github.com/ava-labs/subnet-evm@v0.6.4/internal/ethapi/api.go (about)

     1  // (c) 2019-2020, Ava Labs, Inc.
     2  //
     3  // This file is a derived work, based on the go-ethereum library whose original
     4  // notices appear below.
     5  //
     6  // It is distributed under a license compatible with the licensing terms of the
     7  // original code from which it is derived.
     8  //
     9  // Much love to the original authors for their work.
    10  // **********
    11  // Copyright 2015 The go-ethereum Authors
    12  // This file is part of the go-ethereum library.
    13  //
    14  // The go-ethereum library is free software: you can redistribute it and/or modify
    15  // it under the terms of the GNU Lesser General Public License as published by
    16  // the Free Software Foundation, either version 3 of the License, or
    17  // (at your option) any later version.
    18  //
    19  // The go-ethereum library is distributed in the hope that it will be useful,
    20  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    21  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    22  // GNU Lesser General Public License for more details.
    23  //
    24  // You should have received a copy of the GNU Lesser General Public License
    25  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    26  
    27  package ethapi
    28  
    29  import (
    30  	"context"
    31  	"encoding/hex"
    32  	"errors"
    33  	"fmt"
    34  	"math/big"
    35  	"strings"
    36  	"time"
    37  
    38  	"github.com/ava-labs/subnet-evm/accounts"
    39  	"github.com/ava-labs/subnet-evm/accounts/keystore"
    40  	"github.com/ava-labs/subnet-evm/accounts/scwallet"
    41  	"github.com/ava-labs/subnet-evm/consensus"
    42  	"github.com/ava-labs/subnet-evm/core"
    43  	"github.com/ava-labs/subnet-evm/core/state"
    44  	"github.com/ava-labs/subnet-evm/core/types"
    45  	"github.com/ava-labs/subnet-evm/core/vm"
    46  	"github.com/ava-labs/subnet-evm/eth/tracers/logger"
    47  	"github.com/ava-labs/subnet-evm/params"
    48  	"github.com/ava-labs/subnet-evm/rpc"
    49  	"github.com/ava-labs/subnet-evm/trie"
    50  	"github.com/ava-labs/subnet-evm/vmerrs"
    51  	"github.com/davecgh/go-spew/spew"
    52  	"github.com/ethereum/go-ethereum/common"
    53  	"github.com/ethereum/go-ethereum/common/hexutil"
    54  	"github.com/ethereum/go-ethereum/common/math"
    55  	"github.com/ethereum/go-ethereum/crypto"
    56  	"github.com/ethereum/go-ethereum/log"
    57  	"github.com/ethereum/go-ethereum/rlp"
    58  	"github.com/tyler-smith/go-bip39"
    59  )
    60  
    61  // EthereumAPI provides an API to access Ethereum related information.
    62  type EthereumAPI struct {
    63  	b Backend
    64  }
    65  
    66  // NewEthereumAPI creates a new Ethereum protocol API.
    67  func NewEthereumAPI(b Backend) *EthereumAPI {
    68  	return &EthereumAPI{b}
    69  }
    70  
    71  // GasPrice returns a suggestion for a gas price for legacy transactions.
    72  func (s *EthereumAPI) GasPrice(ctx context.Context) (*hexutil.Big, error) {
    73  	gasPrice, err := s.b.SuggestPrice(ctx)
    74  	if err != nil {
    75  		return nil, err
    76  	}
    77  	return (*hexutil.Big)(gasPrice), err
    78  }
    79  
    80  // BaseFee returns an estimate for what the base fee will be on the next block if
    81  // it is produced now.
    82  func (s *EthereumAPI) BaseFee(ctx context.Context) (*hexutil.Big, error) {
    83  	baseFee, err := s.b.EstimateBaseFee(ctx)
    84  	if err != nil {
    85  		return nil, err
    86  	}
    87  	return (*hexutil.Big)(baseFee), err
    88  }
    89  
    90  // MaxPriorityFeePerGas returns a suggestion for a gas tip cap for dynamic fee transactions.
    91  func (s *EthereumAPI) MaxPriorityFeePerGas(ctx context.Context) (*hexutil.Big, error) {
    92  	tipcap, err := s.b.SuggestGasTipCap(ctx)
    93  	if err != nil {
    94  		return nil, err
    95  	}
    96  	return (*hexutil.Big)(tipcap), err
    97  }
    98  
    99  type feeHistoryResult struct {
   100  	OldestBlock  *hexutil.Big     `json:"oldestBlock"`
   101  	Reward       [][]*hexutil.Big `json:"reward,omitempty"`
   102  	BaseFee      []*hexutil.Big   `json:"baseFeePerGas,omitempty"`
   103  	GasUsedRatio []float64        `json:"gasUsedRatio"`
   104  }
   105  
   106  // FeeHistory returns the fee market history.
