github.com/aswedchain/aswed@v1.0.1/trie/database.go (about)

     1  // Copyright 2018 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"io"
    23  	"reflect"
    24  	"runtime"
    25  	"sync"
    26  	"time"
    27  
    28  	"github.com/VictoriaMetrics/fastcache"
    29  	"github.com/aswedchain/aswed/common"
    30  	"github.com/aswedchain/aswed/core/rawdb"
    31  	"github.com/aswedchain/aswed/ethdb"
    32  	"github.com/aswedchain/aswed/log"
    33  	"github.com/aswedchain/aswed/metrics"
    34  	"github.com/aswedchain/aswed/rlp"
    35  )
    36  
    37  var (
    38  	memcacheCleanHitMeter   = metrics.NewRegisteredMeter("trie/memcache/clean/hit", nil)
    39  	memcacheCleanMissMeter  = metrics.NewRegisteredMeter("trie/memcache/clean/miss", nil)
    40  	memcacheCleanReadMeter  = metrics.NewRegisteredMeter("trie/memcache/clean/read", nil)
    41  	memcacheCleanWriteMeter = metrics.NewRegisteredMeter("trie/memcache/clean/write", nil)
    42  
    43  	memcacheDirtyHitMeter   = metrics.NewRegisteredMeter("trie/memcache/dirty/hit", nil)
    44  	memcacheDirtyMissMeter  = metrics.NewRegisteredMeter("trie/memcache/dirty/miss", nil)
    45  	memcacheDirtyReadMeter  = metrics.NewRegisteredMeter("trie/memcache/dirty/read", nil)
    46  	memcacheDirtyWriteMeter = metrics.NewRegisteredMeter("trie/memcache/dirty/write", nil)
    47  
    48  	memcacheFlushTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/flush/time", nil)
    49  	memcacheFlushNodesMeter = metrics.NewRegisteredMeter("trie/memcache/flush/nodes", nil)
    50  	memcacheFlushSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/flush/size", nil)
    51  
    52  	memcacheGCTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/gc/time", nil)
    53  	memcacheGCNodesMeter = metrics.NewRegisteredMeter("trie/memcache/gc/nodes", nil)
    54  	memcacheGCSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/gc/size", nil)
    55  
    56  	memcacheCommitTimeTimer  = metrics.NewRegisteredResettingTimer("trie/memcache/commit/time", nil)
    57  	memcacheCommitNodesMeter = metrics.NewRegisteredMeter("trie/memcache/commit/nodes", nil)
    58  	memcacheCommitSizeMeter  = metrics.NewRegisteredMeter("trie/memcache/commit/size", nil)
    59  )
    60  
    61  // Database is an intermediate write layer between the trie data structures and
    62  // the disk database. The aim is to accumulate trie writes in-memory and only
    63  // periodically flush a couple tries to disk, garbage collecting the remainder.
    64  //
    65  // Note, the trie Database is **not** thread safe in its mutations, but it **is**
    66  // thread safe in providing individual, independent node access. The rationale
    67  // behind this split design is to provide read access to RPC handlers and sync
    68  // servers even while the trie is executing expensive garbage collection.
    69  type Database struct {
    70  	diskdb ethdb.KeyValueStore // Persistent storage for matured trie nodes
    71  
    72  	cleans  *fastcache.Cache            // GC friendly memory cache of clean node RLPs
    73  	dirties map[common.Hash]*cachedNode // Data and references relationships of dirty trie nodes
    74  	oldest  common.Hash                 // Oldest tracked node, flush-list head
    75  	newest  common.Hash                 // Newest tracked node, flush-list tail
    76  
    77  	preimages map[common.Hash][]byte // Preimages of nodes from the secure trie
    78  
    79  	gctime  time.Duration      // Time spent on garbage collection since last commit
    80  	gcnodes uint64             // Nodes garbage collected since last commit
    81  	gcsize  common.StorageSize // Data storage garbage collected since last commit
    82  
    83  	flushtime  time.Duration      // Time spent on data flushing since last commit
    84  	flushnodes uint64             // Nodes flushed since last commit
    85  	flushsize  common.StorageSize // Data storage flushed since last commit
    86  
    87  	dirtiesSize   common.StorageSize // Storage size of the dirty node cache (exc. metadata)
    88  	childrenSize  common.StorageSize // Storage size of the external children tracking
    89  	preimagesSize common.StorageSize // Storage size of the preimages cache
    90  
    91  	lock sync.RWMutex
    92  }
    93  
    94  // rawNode is a simple binary blob used to differentiate between collapsed trie
    95  // nodes and already encoded RLP binary blobs (while at the same time store them
    96  // in the same cache fields).
