github.com/authcall/reference-optimistic-geth@v0.0.0-20220816224302-06313bfeb8d2/internal/ethapi/api.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package ethapi 18 19 import ( 20 "context" 21 "errors" 22 "fmt" 23 "math/big" 24 "strings" 25 "time" 26 27 "github.com/davecgh/go-spew/spew" 28 "github.com/ethereum/go-ethereum/accounts" 29 "github.com/ethereum/go-ethereum/accounts/abi" 30 "github.com/ethereum/go-ethereum/accounts/keystore" 31 "github.com/ethereum/go-ethereum/accounts/scwallet" 32 "github.com/ethereum/go-ethereum/common" 33 "github.com/ethereum/go-ethereum/common/hexutil" 34 "github.com/ethereum/go-ethereum/common/math" 35 "github.com/ethereum/go-ethereum/consensus/ethash" 36 "github.com/ethereum/go-ethereum/consensus/misc" 37 "github.com/ethereum/go-ethereum/core" 38 "github.com/ethereum/go-ethereum/core/state" 39 "github.com/ethereum/go-ethereum/core/types" 40 "github.com/ethereum/go-ethereum/core/vm" 41 "github.com/ethereum/go-ethereum/crypto" 42 "github.com/ethereum/go-ethereum/eth/tracers/logger" 43 "github.com/ethereum/go-ethereum/log" 44 "github.com/ethereum/go-ethereum/p2p" 45 "github.com/ethereum/go-ethereum/params" 46 "github.com/ethereum/go-ethereum/rlp" 47 "github.com/ethereum/go-ethereum/rpc" 48 "github.com/tyler-smith/go-bip39" 49 ) 50 51 // EthereumAPI provides an API to access Ethereum related information. 52 type EthereumAPI struct { 53 b Backend 54 } 55 56 // NewEthereumAPI creates a new Ethereum protocol API. 57 func NewEthereumAPI(b Backend) *EthereumAPI { 58 return &EthereumAPI{b} 59 } 60 61 // GasPrice returns a suggestion for a gas price for legacy transactions. 62 func (s *EthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) { 63 tipcap, err := s.b.SuggestGasTipCap(ctx) 64 if err != nil { 65 return nil, err 66 } 67 if head := s.b.CurrentHeader(); head.BaseFee != nil { 68 tipcap.Add(tipcap, head.BaseFee) 69 } 70 return (*hexutil.Big)(tipcap), err 71 } 72 73 // MaxPriorityFeePerGas returns a suggestion for a gas tip cap for dynamic fee transactions. 74 func (s *EthereumAPI) MaxPriorityFeePerGas(ctx context.Context) (*hexutil.Big, error) { 75 tipcap, err := s.b.SuggestGasTipCap(ctx) 76 if err != nil { 77 return nil, err 78 } 79 return (*hexutil.Big)(tipcap), err 80 } 81 82 type feeHistoryResult struct { 83 OldestBlock *hexutil.Big `json:"oldestBlock"` 84 Reward [][]*hexutil.Big `json:"reward,omitempty"` 85 BaseFee []*hexutil.Big `json:"baseFeePerGas,omitempty"` 86 GasUsedRatio []float64 `json:"gasUsedRatio"` 87 } 88 89 // FeeHistory returns the fee market history. 90 func (s *EthereumAPI) FeeHistory(ctx context.Context, blockCount rpc.DecimalOrHex, lastBlock rpc.BlockNumber, rewardPercentiles []float64) (*feeHistoryResult, error) { 91 oldest, reward, baseFee, gasUsed, err := s.b.FeeHistory(ctx, int(blockCount), lastBlock, rewardPercentiles) 92 if err != nil { 93 return nil, err 94 } 95 results := &feeHistoryResult{ 96 OldestBlock: (*hexutil.Big)(oldest), 97 GasUsedRatio: gasUsed, 98 } 99 if reward != nil { 100 results.Reward = make([][]*hexutil.Big, len(reward)) 101 for i, w := range reward { 102 results.Reward[i] = make([]*hexutil.Big, len(w)) 103 for j, v := range w { 104 results.Reward[i][j] = (*hexutil.Big)(v) 105 } 106 } 107 } 108 if baseFee != nil { 109 results.BaseFee = make([]*hexutil.Big, len(baseFee)) 110 for i, v := range baseFee { 111 results.BaseFee[i] = (*hexutil.Big)(v) 112 } 113 } 114 return results, nil 115 } 116 117 // Syncing returns false in case the node is currently not syncing with the network. It can be up to date or has not 118 // yet received the latest block headers from its pears. In case it is synchronizing: 119 // - startingBlock: block number this node started to synchronise from 120 // - currentBlock: block number this node is currently importing 121 // - highestBlock: block number of the highest block header this node has received from peers 122 // - pulledStates: number of state entries processed until now 123 // - knownStates: number of known state entries that still need to be pulled 124 func (s *EthereumAPI) Syncing() (interface{}, error) { 125 progress := s.b.SyncProgress() 126 127 // Return not syncing if the synchronisation already completed 128 if progress.CurrentBlock >= progress.HighestBlock { 129 return false, nil 130 } 131 // Otherwise gather the block sync stats 132 return map[string]interface{}{ 133 "startingBlock": hexutil.Uint64(progress.StartingBlock), 134 "currentBlock": hexutil.Uint64(progress.CurrentBlock), 135 "highestBlock": hexutil.Uint64(progress.HighestBlock), 136 "syncedAccounts": hexutil.Uint64(progress.SyncedAccounts), 137 "syncedAccountBytes": hexutil.Uint64(progress.SyncedAccountBytes), 138 "syncedBytecodes": hexutil.Uint64(progress.SyncedBytecodes), 139 "syncedBytecodeBytes": hexutil.Uint64(progress.SyncedBytecodeBytes), 140 "syncedStorage": hexutil.Uint64(progress.SyncedStorage), 141 "syncedStorageBytes": hexutil.Uint64(progress.SyncedStorageBytes), 142 "healedTrienodes": hexutil.Uint64(progress.HealedTrienodes), 143 "healedTrienodeBytes": hexutil.Uint64(progress.HealedTrienodeBytes), 144 "healedBytecodes": hexutil.Uint64(progress.HealedBytecodes), 145 "healedBytecodeBytes": hexutil.Uint64(progress.HealedBytecodeBytes), 146 "healingTrienodes": hexutil.Uint64(progress.HealingTrienodes), 147 "healingBytecode": hexutil.Uint64(progress.HealingBytecode), 148 }, nil 149 } 150 151 // TxPoolAPI offers and API for the transaction pool. It only operates on data that is non confidential. 152 type TxPoolAPI struct { 153 b Backend 154 } 155 156 // NewTxPoolAPI creates a new tx pool service that gives information about the transaction pool. 157 func NewTxPoolAPI(b Backend) *TxPoolAPI { 158 return &TxPoolAPI{b} 159 } 160 161 // Content returns the transactions contained within the transaction pool. 162 func (s *TxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction { 163 content := map[string]map[string]map[string]*RPCTransaction{ 164 "pending": make(map[string]map[string]*RPCTransaction), 165 "queued": make(map[string]map[string]*RPCTransaction), 166 } 167 pending, queue := s.b.TxPoolContent() 168 curHeader := s.b.CurrentHeader() 169 // Flatten the pending transactions 170 for account, txs := range pending { 171 dump := make(map[string]*RPCTransaction) 172 for _, tx := range txs { 173 dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 174 } 175 content["pending"][account.Hex()] = dump 176 } 177 // Flatten the queued transactions 178 for account, txs := range queue { 179 dump := make(map[string]*RPCTransaction) 180 for _, tx := range txs { 181 dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 182 } 183 content["queued"][account.Hex()] = dump 184 } 185 return content 186 } 187 188 // ContentFrom returns the transactions contained within the transaction pool. 189 func (s *TxPoolAPI) ContentFrom(addr common.Address) map[string]map[string]*RPCTransaction { 190 content := make(map[string]map[string]*RPCTransaction, 2) 191 pending, queue := s.b.TxPoolContentFrom(addr) 192 curHeader := s.b.CurrentHeader() 193 194 // Build the pending transactions 195 dump := make(map[string]*RPCTransaction, len(pending)) 196 for _, tx := range pending { 197 dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 198 } 199 content["pending"] = dump 200 201 // Build the queued transactions 202 dump = make(map[string]*RPCTransaction, len(queue)) 203 for _, tx := range queue { 204 dump[fmt.Sprintf("%d", tx.Nonce())] = newRPCPendingTransaction(tx, curHeader, s.b.ChainConfig()) 205 } 206 content["queued"] = dump 207 208 return content 209 } 210 211 // Status returns the number of pending and queued transaction in the pool. 212 func (s *TxPoolAPI) Status() map[string]hexutil.Uint { 213 pending, queue := s.b.Stats() 214 return map[string]hexutil.Uint{ 215 "pending": hexutil.Uint(pending), 216 "queued": hexutil.Uint(queue), 217 } 218 } 219 220 // Inspect retrieves the content of the transaction pool and flattens it into an 221 // easily inspectable list. 222 func (s *TxPoolAPI) Inspect() map[string]map[string]map[string]string { 223 content := map[string]map[string]map[string]string{ 224 "pending": make(map[string]map[string]string), 225 "queued": make(map[string]map[string]string), 226 } 227 pending, queue := s.b.TxPoolContent() 228 229 // Define a formatter to flatten a transaction into a string 230 var format = func(tx *types.Transaction) string { 231 if to := tx.To(); to != nil { 232 return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice()) 233 } 234 return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice()) 235 } 236 // Flatten the pending transactions 237 for account, txs := range pending { 238 dump := make(map[string]string) 239 for _, tx := range txs { 240 dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx) 241 } 242 content["pending"][account.Hex()] = dump 243 } 244 // Flatten the queued transactions 245 for account, txs := range queue { 246 dump := make(map[string]string) 247 for _, tx := range txs { 248 dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx) 249 } 250 content["queued"][account.Hex()] = dump 251 } 252 return content 253 } 254 255 // EthereumAccountAPI provides an API to access accounts managed by this node. 256 // It offers only methods that can retrieve accounts. 257 type EthereumAccountAPI struct { 258 am *accounts.Manager 259 } 260 261 // NewEthereumAccountAPI creates a new EthereumAccountAPI. 262 func NewEthereumAccountAPI(am *accounts.Manager) *EthereumAccountAPI { 263 return &EthereumAccountAPI{am: am} 264 } 265 266 // Accounts returns the collection of accounts this node manages. 