   107  func (s *EthereumAPI) FeeHistory(ctx context.Context, blockCount math.HexOrDecimal64, lastBlock rpc.BlockNumber, rewardPercentiles []float64) (*feeHistoryResult, error) {
   108  	oldest, reward, baseFee, gasUsed, err := s.b.FeeHistory(ctx, uint64(blockCount), lastBlock, rewardPercentiles)
   109  	if err != nil {
   110  		return nil, err
   111  	}
   112  	results := &feeHistoryResult{
   113  		OldestBlock:  (*hexutil.Big)(oldest),
   114  		GasUsedRatio: gasUsed,
   115  	}
   116  	if reward != nil {
   117  		results.Reward = make([][]*hexutil.Big, len(reward))
   118  		for i, w := range reward {
   119  			results.Reward[i] = make([]*hexutil.Big, len(w))
   120  			for j, v := range w {
   121  				results.Reward[i][j] = (*hexutil.Big)(v)
   122  			}
   123  		}
   124  	}
   125  	if baseFee != nil {
   126  		results.BaseFee = make([]*hexutil.Big, len(baseFee))
   127  		for i, v := range baseFee {
   128  			results.BaseFee[i] = (*hexutil.Big)(v)
   129  		}
   130  	}
   131  	return results, nil
   132  }
   133  
   134  // Syncing allows the caller to determine whether the chain is syncing or not.
   135  // In geth, the response is either a map representing an ethereum.SyncProgress
   136  // struct or "false" (indicating the chain is not syncing).
   137  // In subnet-evm, avalanchego prevents API calls unless bootstrapping is complete,
   138  // so we always return false here for API compatibility.
   139  func (s *EthereumAPI) Syncing() (interface{}, error) {
   140  	return false, nil
   141  }
   142  
   143  // TxPoolAPI offers and API for the transaction pool. It only operates on data that is non-confidential.
   144  type TxPoolAPI struct {
   145  	b Backend
   146  }
   147  
   148  // NewTxPoolAPI creates a new tx pool service that gives information about the transaction pool.
   149  func NewTxPoolAPI(b Backend) *TxPoolAPI {
   150  	return &TxPoolAPI{b}
   151  }
   152  
   153  // Content returns the transactions contained within the transaction pool.
   154  func (s *TxPoolAPI) Content() map[string]map[string]map[string]*RPCTransaction {
   155  	content := map[string]map[string]map[string]*RPCTransaction{
   156  		"pending": make(map[string]map[string]*RPCTransaction),
   157  		"queued":  make(map[string]map[string]*RPCTransaction),
   158  	}
   159  	pending, queue := s.b.TxPoolContent()
   160  	curHeader := s.b.CurrentHeader()
   161  	estimatedBaseFee, _ := s.b.EstimateBaseFee(context.Background())
   162  	// Flatten the pending transactions
   163  	for account, txs := range pending {
   164  		dump := make(map[string]*RPCTransaction)
   165  		for _, tx := range txs {
   166  			dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCTransaction(tx, curHeader, estimatedBaseFee, s.b.ChainConfig())
   167  		}
   168  		content["pending"][account.Hex()] = dump
   169  	}
   170  	// Flatten the queued transactions
   171  	for account, txs := range queue {
   172  		dump := make(map[string]*RPCTransaction)
   173  		for _, tx := range txs {
   174  			dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCTransaction(tx, curHeader, estimatedBaseFee, s.b.ChainConfig())
   175  		}
   176  		content["queued"][account.Hex()] = dump
   177  	}
   178  	return content
   179  }
   180  
   181  // ContentFrom returns the transactions contained within the transaction pool.
   182  func (s *TxPoolAPI) ContentFrom(addr common.Address) map[string]map[string]*RPCTransaction {
   183  	content := make(map[string]map[string]*RPCTransaction, 2)
   184  	pending, queue := s.b.TxPoolContentFrom(addr)
   185  	curHeader := s.b.CurrentHeader()
   186  	estimatedBaseFee, _ := s.b.EstimateBaseFee(context.Background())
   187  
   188  	// Build the pending transactions
   189  	dump := make(map[string]*RPCTransaction, len(pending))
   190  	for _, tx := range pending {
   191  		dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCTransaction(tx, curHeader, estimatedBaseFee, s.b.ChainConfig())
   192  	}
   193  	content["pending"] = dump
   194  
   195  	// Build the queued transactions
   196  	dump = make(map[string]*RPCTransaction, len(queue))
   197  	for _, tx := range queue {
   198  		dump[fmt.Sprintf("%d", tx.Nonce())] = NewRPCTransaction(tx, curHeader, estimatedBaseFee, s.b.ChainConfig())
   199  	}
   200  	content["queued"] = dump
   201  
   202  	return content
   203  }
   204  
   205  // Status returns the number of pending and queued transaction in the pool.
   206  func (s *TxPoolAPI) Status() map[string]hexutil.Uint {
   207  	pending, queue := s.b.Stats()
   208  	return map[string]hexutil.Uint{
   209  		"pending": hexutil.Uint(pending),
   210  		"queued":  hexutil.Uint(queue),
   211  	}
   212  }
   213  
   214  // Inspect retrieves the content of the transaction pool and flattens it into an
   215  // easily inspectable list.
