 != %v\n", max) 288 } 289 if mean := s.Mean(); mean != 4965.98 { 290 t.Errorf("s.Mean(): 4965.98 != %v\n", mean) 291 } 292 if stdDev := s.StdDev(); stdDev != 2959.825156930727 { 293 t.Errorf("s.StdDev(): 2959.825156930727 != %v\n", stdDev) 294 } 295 ps := s.Percentiles([]float64{0.5, 0.75, 0.99}) 296 if ps[0] != 4615 { 297 t.Errorf("median: 4615 != %v\n", ps[0]) 298 } 299 if ps[1] != 7672 { 300 t.Errorf("75th percentile: 7672 != %v\n", ps[1]) 301 } 302 if ps[2] != 9998.99 { 303 t.Errorf("99th percentile: 9998.99 != %v\n", ps[2]) 304 } 305 } 306 307 func testUniformSampleStatistics(t *testing.T, s Sample) { 308 if count := s.Count(); count != 10000 { 309 t.Errorf("s.Count(): 10000 != %v\n", count) 310 } 311 if min := s.Min(); min != 37 { 312 t.Errorf("s.Min(): 37 != %v\n", min) 313 } 314 if max := s.Max(); max != 9989 { 315 t.Errorf("s.Max(): 9989 != %v\n", max) 316 } 317 if mean := s.Mean(); mean != 4748.14 { 318 t.Errorf("s.Mean(): 4748.14 != %v\n", mean) 319 } 320 if stdDev := s.StdDev(); stdDev != 2826.684117548333 { 321 t.Errorf("s.StdDev(): 2826.684117548333 != %v\n", stdDev) 322 } 323 ps := s.Percentiles([]float64{0.5, 0.75, 0.99}) 324 if ps[0] != 4599 { 325 t.Errorf("median: 4599 != %v\n", ps[0]) 326 } 327 if ps[1] != 7380.5 { 328 t.Errorf("75th percentile: 7380.5 != %v\n", ps[1]) 329 } 330 if math.Abs(9986.429999999998-ps[2]) > epsilonPercentile { 331 t.Errorf("99th percentile: 9986.429999999998 != %v\n", ps[2]) 332 } 333 } 334 335 // TestUniformSampleConcurrentUpdateCount would expose data race problems with 336 // concurrent Update and Count calls on Sample when test is called with -race 337 // argument 338 func TestUniformSampleConcurrentUpdateCount(t *testing.T) { 339 if testing.Short() { 340 t.Skip("skipping in short mode") 341 } 342 s := NewUniformSample(100) 343 for i := 0; i < 100; i++ { 344 s.Update(int64(i)) 345 } 346 quit := make(chan struct{}) 347 go func() { 348 t := time.NewTicker(10 * time.Millisecond) 349 defer t.Stop() 350 for { 351 select { 352 case <-t.C: 353 s.Update(rand.Int63()) 354 case <-quit: 355 t.Stop() 356 return 357 } 358 } 359 }() 360 for i := 0; i < 1000; i++ { 361 s.Count() 362 time.Sleep(5 * time.Millisecond) 363 } 364 quit <- struct{}{} 365 }