267 func (s *EthereumAccountAPI) Accounts() []common.Address { 268 return s.am.Accounts() 269 } 270 271 // PersonalAccountAPI provides an API to access accounts managed by this node. 272 // It offers methods to create, (un)lock en list accounts. Some methods accept 273 // passwords and are therefore considered private by default. 274 type PersonalAccountAPI struct { 275 am *accounts.Manager 276 nonceLock *AddrLocker 277 b Backend 278 } 279 280 // NewPersonalAccountAPI create a new PersonalAccountAPI. 281 func NewPersonalAccountAPI(b Backend, nonceLock *AddrLocker) *PersonalAccountAPI { 282 return &PersonalAccountAPI{ 283 am: b.AccountManager(), 284 nonceLock: nonceLock, 285 b: b, 286 } 287 } 288 289 // ListAccounts will return a list of addresses for accounts this node manages. 290 func (s *PersonalAccountAPI) ListAccounts() []common.Address { 291 return s.am.Accounts() 292 } 293 294 // rawWallet is a JSON representation of an accounts.Wallet interface, with its 295 // data contents extracted into plain fields. 296 type rawWallet struct { 297 URL string `json:"url"` 298 Status string `json:"status"` 299 Failure string `json:"failure,omitempty"` 300 Accounts []accounts.Account `json:"accounts,omitempty"` 301 } 302 303 // ListWallets will return a list of wallets this node manages. 304 func (s *PersonalAccountAPI) ListWallets() []rawWallet { 305 wallets := make([]rawWallet, 0) // return [] instead of nil if empty 306 for _, wallet := range s.am.Wallets() { 307 status, failure := wallet.Status() 308 309 raw := rawWallet{ 310 URL: wallet.URL().String(), 311 Status: status, 312 Accounts: wallet.Accounts(), 313 } 314 if failure != nil { 315 raw.Failure = failure.Error() 316 } 317 wallets = append(wallets, raw) 318 } 319 return wallets 320 } 321 322 // OpenWallet initiates a hardware wallet opening procedure, establishing a USB 323 // connection and attempting to authenticate via the provided passphrase. Note, 324 // the method may return an extra challenge requiring a second open (e.g. the 325 // Trezor PIN matrix challenge). 326 func (s *PersonalAccountAPI) OpenWallet(url string, passphrase *string) error { 327 wallet, err := s.am.Wallet(url) 328 if err != nil { 329 return err 330 } 331 pass := "" 332 if passphrase != nil { 333 pass = *passphrase 334 } 335 return wallet.Open(pass) 336 } 337 338 // DeriveAccount requests a HD wallet to derive a new account, optionally pinning 339 // it for later reuse. 340 func (s *PersonalAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) { 341 wallet, err := s.am.Wallet(url) 342 if err != nil { 343 return accounts.Account{}, err 344 } 345 derivPath, err := accounts.ParseDerivationPath(path) 346 if err != nil { 347 return accounts.Account{}, err 348 } 349 if pin == nil { 350 pin = new(bool) 351 } 352 return wallet.Derive(derivPath, *pin) 353 } 354 355 // NewAccount will create a new account and returns the address for the new account. 356 func (s *PersonalAccountAPI) NewAccount(password string) (common.Address, error) { 357 ks, err := fetchKeystore(s.am) 358 if err != nil { 359 return common.Address{}, err 360 } 361 acc, err := ks.NewAccount(password) 362 if err == nil { 363 log.Info("Your new key was generated", "address", acc.Address) 364 log.Warn("Please backup your key file!", "path", acc.URL.Path) 365 log.Warn("Please remember your password!") 366 return acc.Address, nil 367 } 368 return common.Address{}, err 369 } 370 371 // fetchKeystore retrieves the encrypted keystore from the account manager. 372 func fetchKeystore(am *accounts.Manager) (*keystore.KeyStore, error) { 373 if ks := am.Backends(keystore.KeyStoreType); len(ks) > 0 { 374 return ks[0].(*keystore.KeyStore), nil 375 } 376 return nil, errors.New("local keystore not used") 377 } 378 379 // ImportRawKey stores the given hex encoded ECDSA key into the key directory, 380 // encrypting it with the passphrase. 381 func (s *PersonalAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) { 382 key, err := crypto.HexToECDSA(privkey) 383 if err != nil { 384 return common.Address{}, err 385 } 386 ks, err := fetchKeystore(s.am) 387 if err != nil { 388 return common.Address{}, err 389 } 390 acc, err := ks.ImportECDSA(key, password) 391 return acc.Address, err 392 } 393 394 // UnlockAccount will unlock the account associated with the given address with 395 // the given password for duration seconds. If duration is nil it will use a 396 // default of 300 seconds. It returns an indication if the account was unlocked. 397 func (s *PersonalAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) { 398 // When the API is exposed by external RPC(http, ws etc), unless the user 399 // explicitly specifies to allow the insecure account unlocking, otherwise 400 // it is disabled. 401 if s.b.ExtRPCEnabled() && !s.b.AccountManager().Config().InsecureUnlockAllowed { 402 return false, errors.New("account unlock with HTTP access is forbidden") 403 } 404 405 const max = uint64(time.Duration(math.MaxInt64) / time.Second) 406 var d time.Duration 407 if duration == nil { 408 d = 300 * time.Second 409 } else if *duration > max { 410 return false, errors.New("unlock duration too large") 411 } else { 412 d = time.Duration(*duration) * time.Second 413 } 414 ks, err := fetchKeystore(s.am) 415 if err != nil { 416 return false, err 417 } 418 err = ks.TimedUnlock(accounts.Account{Address: addr}, password, d) 419 if err != nil { 420 log.Warn("Failed account unlock attempt", "address", addr, "err", err) 421 } 422 return err == nil, err 423 } 424 425 // LockAccount will lock the account associated with the given address when it's unlocked. 426 func (s *PersonalAccountAPI) LockAccount(addr common.Address) bool { 427 if ks, err := fetchKeystore(s.am); err == nil { 428 return ks.Lock(addr) == nil 429 } 430 return false 431 } 432 433 // signTransaction sets defaults and signs the given transaction 434 // NOTE: the caller needs to ensure that the nonceLock is held, if applicable, 435 // and release it after the transaction has been submitted to the tx pool 436 func (s *PersonalAccountAPI) signTransaction(ctx context.Context, args *TransactionArgs, passwd string) (*types.Transaction, error) { 437 // Look up the wallet containing the requested signer 438 account := accounts.Account{Address: args.from()} 439 wallet, err := s.am.Find(account) 440 if err != nil { 441 return nil, err 442 } 443 // Set some sanity defaults and terminate on failure 444 if err := args.setDefaults(ctx, s.b); err != nil { 445 return nil, err 446 } 447 // Assemble the transaction and sign with the wallet 448 tx := args.toTransaction() 449 450 return wallet.SignTxWithPassphrase(account, passwd, tx, s.b.ChainConfig().ChainID) 451 } 452 453 // SendTransaction will create a transaction from the given arguments and 454 // tries to sign it with the key associated with args.From. If the given 455 // passwd isn't able to decrypt the key it fails. 456 func (s *PersonalAccountAPI) SendTransaction(ctx context.Context, args TransactionArgs, passwd string) (common.Hash, error) { 457 if args.Nonce == nil { 458 // Hold the addresse's mutex around signing to prevent concurrent assignment of 459 // the same nonce to multiple accounts. 460 s.nonceLock.LockAddr(args.from()) 461 defer s.nonceLock.UnlockAddr(args.from()) 462 } 463 signed, err := s.signTransaction(ctx, &args, passwd) 464 if err != nil { 465 log.Warn("Failed transaction send attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err) 466 return common.Hash{}, err 467 } 468 return SubmitTransaction(ctx, s.b, signed) 469 } 470 471 // SignTransaction will create a transaction from the given arguments and 472 // tries to sign it with the key associated with args.From. If the given passwd isn't 473 // able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast 474 // to other nodes 475 func (s *PersonalAccountAPI) SignTransaction(ctx context.Context, args TransactionArgs, passwd string) (*SignTransactionResult, error) { 476 // No need to obtain the noncelock mutex, since we won't be sending this 477 // tx into the transaction pool, but right back to the user 478 if args.From == nil { 479 return nil, fmt.Errorf("sender not specified") 480 } 481 if args.Gas == nil { 482 return nil, fmt.Errorf("gas not specified") 483 } 484 if args.GasPrice == nil && (args.MaxFeePerGas == nil || args.MaxPriorityFeePerGas == nil) { 485 return nil, fmt.Errorf("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas") 486 } 487 if args.Nonce == nil { 488 return nil, fmt.Errorf("nonce not specified") 489 } 490 // Before actually signing the transaction, ensure the transaction fee is reasonable. 491 tx := args.toTransaction() 492 if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil { 493 return nil, err 494 } 495 signed, err := s.signTransaction(ctx, &args, passwd) 496 if err != nil { 497 log.Warn("Failed transaction sign attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err) 498 return nil, err 499 } 500 data, err := signed.MarshalBinary() 501 if err != nil { 502 return nil, err 503 } 504 return &SignTransactionResult{data, signed}, nil 505 } 506 507 // Sign calculates an Ethereum ECDSA signature for: 508 // keccak256("\x19Ethereum Signed Message:\n" + len(message) + message)) 509 // 510 // Note, the produced signature conforms to the secp256k1 curve R, S and V values, 511 // where the V value will be 27 or 28 for legacy reasons. 512 // 513 // The key used to calculate the signature is decrypted with the given password. 