   216  func (s *TxPoolAPI) Inspect() map[string]map[string]map[string]string {
   217  	content := map[string]map[string]map[string]string{
   218  		"pending": make(map[string]map[string]string),
   219  		"queued":  make(map[string]map[string]string),
   220  	}
   221  	pending, queue := s.b.TxPoolContent()
   222  
   223  	// Define a formatter to flatten a transaction into a string
   224  	var format = func(tx *types.Transaction) string {
   225  		if to := tx.To(); to != nil {
   226  			return fmt.Sprintf("%s: %v wei + %v gas × %v wei", tx.To().Hex(), tx.Value(), tx.Gas(), tx.GasPrice())
   227  		}
   228  		return fmt.Sprintf("contract creation: %v wei + %v gas × %v wei", tx.Value(), tx.Gas(), tx.GasPrice())
   229  	}
   230  	// Flatten the pending transactions
   231  	for account, txs := range pending {
   232  		dump := make(map[string]string)
   233  		for _, tx := range txs {
   234  			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
   235  		}
   236  		content["pending"][account.Hex()] = dump
   237  	}
   238  	// Flatten the queued transactions
   239  	for account, txs := range queue {
   240  		dump := make(map[string]string)
   241  		for _, tx := range txs {
   242  			dump[fmt.Sprintf("%d", tx.Nonce())] = format(tx)
   243  		}
   244  		content["queued"][account.Hex()] = dump
   245  	}
   246  	return content
   247  }
   248  
   249  // EthereumAccountAPI provides an API to access accounts managed by this node.
   250  // It offers only methods that can retrieve accounts.
   251  type EthereumAccountAPI struct {
   252  	am *accounts.Manager
   253  }
   254  
   255  // NewEthereumAccountAPI creates a new EthereumAccountAPI.
   256  func NewEthereumAccountAPI(am *accounts.Manager) *EthereumAccountAPI {
   257  	return &EthereumAccountAPI{am: am}
   258  }
   259  
   260  // Accounts returns the collection of accounts this node manages.
   261  func (s *EthereumAccountAPI) Accounts() []common.Address {
   262  	return s.am.Accounts()
   263  }
   264  
   265  // PersonalAccountAPI provides an API to access accounts managed by this node.
   266  // It offers methods to create, (un)lock en list accounts. Some methods accept
   267  // passwords and are therefore considered private by default.
   268  type PersonalAccountAPI struct {
   269  	am        *accounts.Manager
   270  	nonceLock *AddrLocker
   271  	b         Backend
   272  }
   273  
   274  // NewPersonalAccountAPI create a new PersonalAccountAPI.
   275  func NewPersonalAccountAPI(b Backend, nonceLock *AddrLocker) *PersonalAccountAPI {
   276  	return &PersonalAccountAPI{
   277  		am:        b.AccountManager(),
   278  		nonceLock: nonceLock,
   279  		b:         b,
   280  	}
   281  }
   282  
   283  // ListAccounts will return a list of addresses for accounts this node manages.
   284  func (s *PersonalAccountAPI) ListAccounts() []common.Address {
   285  	return s.am.Accounts()
   286  }
   287  
   288  // rawWallet is a JSON representation of an accounts.Wallet interface, with its
   289  // data contents extracted into plain fields.
   290  type rawWallet struct {
   291  	URL      string             `json:"url"`
   292  	Status   string             `json:"status"`
   293  	Failure  string             `json:"failure,omitempty"`
   294  	Accounts []accounts.Account `json:"accounts,omitempty"`
   295  }
   296  
   297  // ListWallets will return a list of wallets this node manages.
   298  func (s *PersonalAccountAPI) ListWallets() []rawWallet {
   299  	wallets := make([]rawWallet, 0) // return [] instead of nil if empty
   300  	for _, wallet := range s.am.Wallets() {
   301  		status, failure := wallet.Status()
   302  
   303  		raw := rawWallet{
   304  			URL:      wallet.URL().String(),
   305  			Status:   status,
   306  			Accounts: wallet.Accounts(),
   307  		}
   308  		if failure != nil {
   309  			raw.Failure = failure.Error()
   310  		}
   311  		wallets = append(wallets, raw)
   312  	}
   313  	return wallets
   314  }
   315  
   316  // OpenWallet initiates a hardware wallet opening procedure, establishing a USB
   317  // connection and attempting to authenticate via the provided passphrase. Note,
   318  // the method may return an extra challenge requiring a second open (e.g. the
   319  // Trezor PIN matrix challenge).
   320  func (s *PersonalAccountAPI) OpenWallet(url string, passphrase *string) error {
   321  	wallet, err := s.am.Wallet(url)
   322  	if err != nil {
   323  		return err
   324  	}
   325  	pass := ""
   326  	if passphrase != nil {
   327  		pass = *passphrase
   328  	}
   329  	return wallet.Open(pass)
   330  }
   331  
   332  // DeriveAccount requests an HD wallet to derive a new account, optionally pinning
   333  // it for later reuse.