    97  type rawNode []byte
    98  
    99  func (n rawNode) cache() (hashNode, bool)   { panic("this should never end up in a live trie") }
   100  func (n rawNode) fstring(ind string) string { panic("this should never end up in a live trie") }
   101  
   102  func (n rawNode) EncodeRLP(w io.Writer) error {
   103  	_, err := w.Write([]byte(n))
   104  	return err
   105  }
   106  
   107  // rawFullNode represents only the useful data content of a full node, with the
   108  // caches and flags stripped out to minimize its data storage. This type honors
   109  // the same RLP encoding as the original parent.
   110  type rawFullNode [17]node
   111  
   112  func (n rawFullNode) cache() (hashNode, bool)   { panic("this should never end up in a live trie") }
   113  func (n rawFullNode) fstring(ind string) string { panic("this should never end up in a live trie") }
   114  
   115  func (n rawFullNode) EncodeRLP(w io.Writer) error {
   116  	var nodes [17]node
   117  
   118  	for i, child := range n {
   119  		if child != nil {
   120  			nodes[i] = child
   121  		} else {
   122  			nodes[i] = nilValueNode
   123  		}
   124  	}
   125  	return rlp.Encode(w, nodes)
   126  }
   127  
   128  // rawShortNode represents only the useful data content of a short node, with the
   129  // caches and flags stripped out to minimize its data storage. This type honors
   130  // the same RLP encoding as the original parent.
   131  type rawShortNode struct {
   132  	Key []byte
   133  	Val node
   134  }
   135  
   136  func (n rawShortNode) cache() (hashNode, bool)   { panic("this should never end up in a live trie") }
   137  func (n rawShortNode) fstring(ind string) string { panic("this should never end up in a live trie") }
   138  
   139  // cachedNode is all the information we know about a single cached trie node
   140  // in the memory database write layer.
   141  type cachedNode struct {
   142  	node node   // Cached collapsed trie node, or raw rlp data
   143  	size uint16 // Byte size of the useful cached data
   144  
   145  	parents  uint32                 // Number of live nodes referencing this one
   146  	children map[common.Hash]uint16 // External children referenced by this node
   147  
   148  	flushPrev common.Hash // Previous node in the flush-list
   149  	flushNext common.Hash // Next node in the flush-list
   150  }
   151  
   152  // cachedNodeSize is the raw size of a cachedNode data structure without any
   153  // node data included. It's an approximate size, but should be a lot better
   154  // than not counting them.
   155  var cachedNodeSize = int(reflect.TypeOf(cachedNode{}).Size())
   156  
   157  // cachedNodeChildrenSize is the raw size of an initialized but empty external
   158  // reference map.
   159  const cachedNodeChildrenSize = 48
   160  
   161  // rlp returns the raw rlp encoded blob of the cached trie node, either directly
   162  // from the cache, or by regenerating it from the collapsed node.
   163  func (n *cachedNode) rlp() []byte {
   164  	if node, ok := n.node.(rawNode); ok {
   165  		return node
   166  	}
   167  	blob, err := rlp.EncodeToBytes(n.node)
   168  	if err != nil {
   169  		panic(err)
   170  	}
   171  	return blob
   172  }
   173  
   174  // obj returns the decoded and expanded trie node, either directly from the cache,
   175  // or by regenerating it from the rlp encoded blob.
   176  func (n *cachedNode) obj(hash common.Hash) node {
   177  	if node, ok := n.node.(rawNode); ok {
   178  		return mustDecodeNode(hash[:], node)
   179  	}
   180  	return expandNode(hash[:], n.node)
   181  }
   182  
   183  // forChilds invokes the callback for all the tracked children of this node,
   184  // both the implicit ones from inside the node as well as the explicit ones
   185  // from outside the node.
   186  func (n *cachedNode) forChilds(onChild func(hash common.Hash)) {
   187  	for child := range n.children {
   188  		onChild(child)
   189  	}
   190  	if _, ok := n.node.(rawNode); !ok {
   191  		forGatherChildren(n.node, onChild)
   192  	}
   193  }
   194  
   195  // forGatherChildren traverses the node hierarchy of a collapsed storage node and
   196  // invokes the callback for all the hashnode children.
   197  func forGatherChildren(n node, onChild func(hash common.Hash)) {
   198  	switch n := n.(type) {
   199  	case *rawShortNode:
   200  		forGatherChildren(n.Val, onChild)
   201  	case rawFullNode:
   202  		for i := 0; i < 16; i++ {
   203  			forGatherChildren(n[i], onChild)
   204  		}
   205  	case hashNode:
   206  		onChild(common.BytesToHash(n))
   207  	case valueNode, nil, rawNode:
   208  	default:
   209  		panic(fmt.Sprintf("unknown node type: %T", n))
   210  	}
   211  }
   212  
   213  // simplifyNode traverses the hierarchy of an expanded memory node and discards
   214  // all the internal caches, returning a node that only contains the raw data.