514 // 515 // https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign 516 func (s *PersonalAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) { 517 // Look up the wallet containing the requested signer 518 account := accounts.Account{Address: addr} 519 520 wallet, err := s.b.AccountManager().Find(account) 521 if err != nil { 522 return nil, err 523 } 524 // Assemble sign the data with the wallet 525 signature, err := wallet.SignTextWithPassphrase(account, passwd, data) 526 if err != nil { 527 log.Warn("Failed data sign attempt", "address", addr, "err", err) 528 return nil, err 529 } 530 signature[crypto.RecoveryIDOffset] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper 531 return signature, nil 532 } 533 534 // EcRecover returns the address for the account that was used to create the signature. 535 // Note, this function is compatible with eth_sign and personal_sign. As such it recovers 536 // the address of: 537 // hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message}) 538 // addr = ecrecover(hash, signature) 539 // 540 // Note, the signature must conform to the secp256k1 curve R, S and V values, where 541 // the V value must be 27 or 28 for legacy reasons. 542 // 543 // https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover 544 func (s *PersonalAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) { 545 if len(sig) != crypto.SignatureLength { 546 return common.Address{}, fmt.Errorf("signature must be %d bytes long", crypto.SignatureLength) 547 } 548 if sig[crypto.RecoveryIDOffset] != 27 && sig[crypto.RecoveryIDOffset] != 28 { 549 return common.Address{}, fmt.Errorf("invalid Ethereum signature (V is not 27 or 28)") 550 } 551 sig[crypto.RecoveryIDOffset] -= 27 // Transform yellow paper V from 27/28 to 0/1 552 553 rpk, err := crypto.SigToPub(accounts.TextHash(data), sig) 554 if err != nil { 555 return common.Address{}, err 556 } 557 return crypto.PubkeyToAddress(*rpk), nil 558 } 559 560 // InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key. 561 func (s *PersonalAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) { 562 wallet, err := s.am.Wallet(url) 563 if err != nil { 564 return "", err 565 } 566 567 entropy, err := bip39.NewEntropy(256) 568 if err != nil { 569 return "", err 570 } 571 572 mnemonic, err := bip39.NewMnemonic(entropy) 573 if err != nil { 574 return "", err 575 } 576 577 seed := bip39.NewSeed(mnemonic, "") 578 579 switch wallet := wallet.(type) { 580 case *scwallet.Wallet: 581 return mnemonic, wallet.Initialize(seed) 582 default: 583 return "", fmt.Errorf("specified wallet does not support initialization") 584 } 585 } 586 587 // Unpair deletes a pairing between wallet and geth. 588 func (s *PersonalAccountAPI) Unpair(ctx context.Context, url string, pin string) error { 589 wallet, err := s.am.Wallet(url) 590 if err != nil { 591 return err 592 } 593 594 switch wallet := wallet.(type) { 595 case *scwallet.Wallet: 596 return wallet.Unpair([]byte(pin)) 597 default: 598 return fmt.Errorf("specified wallet does not support pairing") 599 } 600 } 601 602 // BlockChainAPI provides an API to access Ethereum blockchain data. 603 type BlockChainAPI struct { 604 b Backend 605 } 606 607 // NewBlockChainAPI creates a new Ethereum blockchain API. 608 func NewBlockChainAPI(b Backend) *BlockChainAPI { 609 return &BlockChainAPI{b} 610 } 611 612 // ChainId is the EIP-155 replay-protection chain id for the current Ethereum chain config. 613 // 614 // Note, this method does not conform to EIP-695 because the configured chain ID is always 615 // returned, regardless of the current head block. We used to return an error when the chain 616 // wasn't synced up to a block where EIP-155 is enabled, but this behavior caused issues 617 // in CL clients. 618 func (api *BlockChainAPI) ChainId() *hexutil.Big { 619 return (*hexutil.Big)(api.b.ChainConfig().ChainID) 620 } 621 622 // BlockNumber returns the block number of the chain head. 623 func (s *BlockChainAPI) BlockNumber() hexutil.Uint64 { 624 header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available 625 return hexutil.Uint64(header.Number.Uint64()) 626 } 627 628 // GetBalance returns the amount of wei for the given address in the state of the 629 // given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta 630 // block numbers are also allowed. 631 func (s *BlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Big, error) { 632 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 633 if state == nil || err != nil { 634 return nil, err 635 } 636 return (*hexutil.Big)(state.GetBalance(address)), state.Error() 637 } 638 639 // Result structs for GetProof 640 type AccountResult struct { 641 Address common.Address `json:"address"` 642 AccountProof []string `json:"accountProof"` 643 Balance *hexutil.Big `json:"balance"` 644 CodeHash common.Hash `json:"codeHash"` 645 Nonce hexutil.Uint64 `json:"nonce"` 646 StorageHash common.Hash `json:"storageHash"` 647 StorageProof []StorageResult `json:"storageProof"` 648 } 649 650 type StorageResult struct { 651 Key string `json:"key"` 652 Value *hexutil.Big `json:"value"` 653 Proof []string `json:"proof"` 654 } 655 656 // GetProof returns the Merkle-proof for a given account and optionally some storage keys. 657 func (s *BlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNrOrHash rpc.BlockNumberOrHash) (*AccountResult, error) { 658 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 659 if state == nil || err != nil { 660 return nil, err 661 } 662 663 storageTrie := state.StorageTrie(address) 664 storageHash := types.EmptyRootHash 665 codeHash := state.GetCodeHash(address) 666 storageProof := make([]StorageResult, len(storageKeys)) 667 668 // if we have a storageTrie, (which means the account exists), we can update the storagehash 669 if storageTrie != nil { 670 storageHash = storageTrie.Hash() 671 } else { 672 // no storageTrie means the account does not exist, so the codeHash is the hash of an empty bytearray. 673 codeHash = crypto.Keccak256Hash(nil) 674 } 675 676 // create the proof for the storageKeys 677 for i, key := range storageKeys { 678 if storageTrie != nil { 679 proof, storageError := state.GetStorageProof(address, common.HexToHash(key)) 680 if storageError != nil { 681 return nil, storageError 682 } 683 storageProof[i] = StorageResult{key, (*hexutil.Big)(state.GetState(address, common.HexToHash(key)).Big()), toHexSlice(proof)} 684 } else { 685 storageProof[i] = StorageResult{key, &hexutil.Big{}, []string{}} 686 } 687 } 688 689 // create the accountProof 690 accountProof, proofErr := state.GetProof(address) 691 if proofErr != nil { 692 return nil, proofErr 693 } 694 695 return &AccountResult{ 696 Address: address, 697 AccountProof: toHexSlice(accountProof), 698 Balance: (*hexutil.Big)(state.GetBalance(address)), 699 CodeHash: codeHash, 700 Nonce: hexutil.Uint64(state.GetNonce(address)), 701 StorageHash: storageHash, 702 StorageProof: storageProof, 703 }, state.Error() 704 } 705 706 // GetHeaderByNumber returns the requested canonical block header. 707 // * When blockNr is -1 the chain head is returned. 708 // * When blockNr is -2 the pending chain head is returned. 709 func (s *BlockChainAPI) GetHeaderByNumber(ctx context.Context, number rpc.BlockNumber) (map[string]interface{}, error) { 710 header, err := s.b.HeaderByNumber(ctx, number) 711 if header != nil && err == nil { 712 response := s.rpcMarshalHeader(ctx, header) 713 if number == rpc.PendingBlockNumber { 714 // Pending header need to nil out a few fields 715 for _, field := range []string{"hash", "nonce", "miner"} { 716 response[field] = nil 717 } 718 } 719 return response, err 720 } 721 return nil, err 722 } 723 724 // GetHeaderByHash returns the requested header by hash. 725 func (s *BlockChainAPI) GetHeaderByHash(ctx context.Context, hash common.Hash) map[string]interface{} { 726 header, _ := s.b.HeaderByHash(ctx, hash) 727 if header != nil { 728 return s.rpcMarshalHeader(ctx, header) 729 } 730 return nil 731 } 732 733 // GetBlockByNumber returns the requested canonical block. 734 // * When blockNr is -1 the chain head is returned. 735 // * When blockNr is -2 the pending chain head is returned. 736 // * When fullTx is true all transactions in the block are returned, otherwise 737 // only the transaction hash is returned. 738 func (s *BlockChainAPI) GetBlockByNumber(ctx context.Context, number rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) { 739 block, err := s.b.BlockByNumber(ctx, number) 740 if block != nil && err == nil { 741 response, err := s.rpcMarshalBlock(ctx, block, true, fullTx) 742 if err == nil && number == rpc.PendingBlockNumber { 743 // Pending blocks need to nil out a few fields 744 for _, field := range []string{"hash", "nonce", "miner"} { 745 response[field] = nil 746 } 747 } 748 return response, err 749 } 750 return nil, err 751 } 752 753 // GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full 754 // detail, otherwise only the transaction hash is returned. 755 func (s *BlockChainAPI) GetBlockByHash(ctx context.Context, hash common.Hash, fullTx bool) (map[string]interface{}, error) { 756 block, err := s.b.BlockByHash(ctx, hash) 757 if block != nil { 758 return s.rpcMarshalBlock(ctx, block, true, fullTx) 759 } 760 return nil, err 761 } 762 763 // GetUncleByBlockNumberAndIndex returns the uncle block for the given block hash and index. 