   334  func (s *PersonalAccountAPI) DeriveAccount(url string, path string, pin *bool) (accounts.Account, error) {
   335  	wallet, err := s.am.Wallet(url)
   336  	if err != nil {
   337  		return accounts.Account{}, err
   338  	}
   339  	derivPath, err := accounts.ParseDerivationPath(path)
   340  	if err != nil {
   341  		return accounts.Account{}, err
   342  	}
   343  	if pin == nil {
   344  		pin = new(bool)
   345  	}
   346  	return wallet.Derive(derivPath, *pin)
   347  }
   348  
   349  // NewAccount will create a new account and returns the address for the new account.
   350  func (s *PersonalAccountAPI) NewAccount(password string) (common.AddressEIP55, error) {
   351  	ks, err := fetchKeystore(s.am)
   352  	if err != nil {
   353  		return common.AddressEIP55{}, err
   354  	}
   355  	acc, err := ks.NewAccount(password)
   356  	if err == nil {
   357  		addrEIP55 := common.AddressEIP55(acc.Address)
   358  		log.Info("Your new key was generated", "address", addrEIP55.String())
   359  		log.Warn("Please backup your key file!", "path", acc.URL.Path)
   360  		log.Warn("Please remember your password!")
   361  		return addrEIP55, nil
   362  	}
   363  	return common.AddressEIP55{}, err
   364  }
   365  
   366  // fetchKeystore retrieves the encrypted keystore from the account manager.
   367  func fetchKeystore(am *accounts.Manager) (*keystore.KeyStore, error) {
   368  	if ks := am.Backends(keystore.KeyStoreType); len(ks) > 0 {
   369  		return ks[0].(*keystore.KeyStore), nil
   370  	}
   371  	return nil, errors.New("local keystore not used")
   372  }
   373  
   374  // ImportRawKey stores the given hex encoded ECDSA key into the key directory,
   375  // encrypting it with the passphrase.
   376  func (s *PersonalAccountAPI) ImportRawKey(privkey string, password string) (common.Address, error) {
   377  	key, err := crypto.HexToECDSA(privkey)
   378  	if err != nil {
   379  		return common.Address{}, err
   380  	}
   381  	ks, err := fetchKeystore(s.am)
   382  	if err != nil {
   383  		return common.Address{}, err
   384  	}
   385  	acc, err := ks.ImportECDSA(key, password)
   386  	return acc.Address, err
   387  }
   388  
   389  // UnlockAccount will unlock the account associated with the given address with
   390  // the given password for duration seconds. If duration is nil it will use a
   391  // default of 300 seconds. It returns an indication if the account was unlocked.
   392  func (s *PersonalAccountAPI) UnlockAccount(ctx context.Context, addr common.Address, password string, duration *uint64) (bool, error) {
   393  	// When the API is exposed by external RPC(http, ws etc), unless the user
   394  	// explicitly specifies to allow the insecure account unlocking, otherwise
   395  	// it is disabled.
   396  	if s.b.ExtRPCEnabled() && !s.b.AccountManager().Config().InsecureUnlockAllowed {
   397  		return false, errors.New("account unlock with HTTP access is forbidden")
   398  	}
   399  
   400  	const max = uint64(time.Duration(math.MaxInt64) / time.Second)
   401  	var d time.Duration
   402  	if duration == nil {
   403  		d = 300 * time.Second
   404  	} else if *duration > max {
   405  		return false, errors.New("unlock duration too large")
   406  	} else {
   407  		d = time.Duration(*duration) * time.Second
   408  	}
   409  	ks, err := fetchKeystore(s.am)
   410  	if err != nil {
   411  		return false, err
   412  	}
   413  	err = ks.TimedUnlock(accounts.Account{Address: addr}, password, d)
   414  	if err != nil {
   415  		log.Warn("Failed account unlock attempt", "address", addr, "err", err)
   416  	}
   417  	return err == nil, err
   418  }
   419  
   420  // LockAccount will lock the account associated with the given address when it's unlocked.
   421  func (s *PersonalAccountAPI) LockAccount(addr common.Address) bool {
   422  	if ks, err := fetchKeystore(s.am); err == nil {
   423  		return ks.Lock(addr) == nil
   424  	}
   425  	return false
   426  }
   427  
   428  // signTransaction sets defaults and signs the given transaction
   429  // NOTE: the caller needs to ensure that the nonceLock is held, if applicable,
   430  // and release it after the transaction has been submitted to the tx pool
   431  func (s *PersonalAccountAPI) signTransaction(ctx context.Context, args *TransactionArgs, passwd string) (*types.Transaction, error) {
   432  	// Look up the wallet containing the requested signer
   433  	account := accounts.Account{Address: args.from()}
   434  	wallet, err := s.am.Find(account)
   435  	if err != nil {
   436  		return nil, err
   437  	}
   438  	// Set some sanity defaults and terminate on failure
   439  	if err := args.setDefaults(ctx, s.b); err != nil {
   440  		return nil, err
   441  	}
   442  	// Assemble the transaction and sign with the wallet
   443  	tx := args.toTransaction()
   444  
   445  	return wallet.SignTxWithPassphrase(account, passwd, tx, s.b.ChainConfig().ChainID)
   446  }
   447  
   448  // SendTransaction will create a transaction from the given arguments and
   449  // tries to sign it with the key associated with args.From. If the given
   450  // passwd isn't able to decrypt the key it fails.