   215  func simplifyNode(n node) node {
   216  	switch n := n.(type) {
   217  	case *shortNode:
   218  		// Short nodes discard the flags and cascade
   219  		return &rawShortNode{Key: n.Key, Val: simplifyNode(n.Val)}
   220  
   221  	case *fullNode:
   222  		// Full nodes discard the flags and cascade
   223  		node := rawFullNode(n.Children)
   224  		for i := 0; i < len(node); i++ {
   225  			if node[i] != nil {
   226  				node[i] = simplifyNode(node[i])
   227  			}
   228  		}
   229  		return node
   230  
   231  	case valueNode, hashNode, rawNode:
   232  		return n
   233  
   234  	default:
   235  		panic(fmt.Sprintf("unknown node type: %T", n))
   236  	}
   237  }
   238  
   239  // expandNode traverses the node hierarchy of a collapsed storage node and converts
   240  // all fields and keys into expanded memory form.
   241  func expandNode(hash hashNode, n node) node {
   242  	switch n := n.(type) {
   243  	case *rawShortNode:
   244  		// Short nodes need key and child expansion
   245  		return &shortNode{
   246  			Key: compactToHex(n.Key),
   247  			Val: expandNode(nil, n.Val),
   248  			flags: nodeFlag{
   249  				hash: hash,
   250  			},
   251  		}
   252  
   253  	case rawFullNode:
   254  		// Full nodes need child expansion
   255  		node := &fullNode{
   256  			flags: nodeFlag{
   257  				hash: hash,
   258  			},
   259  		}
   260  		for i := 0; i < len(node.Children); i++ {
   261  			if n[i] != nil {
   262  				node.Children[i] = expandNode(nil, n[i])
   263  			}
   264  		}
   265  		return node
   266  
   267  	case valueNode, hashNode:
   268  		return n
   269  
   270  	default:
   271  		panic(fmt.Sprintf("unknown node type: %T", n))
   272  	}
   273  }
   274  
   275  // NewDatabase creates a new trie database to store ephemeral trie content before
   276  // its written out to disk or garbage collected. No read cache is created, so all
   277  // data retrievals will hit the underlying disk database.
   278  func NewDatabase(diskdb ethdb.KeyValueStore) *Database {
   279  	return NewDatabaseWithCache(diskdb, 0, "")
   280  }
   281  
   282  // NewDatabaseWithCache creates a new trie database to store ephemeral trie content
   283  // before its written out to disk or garbage collected. It also acts as a read cache
   284  // for nodes loaded from disk.
   285  func NewDatabaseWithCache(diskdb ethdb.KeyValueStore, cache int, journal string) *Database {
   286  	var cleans *fastcache.Cache
   287  	if cache > 0 {
   288  		if journal == "" {
   289  			cleans = fastcache.New(cache * 1024 * 1024)
   290  		} else {
   291  			cleans = fastcache.LoadFromFileOrNew(journal, cache*1024*1024)
   292  		}
   293  	}
   294  	return &Database{
   295  		diskdb: diskdb,
   296  		cleans: cleans,
   297  		dirties: map[common.Hash]*cachedNode{{}: {
   298  			children: make(map[common.Hash]uint16),
   299  		}},
   300  		preimages: make(map[common.Hash][]byte),
   301  	}
   302  }
   303  
   304  // DiskDB retrieves the persistent storage backing the trie database.
   305  func (db *Database) DiskDB() ethdb.KeyValueStore {
   306  	return db.diskdb
   307  }
   308  
   309  // insert inserts a collapsed trie node into the memory database.
   310  // The blob size must be specified to allow proper size tracking.
   311  // All nodes inserted by this function will be reference tracked
   312  // and in theory should only used for **trie nodes** insertion.
   313  func (db *Database) insert(hash common.Hash, size int, node node) {
   314  	// If the node's already cached, skip
   315  	if _, ok := db.dirties[hash]; ok {
   316  		return
   317  	}
   318  	memcacheDirtyWriteMeter.Mark(int64(size))
   319  
   320  	// Create the cached entry for this node
   321  	entry := &cachedNode{
   322  		node:      simplifyNode(node),
   323  		size:      uint16(size),
   324  		flushPrev: db.newest,
   325  	}
   326  	entry.forChilds(func(child common.Hash) {
   327  		if c := db.dirties[child]; c != nil {
   328  			c.parents++
   329  		}
   330  	})
   331  	db.dirties[hash] = entry
   332  
   333  	// Update the flush-list endpoints
   334  	if db.oldest == (common.Hash{}) {
   335  		db.oldest, db.newest = hash, hash
   336  	} else {
   337  		db.dirties[db.newest].flushNext, db.newest = hash, hash
   338  	}
   339  	db.dirtiesSize += common.StorageSize(common.HashLength + entry.size)
   340  }
   341  
   342  // insertPreimage writes a new trie node pre-image to the memory database if it's
   343  // yet unknown. The method will NOT make a copy of the slice,
   344  // only use if the preimage will NOT be changed later on.