764 func (s *BlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) { 765 block, err := s.b.BlockByNumber(ctx, blockNr) 766 if block != nil { 767 uncles := block.Uncles() 768 if index >= hexutil.Uint(len(uncles)) { 769 log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index) 770 return nil, nil 771 } 772 block = types.NewBlockWithHeader(uncles[index]) 773 return s.rpcMarshalBlock(ctx, block, false, false) 774 } 775 return nil, err 776 } 777 778 // GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index. 779 func (s *BlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) { 780 block, err := s.b.BlockByHash(ctx, blockHash) 781 if block != nil { 782 uncles := block.Uncles() 783 if index >= hexutil.Uint(len(uncles)) { 784 log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index) 785 return nil, nil 786 } 787 block = types.NewBlockWithHeader(uncles[index]) 788 return s.rpcMarshalBlock(ctx, block, false, false) 789 } 790 return nil, err 791 } 792 793 // GetUncleCountByBlockNumber returns number of uncles in the block for the given block number 794 func (s *BlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint { 795 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 796 n := hexutil.Uint(len(block.Uncles())) 797 return &n 798 } 799 return nil 800 } 801 802 // GetUncleCountByBlockHash returns number of uncles in the block for the given block hash 803 func (s *BlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint { 804 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 805 n := hexutil.Uint(len(block.Uncles())) 806 return &n 807 } 808 return nil 809 } 810 811 // GetCode returns the code stored at the given address in the state for the given block number. 812 func (s *BlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { 813 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 814 if state == nil || err != nil { 815 return nil, err 816 } 817 code := state.GetCode(address) 818 return code, state.Error() 819 } 820 821 // GetStorageAt returns the storage from the state at the given address, key and 822 // block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block 823 // numbers are also allowed. 824 func (s *BlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, key string, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) { 825 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 826 if state == nil || err != nil { 827 return nil, err 828 } 829 res := state.GetState(address, common.HexToHash(key)) 830 return res[:], state.Error() 831 } 832 833 // OverrideAccount indicates the overriding fields of account during the execution 834 // of a message call. 835 // Note, state and stateDiff can't be specified at the same time. If state is 836 // set, message execution will only use the data in the given state. Otherwise 837 // if statDiff is set, all diff will be applied first and then execute the call 838 // message. 839 type OverrideAccount struct { 840 Nonce *hexutil.Uint64 `json:"nonce"` 841 Code *hexutil.Bytes `json:"code"` 842 Balance **hexutil.Big `json:"balance"` 843 State *map[common.Hash]common.Hash `json:"state"` 844 StateDiff *map[common.Hash]common.Hash `json:"stateDiff"` 845 } 846 847 // StateOverride is the collection of overridden accounts. 848 type StateOverride map[common.Address]OverrideAccount 849 850 // Apply overrides the fields of specified accounts into the given state. 851 func (diff *StateOverride) Apply(state *state.StateDB) error { 852 if diff == nil { 853 return nil 854 } 855 for addr, account := range *diff { 856 // Override account nonce. 857 if account.Nonce != nil { 858 state.SetNonce(addr, uint64(*account.Nonce)) 859 } 860 // Override account(contract) code. 861 if account.Code != nil { 862 state.SetCode(addr, *account.Code) 863 } 864 // Override account balance. 865 if account.Balance != nil { 866 state.SetBalance(addr, (*big.Int)(*account.Balance)) 867 } 868 if account.State != nil && account.StateDiff != nil { 869 return fmt.Errorf("account %s has both 'state' and 'stateDiff'", addr.Hex()) 870 } 871 // Replace entire state if caller requires. 872 if account.State != nil { 873 state.SetStorage(addr, *account.State) 874 } 875 // Apply state diff into specified accounts. 876 if account.StateDiff != nil { 877 for key, value := range *account.StateDiff { 878 state.SetState(addr, key, value) 879 } 880 } 881 } 882 return nil 883 } 884 885 // BlockOverrides is a set of header fields to override. 886 type BlockOverrides struct { 887 Number *hexutil.Big 888 Difficulty *hexutil.Big 889 Time *hexutil.Big 890 GasLimit *hexutil.Uint64 891 Coinbase *common.Address 892 Random *common.Hash 893 BaseFee *hexutil.Big 894 } 895 896 // Apply overrides the given header fields into the given block context. 897 func (diff *BlockOverrides) Apply(blockCtx *vm.BlockContext) { 898 if diff == nil { 899 return 900 } 901 if diff.Number != nil { 902 blockCtx.BlockNumber = diff.Number.ToInt() 903 } 904 if diff.Difficulty != nil { 905 blockCtx.Difficulty = diff.Difficulty.ToInt() 906 } 907 if diff.Time != nil { 908 blockCtx.Time = diff.Time.ToInt() 909 } 910 if diff.GasLimit != nil { 911 blockCtx.GasLimit = uint64(*diff.GasLimit) 912 } 913 if diff.Coinbase != nil { 914 blockCtx.Coinbase = *diff.Coinbase 915 } 916 if diff.Random != nil { 917 blockCtx.Random = diff.Random 918 } 919 if diff.BaseFee != nil { 920 blockCtx.BaseFee = diff.BaseFee.ToInt() 921 } 922 } 923 924 func DoCall(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) { 925 defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now()) 926 927 state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 928 if state == nil || err != nil { 929 return nil, err 930 } 931 if err := overrides.Apply(state); err != nil { 932 return nil, err 933 } 934 // Setup context so it may be cancelled the call has completed 935 // or, in case of unmetered gas, setup a context with a timeout. 936 var cancel context.CancelFunc 937 if timeout > 0 { 938 ctx, cancel = context.WithTimeout(ctx, timeout) 939 } else { 940 ctx, cancel = context.WithCancel(ctx) 941 } 942 // Make sure the context is cancelled when the call has completed 943 // this makes sure resources are cleaned up. 944 defer cancel() 945 946 // Get a new instance of the EVM. 947 msg, err := args.ToMessage(globalGasCap, header.BaseFee) 948 if err != nil { 949 return nil, err 950 } 951 evm, vmError, err := b.GetEVM(ctx, msg, state, header, &vm.Config{NoBaseFee: true}) 952 if err != nil { 953 return nil, err 954 } 955 // Wait for the context to be done and cancel the evm. Even if the 956 // EVM has finished, cancelling may be done (repeatedly) 957 go func() { 958 <-ctx.Done() 959 evm.Cancel() 960 }() 961 962 // Execute the message. 963 gp := new(core.GasPool).AddGas(math.MaxUint64) 964 result, err := core.ApplyMessage(evm, msg, gp) 965 if err := vmError(); err != nil { 966 return nil, err 967 } 968 969 // If the timer caused an abort, return an appropriate error message 970 if evm.Cancelled() { 971 return nil, fmt.Errorf("execution aborted (timeout = %v)", timeout) 972 } 973 if err != nil { 974 return result, fmt.Errorf("err: %w (supplied gas %d)", err, msg.Gas()) 975 } 976 return result, nil 977 } 978 979 func newRevertError(result *core.ExecutionResult) *revertError { 980 reason, errUnpack := abi.UnpackRevert(result.Revert()) 981 err := errors.New("execution reverted") 982 if errUnpack == nil { 983 err = fmt.Errorf("execution reverted: %v", reason) 984 } 985 return &revertError{ 986 error: err, 987 reason: hexutil.Encode(result.Revert()), 988 } 989 } 990 991 // revertError is an API error that encompassas an EVM revertal with JSON error 992 // code and a binary data blob. 993 type revertError struct { 994 error 995 reason string // revert reason hex encoded 996 } 997 998 // ErrorCode returns the JSON error code for a revertal. 999 // See: https://github.com/ethereum/wiki/wiki/JSON-RPC-Error-Codes-Improvement-Proposal 1000 func (e *revertError) ErrorCode() int { 1001 return 3 1002 } 1003 1004 // ErrorData returns the hex encoded revert reason. 1005 func (e *revertError) ErrorData() interface{} { 1006 return e.reason 1007 } 1008 1009 // Call executes the given transaction on the state for the given block number. 1010 // 1011 // Additionally, the caller can specify a batch of contract for fields overriding. 1012 // 1013 // Note, this function doesn't make and changes in the state/blockchain and is 1014 // useful to execute and retrieve values. 1015 func (s *BlockChainAPI) Call(ctx context.Context, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride) (hexutil.Bytes, error) { 1016 result, err := DoCall(ctx, s.b, args, blockNrOrHash, overrides, s.b.RPCEVMTimeout(), s.b.RPCGasCap()) 1017 if err != nil { 1018 return nil, err 1019 } 1020 // If the result contains a revert reason, try to unpack and return it. 1021 if len(result.Revert()) > 0 { 1022 return nil, newRevertError(result) 1023 } 1024 return result.Return(), result.Err 1025 } 1026 1027 func DoEstimateGas(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, gasCap uint64) (hexutil.Uint64, error) { 1028 // Binary search the gas requirement, as it may be higher than the amount used 1029 var ( 1030 lo uint64 = params.TxGas - 1 1031 hi uint64 1032 cap uint64 1033 ) 1034 // Use zero address if sender unspecified. 1035 if args.From == nil { 1036 args.From = new(common.Address) 1037 } 1038 // Determine the highest gas limit can be used during the estimation. 1039 if args.Gas != nil && uint64(*args.Gas) >= params.TxGas { 1040 hi = uint64(*args.Gas) 1041 } else { 1042 // Retrieve the block to act as the gas ceiling 1043 block, err := b.BlockByNumberOrHash(ctx, blockNrOrHash) 1044 if err != nil { 1045 return 0, err 1046 } 1047 if block == nil { 1048 return 0, errors.New("block not found") 1049 } 1050 hi = block.GasLimit() 1051 } 1052 // Normalize the max fee per gas the call is willing to spend. 