   451  func (s *PersonalAccountAPI) SendTransaction(ctx context.Context, args TransactionArgs, passwd string) (common.Hash, error) {
   452  	if args.Nonce == nil {
   453  		// Hold the mutex around signing to prevent concurrent assignment of
   454  		// the same nonce to multiple accounts.
   455  		s.nonceLock.LockAddr(args.from())
   456  		defer s.nonceLock.UnlockAddr(args.from())
   457  	}
   458  	signed, err := s.signTransaction(ctx, &args, passwd)
   459  	if err != nil {
   460  		log.Warn("Failed transaction send attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err)
   461  		return common.Hash{}, err
   462  	}
   463  	return SubmitTransaction(ctx, s.b, signed)
   464  }
   465  
   466  // SignTransaction will create a transaction from the given arguments and
   467  // tries to sign it with the key associated with args.From. If the given passwd isn't
   468  // able to decrypt the key it fails. The transaction is returned in RLP-form, not broadcast
   469  // to other nodes
   470  func (s *PersonalAccountAPI) SignTransaction(ctx context.Context, args TransactionArgs, passwd string) (*SignTransactionResult, error) {
   471  	// No need to obtain the noncelock mutex, since we won't be sending this
   472  	// tx into the transaction pool, but right back to the user
   473  	if args.From == nil {
   474  		return nil, errors.New("sender not specified")
   475  	}
   476  	if args.Gas == nil {
   477  		return nil, errors.New("gas not specified")
   478  	}
   479  	if args.GasPrice == nil && (args.MaxFeePerGas == nil || args.MaxPriorityFeePerGas == nil) {
   480  		return nil, errors.New("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas")
   481  	}
   482  	if args.Nonce == nil {
   483  		return nil, errors.New("nonce not specified")
   484  	}
   485  	// Before actually signing the transaction, ensure the transaction fee is reasonable.
   486  	tx := args.toTransaction()
   487  	if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil {
   488  		return nil, err
   489  	}
   490  	signed, err := s.signTransaction(ctx, &args, passwd)
   491  	if err != nil {
   492  		log.Warn("Failed transaction sign attempt", "from", args.from(), "to", args.To, "value", args.Value.ToInt(), "err", err)
   493  		return nil, err
   494  	}
   495  	data, err := signed.MarshalBinary()
   496  	if err != nil {
   497  		return nil, err
   498  	}
   499  	return &SignTransactionResult{data, signed}, nil
   500  }
   501  
   502  // Sign calculates an Ethereum ECDSA signature for:
   503  // keccak256("\x19Ethereum Signed Message:\n" + len(message) + message))
   504  //
   505  // Note, the produced signature conforms to the secp256k1 curve R, S and V values,
   506  // where the V value will be 27 or 28 for legacy reasons.
   507  //
   508  // The key used to calculate the signature is decrypted with the given password.
   509  //
   510  // https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_sign
   511  func (s *PersonalAccountAPI) Sign(ctx context.Context, data hexutil.Bytes, addr common.Address, passwd string) (hexutil.Bytes, error) {
   512  	// Look up the wallet containing the requested signer
   513  	account := accounts.Account{Address: addr}
   514  
   515  	wallet, err := s.b.AccountManager().Find(account)
   516  	if err != nil {
   517  		return nil, err
   518  	}
   519  	// Assemble sign the data with the wallet
   520  	signature, err := wallet.SignTextWithPassphrase(account, passwd, data)
   521  	if err != nil {
   522  		log.Warn("Failed data sign attempt", "address", addr, "err", err)
   523  		return nil, err
   524  	}
   525  	signature[crypto.RecoveryIDOffset] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
   526  	return signature, nil
   527  }
   528  
   529  // EcRecover returns the address for the account that was used to create the signature.
   530  // Note, this function is compatible with eth_sign and personal_sign. As such it recovers
   531  // the address of:
   532  // hash = keccak256("\x19Ethereum Signed Message:\n"${message length}${message})
   533  // addr = ecrecover(hash, signature)
   534  //
   535  // Note, the signature must conform to the secp256k1 curve R, S and V values, where
   536  // the V value must be 27 or 28 for legacy reasons.
   537  //
   538  // https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_ecRecover
   539  func (s *PersonalAccountAPI) EcRecover(ctx context.Context, data, sig hexutil.Bytes) (common.Address, error) {
   540  	if len(sig) != crypto.SignatureLength {
   541  		return common.Address{}, fmt.Errorf("signature must be %d bytes long", crypto.SignatureLength)
   542  	}
   543  	if sig[crypto.RecoveryIDOffset] != 27 && sig[crypto.RecoveryIDOffset] != 28 {
   544  		return common.Address{}, errors.New("invalid Ethereum signature (V is not 27 or 28)")
   545  	}
   546  	sig[crypto.RecoveryIDOffset] -= 27 // Transform yellow paper V from 27/28 to 0/1
   547  
   548  	rpk, err := crypto.SigToPub(accounts.TextHash(data), sig)
   549  	if err != nil {
   550  		return common.Address{}, err
   551  	}
   552  	return crypto.PubkeyToAddress(*rpk), nil
   553  }
   554  
   555  // InitializeWallet initializes a new wallet at the provided URL, by generating and returning a new private key.