   345  //
   346  // Note, this method assumes that the database's lock is held!
   347  func (db *Database) insertPreimage(hash common.Hash, preimage []byte) {
   348  	if _, ok := db.preimages[hash]; ok {
   349  		return
   350  	}
   351  	db.preimages[hash] = preimage
   352  	db.preimagesSize += common.StorageSize(common.HashLength + len(preimage))
   353  }
   354  
   355  // node retrieves a cached trie node from memory, or returns nil if none can be
   356  // found in the memory cache.
   357  func (db *Database) node(hash common.Hash) node {
   358  	// Retrieve the node from the clean cache if available
   359  	if db.cleans != nil {
   360  		if enc := db.cleans.Get(nil, hash[:]); enc != nil {
   361  			memcacheCleanHitMeter.Mark(1)
   362  			memcacheCleanReadMeter.Mark(int64(len(enc)))
   363  			return mustDecodeNode(hash[:], enc)
   364  		}
   365  	}
   366  	// Retrieve the node from the dirty cache if available
   367  	db.lock.RLock()
   368  	dirty := db.dirties[hash]
   369  	db.lock.RUnlock()
   370  
   371  	if dirty != nil {
   372  		memcacheDirtyHitMeter.Mark(1)
   373  		memcacheDirtyReadMeter.Mark(int64(dirty.size))
   374  		return dirty.obj(hash)
   375  	}
   376  	memcacheDirtyMissMeter.Mark(1)
   377  
   378  	// Content unavailable in memory, attempt to retrieve from disk
   379  	enc, err := db.diskdb.Get(hash[:])
   380  	if err != nil || enc == nil {
   381  		return nil
   382  	}
   383  	if db.cleans != nil {
   384  		db.cleans.Set(hash[:], enc)
   385  		memcacheCleanMissMeter.Mark(1)
   386  		memcacheCleanWriteMeter.Mark(int64(len(enc)))
   387  	}
   388  	return mustDecodeNode(hash[:], enc)
   389  }
   390  
   391  // Node retrieves an encoded cached trie node from memory. If it cannot be found
   392  // cached, the method queries the persistent database for the content.
   393  func (db *Database) Node(hash common.Hash) ([]byte, error) {
   394  	// It doesn't make sense to retrieve the metaroot
   395  	if hash == (common.Hash{}) {
   396  		return nil, errors.New("not found")
   397  	}
   398  	// Retrieve the node from the clean cache if available
   399  	if db.cleans != nil {
   400  		if enc := db.cleans.Get(nil, hash[:]); enc != nil {
   401  			memcacheCleanHitMeter.Mark(1)
   402  			memcacheCleanReadMeter.Mark(int64(len(enc)))
   403  			return enc, nil
   404  		}
   405  	}
   406  	// Retrieve the node from the dirty cache if available
   407  	db.lock.RLock()
   408  	dirty := db.dirties[hash]
   409  	db.lock.RUnlock()
   410  
   411  	if dirty != nil {
   412  		memcacheDirtyHitMeter.Mark(1)
   413  		memcacheDirtyReadMeter.Mark(int64(dirty.size))
   414  		return dirty.rlp(), nil
   415  	}
   416  	memcacheDirtyMissMeter.Mark(1)
   417  
   418  	// Content unavailable in memory, attempt to retrieve from disk
   419  	enc := rawdb.ReadTrieNode(db.diskdb, hash)
   420  	if len(enc) != 0 {
   421  		if db.cleans != nil {
   422  			db.cleans.Set(hash[:], enc)
   423  			memcacheCleanMissMeter.Mark(1)
   424  			memcacheCleanWriteMeter.Mark(int64(len(enc)))
   425  		}
   426  		return enc, nil
   427  	}
   428  	return nil, errors.New("not found")
   429  }
   430  
   431  // preimage retrieves a cached trie node pre-image from memory. If it cannot be
   432  // found cached, the method queries the persistent database for the content.
   433  func (db *Database) preimage(hash common.Hash) []byte {
   434  	// Retrieve the node from cache if available
   435  	db.lock.RLock()
   436  	preimage := db.preimages[hash]
   437  	db.lock.RUnlock()
   438  
   439  	if preimage != nil {
   440  		return preimage
   441  	}
   442  	return rawdb.ReadPreimage(db.diskdb, hash)
   443  }
   444  
   445  // Nodes retrieves the hashes of all the nodes cached within the memory database.