1053 var feeCap *big.Int 1054 if args.GasPrice != nil && (args.MaxFeePerGas != nil || args.MaxPriorityFeePerGas != nil) { 1055 return 0, errors.New("both gasPrice and (maxFeePerGas or maxPriorityFeePerGas) specified") 1056 } else if args.GasPrice != nil { 1057 feeCap = args.GasPrice.ToInt() 1058 } else if args.MaxFeePerGas != nil { 1059 feeCap = args.MaxFeePerGas.ToInt() 1060 } else { 1061 feeCap = common.Big0 1062 } 1063 // Recap the highest gas limit with account's available balance. 1064 if feeCap.BitLen() != 0 { 1065 state, _, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 1066 if err != nil { 1067 return 0, err 1068 } 1069 balance := state.GetBalance(*args.From) // from can't be nil 1070 available := new(big.Int).Set(balance) 1071 if args.Value != nil { 1072 if args.Value.ToInt().Cmp(available) >= 0 { 1073 return 0, errors.New("insufficient funds for transfer") 1074 } 1075 available.Sub(available, args.Value.ToInt()) 1076 } 1077 allowance := new(big.Int).Div(available, feeCap) 1078 1079 // If the allowance is larger than maximum uint64, skip checking 1080 if allowance.IsUint64() && hi > allowance.Uint64() { 1081 transfer := args.Value 1082 if transfer == nil { 1083 transfer = new(hexutil.Big) 1084 } 1085 log.Warn("Gas estimation capped by limited funds", "original", hi, "balance", balance, 1086 "sent", transfer.ToInt(), "maxFeePerGas", feeCap, "fundable", allowance) 1087 hi = allowance.Uint64() 1088 } 1089 } 1090 // Recap the highest gas allowance with specified gascap. 1091 if gasCap != 0 && hi > gasCap { 1092 log.Warn("Caller gas above allowance, capping", "requested", hi, "cap", gasCap) 1093 hi = gasCap 1094 } 1095 cap = hi 1096 1097 // Create a helper to check if a gas allowance results in an executable transaction 1098 executable := func(gas uint64) (bool, *core.ExecutionResult, error) { 1099 args.Gas = (*hexutil.Uint64)(&gas) 1100 1101 result, err := DoCall(ctx, b, args, blockNrOrHash, nil, 0, gasCap) 1102 if err != nil { 1103 if errors.Is(err, core.ErrIntrinsicGas) { 1104 return true, nil, nil // Special case, raise gas limit 1105 } 1106 return true, nil, err // Bail out 1107 } 1108 return result.Failed(), result, nil 1109 } 1110 // Execute the binary search and hone in on an executable gas limit 1111 for lo+1 < hi { 1112 mid := (hi + lo) / 2 1113 failed, _, err := executable(mid) 1114 1115 // If the error is not nil(consensus error), it means the provided message 1116 // call or transaction will never be accepted no matter how much gas it is 1117 // assigned. Return the error directly, don't struggle any more. 1118 if err != nil { 1119 return 0, err 1120 } 1121 if failed { 1122 lo = mid 1123 } else { 1124 hi = mid 1125 } 1126 } 1127 // Reject the transaction as invalid if it still fails at the highest allowance 1128 if hi == cap { 1129 failed, result, err := executable(hi) 1130 if err != nil { 1131 return 0, err 1132 } 1133 if failed { 1134 if result != nil && result.Err != vm.ErrOutOfGas { 1135 if len(result.Revert()) > 0 { 1136 return 0, newRevertError(result) 1137 } 1138 return 0, result.Err 1139 } 1140 // Otherwise, the specified gas cap is too low 1141 return 0, fmt.Errorf("gas required exceeds allowance (%d)", cap) 1142 } 1143 } 1144 return hexutil.Uint64(hi), nil 1145 } 1146 1147 // EstimateGas returns an estimate of the amount of gas needed to execute the 1148 // given transaction against the current pending block. 1149 func (s *BlockChainAPI) EstimateGas(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (hexutil.Uint64, error) { 1150 bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber) 1151 if blockNrOrHash != nil { 1152 bNrOrHash = *blockNrOrHash 1153 } 1154 return DoEstimateGas(ctx, s.b, args, bNrOrHash, s.b.RPCGasCap()) 1155 } 1156 1157 // RPCMarshalHeader converts the given header to the RPC output . 1158 func RPCMarshalHeader(head *types.Header) map[string]interface{} { 1159 result := map[string]interface{}{ 1160 "number": (*hexutil.Big)(head.Number), 1161 "hash": head.Hash(), 1162 "parentHash": head.ParentHash, 1163 "nonce": head.Nonce, 1164 "mixHash": head.MixDigest, 1165 "sha3Uncles": head.UncleHash, 1166 "logsBloom": head.Bloom, 1167 "stateRoot": head.Root, 1168 "miner": head.Coinbase, 1169 "difficulty": (*hexutil.Big)(head.Difficulty), 1170 "extraData": hexutil.Bytes(head.Extra), 1171 "size": hexutil.Uint64(head.Size()), 1172 "gasLimit": hexutil.Uint64(head.GasLimit), 1173 "gasUsed": hexutil.Uint64(head.GasUsed), 1174 "timestamp": hexutil.Uint64(head.Time), 1175 "transactionsRoot": head.TxHash, 1176 "receiptsRoot": head.ReceiptHash, 1177 } 1178 1179 if head.BaseFee != nil { 1180 result["baseFeePerGas"] = (*hexutil.Big)(head.BaseFee) 1181 } 1182 1183 return result 1184 } 1185 1186 // RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are 1187 // returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain 1188 // transaction hashes. 1189 func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool, config *params.ChainConfig) (map[string]interface{}, error) { 1190 fields := RPCMarshalHeader(block.Header()) 1191 fields["size"] = hexutil.Uint64(block.Size()) 1192 1193 if inclTx { 1194 formatTx := func(tx *types.Transaction) (interface{}, error) { 1195 return tx.Hash(), nil 1196 } 1197 if fullTx { 1198 formatTx = func(tx *types.Transaction) (interface{}, error) { 1199 return newRPCTransactionFromBlockHash(block, tx.Hash(), config), nil 1200 } 1201 } 1202 txs := block.Transactions() 1203 transactions := make([]interface{}, len(txs)) 1204 var err error 1205 for i, tx := range txs { 1206 if transactions[i], err = formatTx(tx); err != nil { 1207 return nil, err 1208 } 1209 } 1210 fields["transactions"] = transactions 1211 } 1212 uncles := block.Uncles() 1213 uncleHashes := make([]common.Hash, len(uncles)) 1214 for i, uncle := range uncles { 1215 uncleHashes[i] = uncle.Hash() 1216 } 1217 fields["uncles"] = uncleHashes 1218 1219 return fields, nil 1220 } 1221 1222 // rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires 1223 // a `BlockchainAPI`. 1224 func (s *BlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} { 1225 fields := RPCMarshalHeader(header) 1226 fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, header.Hash())) 1227 return fields 1228 } 1229 1230 // rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires 1231 // a `BlockchainAPI`. 1232 func (s *BlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) { 1233 fields, err := RPCMarshalBlock(b, inclTx, fullTx, s.b.ChainConfig()) 1234 if err != nil { 1235 return nil, err 1236 } 1237 if inclTx { 1238 fields["totalDifficulty"] = (*hexutil.Big)(s.b.GetTd(ctx, b.Hash())) 1239 } 1240 return fields, err 1241 } 1242 1243 // RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction 1244 type RPCTransaction struct { 1245 BlockHash *common.Hash `json:"blockHash"` 1246 BlockNumber *hexutil.Big `json:"blockNumber"` 1247 From common.Address `json:"from"` 1248 Gas hexutil.Uint64 `json:"gas"` 1249 GasPrice *hexutil.Big `json:"gasPrice"` 1250 GasFeeCap *hexutil.Big `json:"maxFeePerGas,omitempty"` 1251 GasTipCap *hexutil.Big `json:"maxPriorityFeePerGas,omitempty"` 1252 Hash common.Hash `json:"hash"` 1253 Input hexutil.Bytes `json:"input"` 1254 Nonce hexutil.Uint64 `json:"nonce"` 1255 To *common.Address `json:"to"` 1256 TransactionIndex *hexutil.Uint64 `json:"transactionIndex"` 1257 Value *hexutil.Big `json:"value"` 1258 Type hexutil.Uint64 `json:"type"` 1259 Accesses *types.AccessList `json:"accessList,omitempty"` 1260 ChainID *hexutil.Big `json:"chainId,omitempty"` 1261 V *hexutil.Big `json:"v"` 1262 R *hexutil.Big `json:"r"` 1263 S *hexutil.Big `json:"s"` 1264 1265 // deposit-tx only 1266 SourceHash *common.Hash `json:"sourceHash,omitempty"` 1267 Mint *hexutil.Big `json:"mint,omitempty"` 1268 IsSystemTx *bool `json:"isSystemTx,omitempty"` 1269 } 1270 1271 // newRPCTransaction returns a transaction that will serialize to the RPC 1272 // representation, with the given location metadata set (if available). 1273 func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, index uint64, baseFee *big.Int, config *params.ChainConfig) *RPCTransaction { 1274 signer := types.MakeSigner(config, new(big.Int).SetUint64(blockNumber)) 1275 from, _ := types.Sender(signer, tx) 1276 if tx.Type() == types.DepositTxType { 1277 srcHash := tx.SourceHash() 1278 isSystemTx := tx.IsSystemTx() 1279 result := &RPCTransaction{ 1280 Type: hexutil.Uint64(tx.Type()), 1281 From: from, 1282 Gas: hexutil.Uint64(tx.Gas()), 1283 Hash: tx.Hash(), 1284 Input: hexutil.Bytes(tx.Data()), 1285 To: tx.To(), 1286 Value: (*hexutil.Big)(tx.Value()), 1287 Mint: (*hexutil.Big)(tx.Mint()), 1288 SourceHash: &srcHash, 1289 IsSystemTx: &isSystemTx, 1290 } 1291 if blockHash != (common.Hash{}) { 1292 result.BlockHash = &blockHash 1293 result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber)) 1294 result.TransactionIndex = (*hexutil.Uint64)(&index) 1295 } 1296 return result 1297 } 1298 v, r, s := tx.RawSignatureValues() 1299 result := &RPCTransaction{ 1300 Type: hexutil.Uint64(tx.Type()), 1301 From: from, 1302 Gas: hexutil.Uint64(tx.Gas()), 1303 GasPrice: (*hexutil.Big)(tx.GasPrice()), 1304 Hash: tx.Hash(), 1305 Input: hexutil.Bytes(tx.Data()), 1306 Nonce: hexutil.Uint64(tx.Nonce()), 1307 To: tx.To(), 1308 Value: (*hexutil.Big)(tx.Value()), 1309 V: (*hexutil.Big)(v), 1310 R: (*hexutil.Big)(r), 1311 S: (*hexutil.Big)(s), 1312 } 1313 if blockHash != (common.Hash{}) { 1314 result.BlockHash = &blockHash 1315 result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber)) 1316 result.TransactionIndex = (*hexutil.Uint64)(&index) 1317 } 1318 switch tx.Type() { 1319 case types.LegacyTxType: 1320 // if a legacy transaction has an EIP-155 chain id, include it explicitly 1321 if id := tx.ChainId(); id.Sign() != 0 { 1322 result.ChainID = (*hexutil.Big)(id) 1323 } 1324 case types.AccessListTxType: 1325 al := tx.AccessList() 1326 result.Accesses = &al 1327 result.ChainID = (*hexutil.Big)(tx.ChainId()) 1328 case types.DynamicFeeTxType: 1329 al := tx.AccessList() 1330 result.Accesses = &al 1331 result.ChainID = (*hexutil.Big)(tx.ChainId()) 1332 result.GasFeeCap = (*hexutil.Big)(tx.GasFeeCap()) 1333 result.GasTipCap = (*hexutil.Big)(tx.GasTipCap()) 1334 // if the transaction has been mined, compute the effective gas price 1335 if baseFee != nil && blockHash != (common.Hash{}) { 1336 // price = min(tip, gasFeeCap - baseFee) + baseFee 1337 price := math.BigMin(new(big.Int).Add(tx.GasTipCap(), baseFee), tx.GasFeeCap()) 1338 result.GasPrice = (*hexutil.Big)(price) 1339 } else { 1340 result.GasPrice = (*hexutil.Big)(tx.GasFeeCap()) 1341 } 1342 } 1343 return result 1344 } 1345 1346 // newRPCPendingTransaction returns a pending transaction that will serialize to the RPC representation 1347 func newRPCPendingTransaction(tx *types.Transaction, current *types.Header, config *params.ChainConfig) *RPCTransaction { 1348 var baseFee *big.Int 1349 blockNumber := uint64(0) 1350 if current != nil { 1351 baseFee = misc.CalcBaseFee(config, current) 1352 blockNumber = current.Number.Uint64() 1353 } 1354 return newRPCTransaction(tx, common.Hash{}, blockNumber, 0, baseFee, config) 1355 } 1356 1357 // newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation. 1358 func newRPCTransactionFromBlockIndex(b *types.Block, index uint64, config *params.ChainConfig) *RPCTransaction { 1359 txs := b.Transactions() 1360 if index >= uint64(len(txs)) { 1361 return nil 1362 } 1363 return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), index, b.BaseFee(), config) 1364 } 1365 1366 // newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index. 1367 func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes { 1368 txs := b.Transactions() 1369 if index >= uint64(len(txs)) { 1370 return nil 1371 } 1372 blob, _ := txs[index].MarshalBinary() 1373 return blob 1374 } 1375 1376 // newRPCTransactionFromBlockHash returns a transaction that will serialize to the RPC representation. 1377 func newRPCTransactionFromBlockHash(b *types.Block, hash common.Hash, config *params.ChainConfig) *RPCTransaction { 1378 for idx, tx := range b.Transactions() { 1379 if tx.Hash() == hash { 1380 return newRPCTransactionFromBlockIndex(b, uint64(idx), config) 1381 } 1382 } 1383 return nil 1384 } 1385 1386 // accessListResult returns an optional accesslist 1387 // Its the result of the `debug_createAccessList` RPC call. 1388 // It contains an error if the transaction itself failed. 1389 type accessListResult struct { 1390 Accesslist *types.AccessList `json:"accessList"` 1391 Error string `json:"error,omitempty"` 1392 GasUsed hexutil.Uint64 `json:"gasUsed"` 1393 } 1394 1395 // CreateAccessList creates a EIP-2930 type AccessList for the given transaction. 1396 // Reexec and BlockNrOrHash can be specified to create the accessList on top of a certain state. 1397 func (s *BlockChainAPI) CreateAccessList(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (*accessListResult, error) { 1398 bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber) 1399 if blockNrOrHash != nil { 1400 bNrOrHash = *blockNrOrHash 1401 } 1402 acl, gasUsed, vmerr, err := AccessList(ctx, s.b, bNrOrHash, args) 1403 if err != nil { 1404 return nil, err 1405 } 1406 result := &accessListResult{Accesslist: &acl, GasUsed: hexutil.Uint64(gasUsed)} 1407 if vmerr != nil { 1408 result.Error = vmerr.Error() 1409 } 1410 return result, nil 1411 } 1412 1413 // AccessList creates an access list for the given transaction. 1414 // If the accesslist creation fails an error is returned. 1415 // If the transaction itself fails, an vmErr is returned. 1416 func AccessList(ctx context.Context, b Backend, blockNrOrHash rpc.BlockNumberOrHash, args TransactionArgs) (acl types.AccessList, gasUsed uint64, vmErr error, err error) { 1417 // Retrieve the execution context 1418 db, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 1419 if db == nil || err != nil { 1420 return nil, 0, nil, err 1421 } 1422 // If the gas amount is not set, extract this as it will depend on access 1423 // lists and we'll need to reestimate every time 1424 nogas := args.Gas == nil 1425 1426 // Ensure any missing fields are filled, extract the recipient and input data 1427 if err := args.setDefaults(ctx, b); err != nil { 1428 return nil, 0, nil, err 1429 } 1430 var to common.Address 1431 if args.To != nil { 1432 to = *args.To 1433 } else { 1434 to = crypto.CreateAddress(args.from(), uint64(*args.Nonce)) 1435 } 1436 isPostMerge := header.Difficulty.Cmp(common.Big0) == 0 1437 // Retrieve the precompiles since they don't need to be added to the access list 1438 precompiles := vm.ActivePrecompiles(b.ChainConfig().Rules(header.Number, isPostMerge)) 1439 1440 // Create an initial tracer 1441 prevTracer := logger.NewAccessListTracer(nil, args.from(), to, precompiles) 1442 if args.AccessList != nil { 1443 prevTracer = logger.NewAccessListTracer(*args.AccessList, args.from(), to, precompiles) 1444 } 1445 for { 1446 // Retrieve the current access list to expand 1447 accessList := prevTracer.AccessList() 1448 log.Trace("Creating access list", "input", accessList) 1449 1450 // If no gas amount was specified, each unique access list needs it's own 1451 // gas calculation. This is quite expensive, but we need to be accurate 1452 // and it's convered by the sender only anyway. 1453 if nogas { 1454 args.Gas = nil 1455 if err := args.setDefaults(ctx, b); err != nil { 1456 return nil, 0, nil, err // shouldn't happen, just in case 1457 } 1458 } 1459 // Copy the original db so we don't modify it 1460 statedb := db.Copy() 1461 // Set the accesslist to the last al 1462 args.AccessList = &accessList 1463 msg, err := args.ToMessage(b.RPCGasCap(), header.BaseFee) 1464 if err != nil { 1465 return nil, 0, nil, err 1466 } 1467 1468 // Apply the transaction with the access list tracer 1469 tracer := logger.NewAccessListTracer(accessList, args.from(), to, precompiles) 1470 config := vm.Config{Tracer: tracer, Debug: true, NoBaseFee: true} 1471 vmenv, _, err := b.GetEVM(ctx, msg, statedb, header, &config) 1472 if err != nil { 1473 return nil, 0, nil, err 1474 } 1475 res, err := core.ApplyMessage(vmenv, msg, new(core.GasPool).AddGas(msg.Gas())) 1476 if err != nil { 1477 return nil, 0, nil, fmt.Errorf("failed to apply transaction: %v err: %v", args.toTransaction().Hash(), err) 1478 } 1479 if tracer.Equal(prevTracer) { 1480 return accessList, res.UsedGas, res.Err, nil 1481 } 1482 prevTracer = tracer 1483 } 1484 } 1485 1486 // TransactionAPI exposes methods for reading and creating transaction data. 1487 type TransactionAPI struct { 1488 b Backend 1489 nonceLock *AddrLocker 1490 signer types.Signer 1491 } 1492 1493 // NewTransactionAPI creates a new RPC service with methods for interacting with transactions. 1494 func NewTransactionAPI(b Backend, nonceLock *AddrLocker) *TransactionAPI { 1495 // The signer used by the API should always be the 'latest' known one because we expect 1496 // signers to be backwards-compatible with old transactions. 1497 signer := types.LatestSigner(b.ChainConfig()) 1498 return &TransactionAPI{b, nonceLock, signer} 1499 } 1500 1501 // GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number. 1502 func (s *TransactionAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint { 1503 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 1504 n := hexutil.Uint(len(block.Transactions())) 1505 return &n 1506 } 1507 return nil 1508 } 1509 1510 // GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash. 1511 func (s *TransactionAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint { 1512 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 1513 n := hexutil.Uint(len(block.Transactions())) 1514 return &n 1515 } 1516 return nil 1517 } 1518 1519 // GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index. 1520 func (s *TransactionAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction { 1521 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 1522 return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig()) 1523 } 1524 return nil 1525 } 1526 1527 // GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index. 1528 func (s *TransactionAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction { 1529 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 1530 return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig()) 1531 } 1532 return nil 1533 } 1534 1535 // GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index. 1536 func (s *TransactionAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes { 1537 if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil { 1538 return newRPCRawTransactionFromBlockIndex(block, uint64(index)) 1539 } 1540 return nil 1541 } 1542 1543 // GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index. 