   556  func (s *PersonalAccountAPI) InitializeWallet(ctx context.Context, url string) (string, error) {
   557  	wallet, err := s.am.Wallet(url)
   558  	if err != nil {
   559  		return "", err
   560  	}
   561  
   562  	entropy, err := bip39.NewEntropy(256)
   563  	if err != nil {
   564  		return "", err
   565  	}
   566  
   567  	mnemonic, err := bip39.NewMnemonic(entropy)
   568  	if err != nil {
   569  		return "", err
   570  	}
   571  
   572  	seed := bip39.NewSeed(mnemonic, "")
   573  
   574  	switch wallet := wallet.(type) {
   575  	case *scwallet.Wallet:
   576  		return mnemonic, wallet.Initialize(seed)
   577  	default:
   578  		return "", errors.New("specified wallet does not support initialization")
   579  	}
   580  }
   581  
   582  // Unpair deletes a pairing between wallet and geth.
   583  func (s *PersonalAccountAPI) Unpair(ctx context.Context, url string, pin string) error {
   584  	wallet, err := s.am.Wallet(url)
   585  	if err != nil {
   586  		return err
   587  	}
   588  
   589  	switch wallet := wallet.(type) {
   590  	case *scwallet.Wallet:
   591  		return wallet.Unpair([]byte(pin))
   592  	default:
   593  		return errors.New("specified wallet does not support pairing")
   594  	}
   595  }
   596  
   597  // BlockChainAPI provides an API to access Ethereum blockchain data.
   598  type BlockChainAPI struct {
   599  	b Backend
   600  }
   601  
   602  // NewBlockChainAPI creates a new Ethereum blockchain API.
   603  func NewBlockChainAPI(b Backend) *BlockChainAPI {
   604  	return &BlockChainAPI{b}
   605  }
   606  
   607  // ChainId is the EIP-155 replay-protection chain id for the current Ethereum chain config.
   608  //
   609  // Note, this method does not conform to EIP-695 because the configured chain ID is always
   610  // returned, regardless of the current head block. We used to return an error when the chain
   611  // wasn't synced up to a block where EIP-155 is enabled, but this behavior caused issues
   612  // in CL clients.
   613  func (api *BlockChainAPI) ChainId() *hexutil.Big {
   614  	return (*hexutil.Big)(api.b.ChainConfig().ChainID)
   615  }
   616  
   617  // BlockNumber returns the block number of the chain head.
   618  func (s *BlockChainAPI) BlockNumber() hexutil.Uint64 {
   619  	header, _ := s.b.HeaderByNumber(context.Background(), rpc.LatestBlockNumber) // latest header should always be available
   620  	return hexutil.Uint64(header.Number.Uint64())
   621  }
   622  
   623  // GetBalance returns the amount of wei for the given address in the state of the
   624  // given block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta
   625  // block numbers are also allowed.
   626  func (s *BlockChainAPI) GetBalance(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Big, error) {
   627  	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
   628  	if state == nil || err != nil {
   629  		return nil, err
   630  	}
   631  	return (*hexutil.Big)(state.GetBalance(address)), state.Error()
   632  }
   633  
   634  // Result structs for GetProof
   635  type AccountResult struct {
   636  	Address      common.Address  `json:"address"`
   637  	AccountProof []string        `json:"accountProof"`
   638  	Balance      *hexutil.Big    `json:"balance"`
   639  	CodeHash     common.Hash     `json:"codeHash"`
   640  	Nonce        hexutil.Uint64  `json:"nonce"`
   641  	StorageHash  common.Hash     `json:"storageHash"`
   642  	StorageProof []StorageResult `json:"storageProof"`
   643  }
   644  
   645  type StorageResult struct {
   646  	Key   string       `json:"key"`
   647  	Value *hexutil.Big `json:"value"`
   648  	Proof []string     `json:"proof"`
   649  }
   650  
   651  // proofList implements ethdb.KeyValueWriter and collects the proofs as
   652  // hex-strings for delivery to rpc-caller.
   653  type proofList []string
   654  
   655  func (n *proofList) Put(key []byte, value []byte) error {
   656  	*n = append(*n, hexutil.Encode(value))
   657  	return nil
   658  }
   659  
   660  func (n *proofList) Delete(key []byte) error {
   661  	panic("not supported")
   662  }
   663  
   664  // GetProof returns the Merkle-proof for a given account and optionally some storage keys.