   446  // This method is extremely expensive and should only be used to validate internal
   447  // states in test code.
   448  func (db *Database) Nodes() []common.Hash {
   449  	db.lock.RLock()
   450  	defer db.lock.RUnlock()
   451  
   452  	var hashes = make([]common.Hash, 0, len(db.dirties))
   453  	for hash := range db.dirties {
   454  		if hash != (common.Hash{}) { // Special case for "root" references/nodes
   455  			hashes = append(hashes, hash)
   456  		}
   457  	}
   458  	return hashes
   459  }
   460  
   461  // Reference adds a new reference from a parent node to a child node.
   462  // This function is used to add reference between internal trie node
   463  // and external node(e.g. storage trie root), all internal trie nodes
   464  // are referenced together by database itself.
   465  func (db *Database) Reference(child common.Hash, parent common.Hash) {
   466  	db.lock.Lock()
   467  	defer db.lock.Unlock()
   468  
   469  	db.reference(child, parent)
   470  }
   471  
   472  // reference is the private locked version of Reference.
   473  func (db *Database) reference(child common.Hash, parent common.Hash) {
   474  	// If the node does not exist, it's a node pulled from disk, skip
   475  	node, ok := db.dirties[child]
   476  	if !ok {
   477  		return
   478  	}
   479  	// If the reference already exists, only duplicate for roots
   480  	if db.dirties[parent].children == nil {
   481  		db.dirties[parent].children = make(map[common.Hash]uint16)
   482  		db.childrenSize += cachedNodeChildrenSize
   483  	} else if _, ok = db.dirties[parent].children[child]; ok && parent != (common.Hash{}) {
   484  		return
   485  	}
   486  	node.parents++
   487  	db.dirties[parent].children[child]++
   488  	if db.dirties[parent].children[child] == 1 {
   489  		db.childrenSize += common.HashLength + 2 // uint16 counter
   490  	}
   491  }
   492  
   493  // Dereference removes an existing reference from a root node.
   494  func (db *Database) Dereference(root common.Hash) {
   495  	// Sanity check to ensure that the meta-root is not removed
   496  	if root == (common.Hash{}) {
   497  		log.Error("Attempted to dereference the trie cache meta root")
   498  		return
   499  	}
   500  	db.lock.Lock()
   501  	defer db.lock.Unlock()
   502  
   503  	nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
   504  	db.dereference(root, common.Hash{})
   505  
   506  	db.gcnodes += uint64(nodes - len(db.dirties))
   507  	db.gcsize += storage - db.dirtiesSize
   508  	db.gctime += time.Since(start)
   509  
   510  	memcacheGCTimeTimer.Update(time.Since(start))
   511  	memcacheGCSizeMeter.Mark(int64(storage - db.dirtiesSize))
   512  	memcacheGCNodesMeter.Mark(int64(nodes - len(db.dirties)))
   513  
   514  	log.Debug("Dereferenced trie from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
   515  		"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   516  }
   517  
   518  // dereference is the private locked version of Dereference.
   519  func (db *Database) dereference(child common.Hash, parent common.Hash) {
   520  	// Dereference the parent-child
   521  	node := db.dirties[parent]
   522  
   523  	if node.children != nil && node.children[child] > 0 {
   524  		node.children[child]--
   525  		if node.children[child] == 0 {
   526  			delete(node.children, child)
   527  			db.childrenSize -= (common.HashLength + 2) // uint16 counter
   528  		}
   529  	}
   530  	// If the child does not exist, it's a previously committed node.
   531  	node, ok := db.dirties[child]
   532  	if !ok {
   533  		return
   534  	}
   535  	// If there are no more references to the child, delete it and cascade
   536  	if node.parents > 0 {
   537  		// This is a special cornercase where a node loaded from disk (i.e. not in the
   538  		// memcache any more) gets reinjected as a new node (short node split into full,
   539  		// then reverted into short), causing a cached node to have no parents. That is
   540  		// no problem in itself, but don't make maxint parents out of it.