1544 func (s *TransactionAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes { 1545 if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil { 1546 return newRPCRawTransactionFromBlockIndex(block, uint64(index)) 1547 } 1548 return nil 1549 } 1550 1551 // GetTransactionCount returns the number of transactions the given address has sent for the given block number 1552 func (s *TransactionAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) { 1553 // Ask transaction pool for the nonce which includes pending transactions 1554 if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber { 1555 nonce, err := s.b.GetPoolNonce(ctx, address) 1556 if err != nil { 1557 return nil, err 1558 } 1559 return (*hexutil.Uint64)(&nonce), nil 1560 } 1561 // Resolve block number and use its state to ask for the nonce 1562 state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash) 1563 if state == nil || err != nil { 1564 return nil, err 1565 } 1566 nonce := state.GetNonce(address) 1567 return (*hexutil.Uint64)(&nonce), state.Error() 1568 } 1569 1570 // GetTransactionByHash returns the transaction for the given hash 1571 func (s *TransactionAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) { 1572 // Try to return an already finalized transaction 1573 tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash) 1574 if err != nil { 1575 return nil, err 1576 } 1577 if tx != nil { 1578 header, err := s.b.HeaderByHash(ctx, blockHash) 1579 if err != nil { 1580 return nil, err 1581 } 1582 return newRPCTransaction(tx, blockHash, blockNumber, index, header.BaseFee, s.b.ChainConfig()), nil 1583 } 1584 // No finalized transaction, try to retrieve it from the pool 1585 if tx := s.b.GetPoolTransaction(hash); tx != nil { 1586 return newRPCPendingTransaction(tx, s.b.CurrentHeader(), s.b.ChainConfig()), nil 1587 } 1588 1589 // Transaction unknown, return as such 1590 return nil, nil 1591 } 1592 1593 // GetRawTransactionByHash returns the bytes of the transaction for the given hash. 1594 func (s *TransactionAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) { 1595 // Retrieve a finalized transaction, or a pooled otherwise 1596 tx, _, _, _, err := s.b.GetTransaction(ctx, hash) 1597 if err != nil { 1598 return nil, err 1599 } 1600 if tx == nil { 1601 if tx = s.b.GetPoolTransaction(hash); tx == nil { 1602 // Transaction not found anywhere, abort 1603 return nil, nil 1604 } 1605 } 1606 // Serialize to RLP and return 1607 return tx.MarshalBinary() 1608 } 1609 1610 // GetTransactionReceipt returns the transaction receipt for the given transaction hash. 1611 func (s *TransactionAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) { 1612 tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash) 1613 if err != nil { 1614 // When the transaction doesn't exist, the RPC method should return JSON null 1615 // as per specification. 1616 return nil, nil 1617 } 1618 receipts, err := s.b.GetReceipts(ctx, blockHash) 1619 if err != nil { 1620 return nil, err 1621 } 1622 if len(receipts) <= int(index) { 1623 return nil, nil 1624 } 1625 receipt := receipts[index] 1626 1627 // Derive the sender. 1628 bigblock := new(big.Int).SetUint64(blockNumber) 1629 signer := types.MakeSigner(s.b.ChainConfig(), bigblock) 1630 from, _ := types.Sender(signer, tx) 1631 1632 fields := map[string]interface{}{ 1633 "blockHash": blockHash, 1634 "blockNumber": hexutil.Uint64(blockNumber), 1635 "transactionHash": hash, 1636 "transactionIndex": hexutil.Uint64(index), 1637 "from": from, 1638 "to": tx.To(), 1639 "gasUsed": hexutil.Uint64(receipt.GasUsed), 1640 "cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed), 1641 "contractAddress": nil, 1642 "logs": receipt.Logs, 1643 "logsBloom": receipt.Bloom, 1644 "type": hexutil.Uint(tx.Type()), 1645 } 1646 // Assign the effective gas price paid 1647 if !s.b.ChainConfig().IsLondon(bigblock) { 1648 fields["effectiveGasPrice"] = hexutil.Uint64(tx.GasPrice().Uint64()) 1649 } else { 1650 header, err := s.b.HeaderByHash(ctx, blockHash) 1651 if err != nil { 1652 return nil, err 1653 } 1654 gasPrice := new(big.Int).Add(header.BaseFee, tx.EffectiveGasTipValue(header.BaseFee)) 1655 fields["effectiveGasPrice"] = hexutil.Uint64(gasPrice.Uint64()) 1656 } 1657 // Assign receipt status or post state. 1658 if len(receipt.PostState) > 0 { 1659 fields["root"] = hexutil.Bytes(receipt.PostState) 1660 } else { 1661 fields["status"] = hexutil.Uint(receipt.Status) 1662 } 1663 if receipt.Logs == nil { 1664 fields["logs"] = []*types.Log{} 1665 } 1666 // If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation 1667 if receipt.ContractAddress != (common.Address{}) { 1668 fields["contractAddress"] = receipt.ContractAddress 1669 } 1670 return fields, nil 1671 } 1672 1673 // sign is a helper function that signs a transaction with the private key of the given address. 1674 func (s *TransactionAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) { 1675 // Look up the wallet containing the requested signer 1676 account := accounts.Account{Address: addr} 1677 1678 wallet, err := s.b.AccountManager().Find(account) 1679 if err != nil { 1680 return nil, err 1681 } 1682 // Request the wallet to sign the transaction 1683 return wallet.SignTx(account, tx, s.b.ChainConfig().ChainID) 1684 } 1685 1686 // SubmitTransaction is a helper function that submits tx to txPool and logs a message. 1687 func SubmitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) { 1688 // If the transaction fee cap is already specified, ensure the 1689 // fee of the given transaction is _reasonable_. 1690 if err := checkTxFee(tx.GasPrice(), tx.Gas(), b.RPCTxFeeCap()); err != nil { 1691 return common.Hash{}, err 1692 } 1693 if !b.UnprotectedAllowed() && !tx.Protected() { 1694 // Ensure only eip155 signed transactions are submitted if EIP155Required is set. 1695 return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC") 1696 } 1697 if err := b.SendTx(ctx, tx); err != nil { 1698 return common.Hash{}, err 1699 } 1700 // Print a log with full tx details for manual investigations and interventions 1701 signer := types.MakeSigner(b.ChainConfig(), b.CurrentBlock().Number()) 1702 from, err := types.Sender(signer, tx) 1703 if err != nil { 1704 return common.Hash{}, err 1705 } 1706 1707 if tx.To() == nil { 1708 addr := crypto.CreateAddress(from, tx.Nonce()) 1709 log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "contract", addr.Hex(), "value", tx.Value()) 1710 } else { 1711 log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "recipient", tx.To(), "value", tx.Value()) 1712 } 1713 return tx.Hash(), nil 1714 } 1715 1716 // SendTransaction creates a transaction for the given argument, sign it and submit it to the 1717 // transaction pool. 1718 func (s *TransactionAPI) SendTransaction(ctx context.Context, args TransactionArgs) (common.Hash, error) { 1719 // Look up the wallet containing the requested signer 1720 account := accounts.Account{Address: args.from()} 1721 1722 wallet, err := s.b.AccountManager().Find(account) 1723 if err != nil { 1724 return common.Hash{}, err 1725 } 1726 1727 if args.Nonce == nil { 1728 // Hold the addresse's mutex around signing to prevent concurrent assignment of 1729 // the same nonce to multiple accounts. 1730 s.nonceLock.LockAddr(args.from()) 1731 defer s.nonceLock.UnlockAddr(args.from()) 1732 } 1733 1734 // Set some sanity defaults and terminate on failure 1735 if err := args.setDefaults(ctx, s.b); err != nil { 1736 return common.Hash{}, err 1737 } 1738 // Assemble the transaction and sign with the wallet 1739 tx := args.toTransaction() 1740 1741 signed, err := wallet.SignTx(account, tx, s.b.ChainConfig().ChainID) 1742 if err != nil { 1743 return common.Hash{}, err 1744 } 1745 return SubmitTransaction(ctx, s.b, signed) 1746 } 1747 1748 // FillTransaction fills the defaults (nonce, gas, gasPrice or 1559 fields) 1749 // on a given unsigned transaction, and returns it to the caller for further 1750 // processing (signing + broadcast). 1751 func (s *TransactionAPI) FillTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) { 1752 // Set some sanity defaults and terminate on failure 1753 if err := args.setDefaults(ctx, s.b); err != nil { 1754 return nil, err 1755 } 1756 // Assemble the transaction and obtain rlp 1757 tx := args.toTransaction() 1758 data, err := tx.MarshalBinary() 1759 if err != nil { 1760 return nil, err 1761 } 1762 return &SignTransactionResult{data, tx}, nil 1763 } 1764 1765 // SendRawTransaction will add the signed transaction to the transaction pool. 1766 // The sender is responsible for signing the transaction and using the correct nonce. 1767 func (s *TransactionAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) { 1768 tx := new(types.Transaction) 1769 if err := tx.UnmarshalBinary(input); err != nil { 1770 return common.Hash{}, err 1771 } 1772 return SubmitTransaction(ctx, s.b, tx) 1773 } 1774 1775 // Sign calculates an ECDSA signature for: 1776 // keccak256("\x19Ethereum Signed Message:\n" + len(message) + message). 1777 // 1778 // Note, the produced signature conforms to the secp256k1 curve R, S and V values, 1779 // where the V value will be 27 or 28 for legacy reasons. 1780 // 1781 // The account associated with addr must be unlocked. 1782 // 1783 // https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign 1784 func (s *TransactionAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) { 1785 // Look up the wallet containing the requested signer 1786 account := accounts.Account{Address: addr} 1787 1788 wallet, err := s.b.AccountManager().Find(account) 1789 if err != nil { 1790 return nil, err 1791 } 1792 // Sign the requested hash with the wallet 1793 signature, err := wallet.SignText(account, data) 1794 if err == nil { 1795 signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper 1796 } 1797 return signature, err 1798 } 1799 1800 // SignTransactionResult represents a RLP encoded signed transaction. 