   665  func (s *BlockChainAPI) GetProof(ctx context.Context, address common.Address, storageKeys []string, blockNrOrHash rpc.BlockNumberOrHash) (*AccountResult, error) {
   666  	var (
   667  		keys         = make([]common.Hash, len(storageKeys))
   668  		keyLengths   = make([]int, len(storageKeys))
   669  		storageProof = make([]StorageResult, len(storageKeys))
   670  
   671  		storageTrie state.Trie
   672  		storageHash = types.EmptyRootHash
   673  		codeHash    = types.EmptyCodeHash
   674  	)
   675  	// Deserialize all keys. This prevents state access on invalid input.
   676  	for i, hexKey := range storageKeys {
   677  		var err error
   678  		keys[i], keyLengths[i], err = decodeHash(hexKey)
   679  		if err != nil {
   680  			return nil, err
   681  		}
   682  	}
   683  	state, header, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
   684  	if state == nil || err != nil {
   685  		return nil, err
   686  	}
   687  	if storageRoot := state.GetStorageRoot(address); storageRoot != types.EmptyRootHash && storageRoot != (common.Hash{}) {
   688  		id := trie.StorageTrieID(header.Root, crypto.Keccak256Hash(address.Bytes()), storageRoot)
   689  		tr, err := trie.NewStateTrie(id, state.Database().TrieDB())
   690  		if err != nil {
   691  			return nil, err
   692  		}
   693  		storageTrie = tr
   694  	}
   695  	// If we have a storageTrie, the account exists and we must update
   696  	// the storage root hash and the code hash.
   697  	if storageTrie != nil {
   698  		storageHash = storageTrie.Hash()
   699  		codeHash = state.GetCodeHash(address)
   700  	}
   701  	// Create the proofs for the storageKeys.
   702  	for i, key := range keys {
   703  		// Output key encoding is a bit special: if the input was a 32-byte hash, it is
   704  		// returned as such. Otherwise, we apply the QUANTITY encoding mandated by the
   705  		// JSON-RPC spec for getProof. This behavior exists to preserve backwards
   706  		// compatibility with older client versions.
   707  		var outputKey string
   708  		if keyLengths[i] != 32 {
   709  			outputKey = hexutil.EncodeBig(key.Big())
   710  		} else {
   711  			outputKey = hexutil.Encode(key[:])
   712  		}
   713  
   714  		if storageTrie == nil {
   715  			storageProof[i] = StorageResult{outputKey, &hexutil.Big{}, []string{}}
   716  			continue
   717  		}
   718  		var proof proofList
   719  		if err := storageTrie.Prove(crypto.Keccak256(key.Bytes()), &proof); err != nil {
   720  			return nil, err
   721  		}
   722  		value := (*hexutil.Big)(state.GetState(address, key).Big())
   723  		storageProof[i] = StorageResult{outputKey, value, proof}
   724  	}
   725  
   726  	// Create the accountProof.
   727  	tr, err := trie.NewStateTrie(trie.StateTrieID(header.Root), state.Database().TrieDB())
   728  	if err != nil {
   729  		return nil, err
   730  	}
   731  	var accountProof proofList
   732  	if err := tr.Prove(crypto.Keccak256(address.Bytes()), &accountProof); err != nil {
   733  		return nil, err
   734  	}
   735  	return &AccountResult{
   736  		Address:      address,
   737  		AccountProof: accountProof,
   738  		Balance:      (*hexutil.Big)(state.GetBalance(address)),
   739  		CodeHash:     codeHash,
   740  		Nonce:        hexutil.Uint64(state.GetNonce(address)),
   741  		StorageHash:  storageHash,
   742  		StorageProof: storageProof,
   743  	}, state.Error()
   744  }
   745  
   746  // decodeHash parses a hex-encoded 32-byte hash. The input may optionally
   747  // be prefixed by 0x and can have a byte length up to 32.
   748  func decodeHash(s string) (h common.Hash, inputLength int, err error) {
   749  	if strings.HasPrefix(s, "0x") || strings.HasPrefix(s, "0X") {
   750  		s = s[2:]
   751  	}
   752  	if (len(s) & 1) > 0 {
   753  		s = "0" + s
   754  	}
   755  	b, err := hex.DecodeString(s)
   756  	if err != nil {
   757  		return common.Hash{}, 0, errors.New("hex string invalid")
   758  	}
   759  	if len(b) > 32 {
   760  		return common.Hash{}, len(b), errors.New("hex string too long, want at most 32 bytes")
   761  	}
   762  	return common.BytesToHash(b), len(b), nil
   763  }
   764  
   765  // GetHeaderByNumber returns the requested canonical block header.
   766  //   - When blockNr is -1 the chain pending header is returned.
   767  //   - When blockNr is -2 the chain latest header is returned.
   768  //   - When blockNr is -3 the chain finalized header is returned.
   769  //   - When blockNr is -4 the chain safe header is returned.