   541  		node.parents--
   542  	}
   543  	if node.parents == 0 {
   544  		// Remove the node from the flush-list
   545  		switch child {
   546  		case db.oldest:
   547  			db.oldest = node.flushNext
   548  			db.dirties[node.flushNext].flushPrev = common.Hash{}
   549  		case db.newest:
   550  			db.newest = node.flushPrev
   551  			db.dirties[node.flushPrev].flushNext = common.Hash{}
   552  		default:
   553  			db.dirties[node.flushPrev].flushNext = node.flushNext
   554  			db.dirties[node.flushNext].flushPrev = node.flushPrev
   555  		}
   556  		// Dereference all children and delete the node
   557  		node.forChilds(func(hash common.Hash) {
   558  			db.dereference(hash, child)
   559  		})
   560  		delete(db.dirties, child)
   561  		db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   562  		if node.children != nil {
   563  			db.childrenSize -= cachedNodeChildrenSize
   564  		}
   565  	}
   566  }
   567  
   568  // Cap iteratively flushes old but still referenced trie nodes until the total
   569  // memory usage goes below the given threshold.
   570  //
   571  // Note, this method is a non-synchronized mutator. It is unsafe to call this
   572  // concurrently with other mutators.
   573  func (db *Database) Cap(limit common.StorageSize) error {
   574  	// Create a database batch to flush persistent data out. It is important that
   575  	// outside code doesn't see an inconsistent state (referenced data removed from
   576  	// memory cache during commit but not yet in persistent storage). This is ensured
   577  	// by only uncaching existing data when the database write finalizes.
   578  	nodes, storage, start := len(db.dirties), db.dirtiesSize, time.Now()
   579  	batch := db.diskdb.NewBatch()
   580  
   581  	// db.dirtiesSize only contains the useful data in the cache, but when reporting
   582  	// the total memory consumption, the maintenance metadata is also needed to be
   583  	// counted.
   584  	size := db.dirtiesSize + common.StorageSize((len(db.dirties)-1)*cachedNodeSize)
   585  	size += db.childrenSize - common.StorageSize(len(db.dirties[common.Hash{}].children)*(common.HashLength+2))
   586  
   587  	// If the preimage cache got large enough, push to disk. If it's still small
   588  	// leave for later to deduplicate writes.
   589  	flushPreimages := db.preimagesSize > 4*1024*1024
   590  	if flushPreimages {
   591  		rawdb.WritePreimages(batch, db.preimages)
   592  		if batch.ValueSize() > ethdb.IdealBatchSize {
   593  			if err := batch.Write(); err != nil {
   594  				return err
   595  			}
   596  			batch.Reset()
   597  		}
   598  	}
   599  	// Keep committing nodes from the flush-list until we're below allowance
   600  	oldest := db.oldest
   601  	for size > limit && oldest != (common.Hash{}) {
   602  		// Fetch the oldest referenced node and push into the batch
   603  		node := db.dirties[oldest]
   604  		rawdb.WriteTrieNode(batch, oldest, node.rlp())
   605  
   606  		// If we exceeded the ideal batch size, commit and reset
   607  		if batch.ValueSize() >= ethdb.IdealBatchSize {
   608  			if err := batch.Write(); err != nil {
   609  				log.Error("Failed to write flush list to disk", "err", err)
   610  				return err
   611  			}
   612  			batch.Reset()
   613  		}
   614  		// Iterate to the next flush item, or abort if the size cap was achieved. Size
   615  		// is the total size, including the useful cached data (hash -> blob), the
   616  		// cache item metadata, as well as external children mappings.
   617  		size -= common.StorageSize(common.HashLength + int(node.size) + cachedNodeSize)
   618  		if node.children != nil {
   619  			size -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
   620  		}
   621  		oldest = node.flushNext
   622  	}
   623  	// Flush out any remainder data from the last batch
   624  	if err := batch.Write(); err != nil {
   625  		log.Error("Failed to write flush list to disk", "err", err)
   626  		return err
   627  	}
   628  	// Write successful, clear out the flushed data
   629  	db.lock.Lock()
   630  	defer db.lock.Unlock()
   631  
   632  	if flushPreimages {
   633  		db.preimages, db.preimagesSize = make(map[common.Hash][]byte), 0
   634  	}
   635  	for db.oldest != oldest {
   636  		node := db.dirties[db.oldest]
   637  		delete(db.dirties, db.oldest)
   638  		db.oldest = node.flushNext
   639  
   640  		db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   641  		if node.children != nil {
   642  			db.childrenSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
   643  		}
   644  	}
   645  	if db.oldest != (common.Hash{}) {
   646  		db.dirties[db.oldest].flushPrev = common.Hash{}
   647  	}
   648  	db.flushnodes += uint64(nodes - len(db.dirties))
   649  	db.flushsize += storage - db.dirtiesSize
   650  	db.flushtime += time.Since(start)
   651  
   652  	memcacheFlushTimeTimer.Update(time.Since(start))
   653  	memcacheFlushSizeMeter.Mark(int64(storage - db.dirtiesSize))
   654  	memcacheFlushNodesMeter.Mark(int64(nodes - len(db.dirties)))
   655  
   656  	log.Debug("Persisted nodes from memory database", "nodes", nodes-len(db.dirties), "size", storage-db.dirtiesSize, "time", time.Since(start),
   657  		"flushnodes", db.flushnodes, "flushsize", db.flushsize, "flushtime", db.flushtime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   658  
   659  	return nil
   660  }
   661  
   662  // Commit iterates over all the children of a particular node, writes them out
   663  // to disk, forcefully tearing down all references in both directions. As a side
   664  // effect, all pre-images accumulated up to this point are also written.