1801 type SignTransactionResult struct { 1802 Raw hexutil.Bytes `json:"raw"` 1803 Tx *types.Transaction `json:"tx"` 1804 } 1805 1806 // SignTransaction will sign the given transaction with the from account. 1807 // The node needs to have the private key of the account corresponding with 1808 // the given from address and it needs to be unlocked. 1809 func (s *TransactionAPI) SignTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) { 1810 if args.Gas == nil { 1811 return nil, fmt.Errorf("gas not specified") 1812 } 1813 if args.GasPrice == nil && (args.MaxPriorityFeePerGas == nil || args.MaxFeePerGas == nil) { 1814 return nil, fmt.Errorf("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas") 1815 } 1816 if args.Nonce == nil { 1817 return nil, fmt.Errorf("nonce not specified") 1818 } 1819 if err := args.setDefaults(ctx, s.b); err != nil { 1820 return nil, err 1821 } 1822 // Before actually sign the transaction, ensure the transaction fee is reasonable. 1823 tx := args.toTransaction() 1824 if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil { 1825 return nil, err 1826 } 1827 signed, err := s.sign(args.from(), tx) 1828 if err != nil { 1829 return nil, err 1830 } 1831 data, err := signed.MarshalBinary() 1832 if err != nil { 1833 return nil, err 1834 } 1835 return &SignTransactionResult{data, signed}, nil 1836 } 1837 1838 // PendingTransactions returns the transactions that are in the transaction pool 1839 // and have a from address that is one of the accounts this node manages. 1840 func (s *TransactionAPI) PendingTransactions() ([]*RPCTransaction, error) { 1841 pending, err := s.b.GetPoolTransactions() 1842 if err != nil { 1843 return nil, err 1844 } 1845 accounts := make(map[common.Address]struct{}) 1846 for _, wallet := range s.b.AccountManager().Wallets() { 1847 for _, account := range wallet.Accounts() { 1848 accounts[account.Address] = struct{}{} 1849 } 1850 } 1851 curHeader := s.b.CurrentHeader() 1852 transactions := make([]*RPCTransaction, 0, len(pending)) 1853 for _, tx := range pending { 1854 from, _ := types.Sender(s.signer, tx) 1855 if _, exists := accounts[from]; exists { 1856 transactions = append(transactions, newRPCPendingTransaction(tx, curHeader, s.b.ChainConfig())) 1857 } 1858 } 1859 return transactions, nil 1860 } 1861 1862 // Resend accepts an existing transaction and a new gas price and limit. It will remove 1863 // the given transaction from the pool and reinsert it with the new gas price and limit. 1864 func (s *TransactionAPI) Resend(ctx context.Context, sendArgs TransactionArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) { 1865 if sendArgs.Nonce == nil { 1866 return common.Hash{}, fmt.Errorf("missing transaction nonce in transaction spec") 1867 } 1868 if err := sendArgs.setDefaults(ctx, s.b); err != nil { 1869 return common.Hash{}, err 1870 } 1871 matchTx := sendArgs.toTransaction() 1872 1873 // Before replacing the old transaction, ensure the _new_ transaction fee is reasonable. 1874 var price = matchTx.GasPrice() 1875 if gasPrice != nil { 1876 price = gasPrice.ToInt() 1877 } 1878 var gas = matchTx.Gas() 1879 if gasLimit != nil { 1880 gas = uint64(*gasLimit) 1881 } 1882 if err := checkTxFee(price, gas, s.b.RPCTxFeeCap()); err != nil { 1883 return common.Hash{}, err 1884 } 1885 // Iterate the pending list for replacement 1886 pending, err := s.b.GetPoolTransactions() 1887 if err != nil { 1888 return common.Hash{}, err 1889 } 1890 for _, p := range pending { 1891 wantSigHash := s.signer.Hash(matchTx) 1892 pFrom, err := types.Sender(s.signer, p) 1893 if err == nil && pFrom == sendArgs.from() && s.signer.Hash(p) == wantSigHash { 1894 // Match. Re-sign and send the transaction. 1895 if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 { 1896 sendArgs.GasPrice = gasPrice 1897 } 1898 if gasLimit != nil && *gasLimit != 0 { 1899 sendArgs.Gas = gasLimit 1900 } 1901 signedTx, err := s.sign(sendArgs.from(), sendArgs.toTransaction()) 1902 if err != nil { 1903 return common.Hash{}, err 1904 } 1905 if err = s.b.SendTx(ctx, signedTx); err != nil { 1906 return common.Hash{}, err 1907 } 1908 return signedTx.Hash(), nil 1909 } 1910 } 1911 return common.Hash{}, fmt.Errorf("transaction %#x not found", matchTx.Hash()) 1912 } 1913 1914 // DebugAPI is the collection of Ethereum APIs exposed over the debugging 1915 // namespace. 1916 type DebugAPI struct { 1917 b Backend 1918 } 1919 1920 // NewDebugAPI creates a new instance of DebugAPI. 1921 func NewDebugAPI(b Backend) *DebugAPI { 1922 return &DebugAPI{b: b} 1923 } 1924 1925 // GetHeaderRlp retrieves the RLP encoded for of a single header. 1926 func (api *DebugAPI) GetHeaderRlp(ctx context.Context, number uint64) (hexutil.Bytes, error) { 1927 header, _ := api.b.HeaderByNumber(ctx, rpc.BlockNumber(number)) 1928 if header == nil { 1929 return nil, fmt.Errorf("header #%d not found", number) 1930 } 1931 return rlp.EncodeToBytes(header) 1932 } 1933 1934 // GetBlockRlp retrieves the RLP encoded for of a single block. 1935 func (api *DebugAPI) GetBlockRlp(ctx context.Context, number uint64) (hexutil.Bytes, error) { 1936 block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) 1937 if block == nil { 1938 return nil, fmt.Errorf("block #%d not found", number) 1939 } 1940 return rlp.EncodeToBytes(block) 1941 } 1942 1943 // GetRawReceipts retrieves the binary-encoded raw receipts of a single block. 1944 func (api *DebugAPI) GetRawReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]hexutil.Bytes, error) { 1945 var hash common.Hash 1946 if h, ok := blockNrOrHash.Hash(); ok { 1947 hash = h 1948 } else { 1949 block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash) 1950 if err != nil { 1951 return nil, err 1952 } 1953 hash = block.Hash() 1954 } 1955 receipts, err := api.b.GetReceipts(ctx, hash) 1956 if err != nil { 1957 return nil, err 1958 } 1959 result := make([]hexutil.Bytes, len(receipts)) 1960 for i, receipt := range receipts { 1961 b, err := receipt.MarshalBinary() 1962 if err != nil { 1963 return nil, err 1964 } 1965 result[i] = b 1966 } 1967 return result, nil 1968 } 1969 1970 // PrintBlock retrieves a block and returns its pretty printed form. 1971 func (api *DebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) { 1972 block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) 1973 if block == nil { 1974 return "", fmt.Errorf("block #%d not found", number) 1975 } 1976 return spew.Sdump(block), nil 1977 } 1978 1979 // SeedHash retrieves the seed hash of a block. 1980 func (api *DebugAPI) SeedHash(ctx context.Context, number uint64) (string, error) { 1981 block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number)) 1982 if block == nil { 1983 return "", fmt.Errorf("block #%d not found", number) 1984 } 1985 return fmt.Sprintf("%#x", ethash.SeedHash(number)), nil 1986 } 1987 1988 // ChaindbProperty returns leveldb properties of the key-value database. 1989 func (api *DebugAPI) ChaindbProperty(property string) (string, error) { 1990 if property == "" { 1991 property = "leveldb.stats" 1992 } else if !strings.HasPrefix(property, "leveldb.") { 1993 property = "leveldb." + property 1994 } 1995 return api.b.ChainDb().Stat(property) 1996 } 1997 1998 // ChaindbCompact flattens the entire key-value database into a single level, 1999 // removing all unused slots and merging all keys. 2000 func (api *DebugAPI) ChaindbCompact() error { 2001 for b := byte(0); b < 255; b++ { 2002 log.Info("Compacting chain database", "range", fmt.Sprintf("0x%0.2X-0x%0.2X", b, b+1)) 2003 if err := api.b.ChainDb().Compact([]byte{b}, []byte{b + 1}); err != nil { 2004 log.Error("Database compaction failed", "err", err) 2005 return err 2006 } 2007 } 2008 return nil 2009 } 2010 2011 // SetHead rewinds the head of the blockchain to a previous block. 2012 func (api *DebugAPI) SetHead(number hexutil.Uint64) { 2013 api.b.SetHead(uint64(number)) 2014 } 2015 2016 // NetAPI offers network related RPC methods 2017 type NetAPI struct { 2018 net *p2p.Server 2019 networkVersion uint64 2020 } 2021 2022 // NewNetAPI creates a new net API instance. 2023 func NewNetAPI(net *p2p.Server, networkVersion uint64) *NetAPI { 2024 return &NetAPI{net, networkVersion} 2025 } 2026 2027 // Listening returns an indication if the node is listening for network connections. 2028 func (s *NetAPI) Listening() bool { 2029 return true // always listening 2030 } 2031 2032 // PeerCount returns the number of connected peers 2033 func (s *NetAPI) PeerCount() hexutil.Uint { 2034 return hexutil.Uint(s.net.PeerCount()) 2035 } 2036 2037 // Version returns the current ethereum protocol version. 2038 func (s *NetAPI) Version() string { 2039 return fmt.Sprintf("%d", s.networkVersion) 2040 } 2041 2042 // checkTxFee is an internal function used to check whether the fee of 2043 // the given transaction is _reasonable_(under the cap). 2044 func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error { 2045 // Short circuit if there is no cap for transaction fee at all. 2046 if cap == 0 { 2047 return nil 2048 } 2049 feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether))) 2050 feeFloat, _ := feeEth.Float64() 2051 if feeFloat > cap { 2052 return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap) 2053 } 2054 return nil 2055 } 2056 2057 // toHexSlice creates a slice of hex-strings based on []byte. 2058 func toHexSlice(b [][]byte) []string { 2059 r := make([]string, len(b)) 2060 for i := range b { 2061 r[i] = hexutil.Encode(b[i]) 2062 } 2063 return r 2064 }