   665  //
   666  // Note, this method is a non-synchronized mutator. It is unsafe to call this
   667  // concurrently with other mutators.
   668  func (db *Database) Commit(node common.Hash, report bool, callback func(common.Hash)) error {
   669  	// Create a database batch to flush persistent data out. It is important that
   670  	// outside code doesn't see an inconsistent state (referenced data removed from
   671  	// memory cache during commit but not yet in persistent storage). This is ensured
   672  	// by only uncaching existing data when the database write finalizes.
   673  	start := time.Now()
   674  	batch := db.diskdb.NewBatch()
   675  
   676  	// Move all of the accumulated preimages into a write batch
   677  	rawdb.WritePreimages(batch, db.preimages)
   678  	if batch.ValueSize() > ethdb.IdealBatchSize {
   679  		if err := batch.Write(); err != nil {
   680  			return err
   681  		}
   682  		batch.Reset()
   683  	}
   684  	// Since we're going to replay trie node writes into the clean cache, flush out
   685  	// any batched pre-images before continuing.
   686  	if err := batch.Write(); err != nil {
   687  		return err
   688  	}
   689  	batch.Reset()
   690  
   691  	// Move the trie itself into the batch, flushing if enough data is accumulated
   692  	nodes, storage := len(db.dirties), db.dirtiesSize
   693  
   694  	uncacher := &cleaner{db}
   695  	if err := db.commit(node, batch, uncacher, callback); err != nil {
   696  		log.Error("Failed to commit trie from trie database", "err", err)
   697  		return err
   698  	}
   699  	// Trie mostly committed to disk, flush any batch leftovers
   700  	if err := batch.Write(); err != nil {
   701  		log.Error("Failed to write trie to disk", "err", err)
   702  		return err
   703  	}
   704  	// Uncache any leftovers in the last batch
   705  	db.lock.Lock()
   706  	defer db.lock.Unlock()
   707  
   708  	batch.Replay(uncacher)
   709  	batch.Reset()
   710  
   711  	// Reset the storage counters and bumpd metrics
   712  	db.preimages, db.preimagesSize = make(map[common.Hash][]byte), 0
   713  
   714  	memcacheCommitTimeTimer.Update(time.Since(start))
   715  	memcacheCommitSizeMeter.Mark(int64(storage - db.dirtiesSize))
   716  	memcacheCommitNodesMeter.Mark(int64(nodes - len(db.dirties)))
   717  
   718  	logger := log.Info
   719  	if !report {
   720  		logger = log.Debug
   721  	}
   722  	logger("Persisted trie from memory database", "nodes", nodes-len(db.dirties)+int(db.flushnodes), "size", storage-db.dirtiesSize+db.flushsize, "time", time.Since(start)+db.flushtime,
   723  		"gcnodes", db.gcnodes, "gcsize", db.gcsize, "gctime", db.gctime, "livenodes", len(db.dirties), "livesize", db.dirtiesSize)
   724  
   725  	// Reset the garbage collection statistics
   726  	db.gcnodes, db.gcsize, db.gctime = 0, 0, 0
   727  	db.flushnodes, db.flushsize, db.flushtime = 0, 0, 0
   728  
   729  	return nil
   730  }
   731  
   732  // commit is the private locked version of Commit.
   733  func (db *Database) commit(hash common.Hash, batch ethdb.Batch, uncacher *cleaner, callback func(common.Hash)) error {
   734  	// If the node does not exist, it's a previously committed node
   735  	node, ok := db.dirties[hash]
   736  	if !ok {
   737  		return nil
   738  	}
   739  	var err error
   740  	node.forChilds(func(child common.Hash) {
   741  		if err == nil {
   742  			err = db.commit(child, batch, uncacher, callback)
   743  		}
   744  	})
   745  	if err != nil {
   746  		return err
   747  	}
   748  	// If we've reached an optimal batch size, commit and start over
   749  	rawdb.WriteTrieNode(batch, hash, node.rlp())
   750  	if callback != nil {
   751  		callback(hash)
   752  	}
   753  	if batch.ValueSize() >= ethdb.IdealBatchSize {
   754  		if err := batch.Write(); err != nil {
   755  			return err
   756  		}
   757  		db.lock.Lock()
   758  		batch.Replay(uncacher)
   759  		batch.Reset()
   760  		db.lock.Unlock()
   761  	}
   762  	return nil
   763  }
   764  
   765  // cleaner is a database batch replayer that takes a batch of write operations
   766  // and cleans up the trie database from anything written to disk.
   767  type cleaner struct {
   768  	db *Database
   769  }
   770  
   771  // Put reacts to database writes and implements dirty data uncaching. This is the
   772  // post-processing step of a commit operation where the already persisted trie is
   773  // removed from the dirty cache and moved into the clean cache. The reason behind
   774  // the two-phase commit is to ensure ensure data availability while moving from
   775  // memory to disk.
   776  func (c *cleaner) Put(key []byte, rlp []byte) error {
   777  	hash := common.BytesToHash(key)
   778  
   779  	// If the node does not exist, we're done on this path
   780  	node, ok := c.db.dirties[hash]
   781  	if !ok {
   782  		return nil
   783  	}
   784  	// Node still exists, remove it from the flush-list
   785  	switch hash {
   786  	case c.db.oldest:
   787  		c.db.oldest = node.flushNext
   788  		c.db.dirties[node.flushNext].flushPrev = common.Hash{}
   789  	case c.db.newest:
   790  		c.db.newest = node.flushPrev
   791  		c.db.dirties[node.flushPrev].flushNext = common.Hash{}
   792  	default:
   793  		c.db.dirties[node.flushPrev].flushNext = node.flushNext
   794  		c.db.dirties[node.flushNext].flushPrev = node.flushPrev
   795  	}
   796  	// Remove the node from the dirty cache
   797  	delete(c.db.dirties, hash)
   798  	c.db.dirtiesSize -= common.StorageSize(common.HashLength + int(node.size))
   799  	if node.children != nil {
   800  		c.db.dirtiesSize -= common.StorageSize(cachedNodeChildrenSize + len(node.children)*(common.HashLength+2))
   801  	}
   802  	// Move the flushed node into the clean cache to prevent insta-reloads
   803  	if c.db.cleans != nil {
   804  		c.db.cleans.Set(hash[:], rlp)
   805  		memcacheCleanWriteMeter.Mark(int64(len(rlp)))
   806  	}
   807  	return nil
   808  }
   809  
   810  func (c *cleaner) Delete(key []byte) error {
   811  	panic("not implemented")
   812  }
   813  
   814  // Size returns the current storage size of the memory cache in front of the
   815  // persistent database layer.
   816  func (db *Database) Size() (common.StorageSize, common.StorageSize) {
   817  	db.lock.RLock()
   818  	defer db.lock.RUnlock()
   819  
   820  	// db.dirtiesSize only contains the useful data in the cache, but when reporting
   821  	// the total memory consumption, the maintenance metadata is also needed to be
   822  	// counted.
   823  	var metadataSize = common.StorageSize((len(db.dirties) - 1) * cachedNodeSize)
   824  	var metarootRefs = common.StorageSize(len(db.dirties[common.Hash{}].children) * (common.HashLength + 2))
   825  	return db.dirtiesSize + db.childrenSize + metadataSize - metarootRefs, db.preimagesSize
   826  }
   827  
   828  // saveCache saves clean state cache to given directory path
   829  // using specified CPU cores.
   830  func (db *Database) saveCache(dir string, threads int) error {
   831  	if db.cleans == nil {
   832  		return nil
   833  	}
   834  	log.Info("Writing clean trie cache to disk", "path", dir, "threads", threads)
   835  
   836  	start := time.Now()
   837  	err := db.cleans.SaveToFileConcurrent(dir, threads)
   838  	if err != nil {
   839  		log.Error("Failed to persist clean trie cache", "error", err)
   840  		return err
   841  	}
   842  	log.Info("Persisted the clean trie cache", "path", dir, "elapsed", common.PrettyDuration(time.Since(start)))
   843  	return nil
   844  }
   845  
   846  // SaveCache atomically saves fast cache data to the given dir using all
   847  // available CPU cores.
   848  func (db *Database) SaveCache(dir string) error {
   849  	return db.saveCache(dir, runtime.GOMAXPROCS(0))
   850  }
   851  
   852  // SaveCachePeriodically atomically saves fast cache data to the given dir with
   853  // the specified interval. All dump operation will only use a single CPU core.
   854  func (db *Database) SaveCachePeriodically(dir string, interval time.Duration, stopCh <-chan struct{}) {
   855  	ticker := time.NewTicker(interval)
   856  	defer ticker.Stop()
   857  
   858  	for {
   859  		select {
   860  		case <-ticker.C:
   861  			db.saveCache(dir, 1)
   862  		case <-stopCh:
   863  			return
   864  		}
   865  	}
   866  }