   770  func (s *BlockChainAPI) GetHeaderByNumber(ctx context.Context, number rpc.BlockNumber) (map[string]interface{}, error) {
   771  	header, err := s.b.HeaderByNumber(ctx, number)
   772  	if header != nil && err == nil {
   773  		response := s.rpcMarshalHeader(ctx, header)
   774  		// subnet-evm has no notion of a pending block
   775  		// if number == rpc.PendingBlockNumber {
   776  		// 	// Pending header need to nil out a few fields
   777  		// 	for _, field := range []string{"hash", "nonce", "miner"} {
   778  		// 		response[field] = nil
   779  		// 	}
   780  		// }
   781  		return response, err
   782  	}
   783  	return nil, err
   784  }
   785  
   786  // GetHeaderByHash returns the requested header by hash.
   787  func (s *BlockChainAPI) GetHeaderByHash(ctx context.Context, hash common.Hash) map[string]interface{} {
   788  	header, _ := s.b.HeaderByHash(ctx, hash)
   789  	if header != nil {
   790  		return s.rpcMarshalHeader(ctx, header)
   791  	}
   792  	return nil
   793  }
   794  
   795  // GetBlockByNumber returns the requested canonical block.
   796  //   - When blockNr is -1 the chain pending block is returned.
   797  //   - When blockNr is -2 the chain latest block is returned.
   798  //   - When blockNr is -3 the chain finalized block is returned.
   799  //   - When blockNr is -4 the chain safe block is returned.
   800  //   - When fullTx is true all transactions in the block are returned, otherwise
   801  //     only the transaction hash is returned.
   802  func (s *BlockChainAPI) GetBlockByNumber(ctx context.Context, number rpc.BlockNumber, fullTx bool) (map[string]interface{}, error) {
   803  	block, err := s.b.BlockByNumber(ctx, number)
   804  	if block != nil && err == nil {
   805  		response, err := s.rpcMarshalBlock(ctx, block, true, fullTx)
   806  		// subnet-evm has no notion of a pending block
   807  		// if err == nil && number == rpc.PendingBlockNumber {
   808  		// 	// Pending blocks need to nil out a few fields
   809  		// 	for _, field := range []string{"hash", "nonce", "miner"} {
   810  		// 		response[field] = nil
   811  		// 	}
   812  		// }
   813  		return response, err
   814  	}
   815  	return nil, err
   816  }
   817  
   818  // GetBlockByHash returns the requested block. When fullTx is true all transactions in the block are returned in full
   819  // detail, otherwise only the transaction hash is returned.
   820  func (s *BlockChainAPI) GetBlockByHash(ctx context.Context, hash common.Hash, fullTx bool) (map[string]interface{}, error) {
   821  	block, err := s.b.BlockByHash(ctx, hash)
   822  	if block != nil {
   823  		return s.rpcMarshalBlock(ctx, block, true, fullTx)
   824  	}
   825  	return nil, err
   826  }
   827  
   828  // GetUncleByBlockNumberAndIndex returns the uncle block for the given block number and index.
   829  func (s *BlockChainAPI) GetUncleByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) (map[string]interface{}, error) {
   830  	block, err := s.b.BlockByNumber(ctx, blockNr)
   831  	if block != nil {
   832  		uncles := block.Uncles()
   833  		if index >= hexutil.Uint(len(uncles)) {
   834  			log.Debug("Requested uncle not found", "number", blockNr, "hash", block.Hash(), "index", index)
   835  			return nil, nil
   836  		}
   837  		block = types.NewBlockWithHeader(uncles[index])
   838  		return s.rpcMarshalBlock(ctx, block, false, false)
   839  	}
   840  	return nil, err
   841  }
   842  
   843  // GetUncleByBlockHashAndIndex returns the uncle block for the given block hash and index.
   844  func (s *BlockChainAPI) GetUncleByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) (map[string]interface{}, error) {
   845  	block, err := s.b.BlockByHash(ctx, blockHash)
   846  	if block != nil {
   847  		uncles := block.Uncles()
   848  		if index >= hexutil.Uint(len(uncles)) {
   849  			log.Debug("Requested uncle not found", "number", block.Number(), "hash", blockHash, "index", index)
   850  			return nil, nil
   851  		}
   852  		block = types.NewBlockWithHeader(uncles[index])
   853  		return s.rpcMarshalBlock(ctx, block, false, false)
   854  	}
   855  	return nil, err
   856  }
   857  
   858  // GetUncleCountByBlockNumber returns number of uncles in the block for the given block number
   859  func (s *BlockChainAPI) GetUncleCountByBlockNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
   860  	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
   861  		n := hexutil.Uint(len(block.Uncles()))
   862  		return &n
   863  	}
   864  	return nil
   865  }
   866  
   867  // GetUncleCountByBlockHash returns number of uncles in the block for the given block hash
   868  func (s *BlockChainAPI) GetUncleCountByBlockHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
   869  	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
   870  		n := hexutil.Uint(len(block.Uncles()))
   871  		return &n
   872  	}
   873  	return nil
   874  }
   875  
   876  // GetCode returns the code stored at the given address in the state for the given block number.
   877  func (s *BlockChainAPI) GetCode(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
   878  	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
   879  	if state == nil || err != nil {
   880  		return nil, err
   881  	}
   882  	code := state.GetCode(address)
   883  	return code, state.Error()
   884  }
   885  
   886  // GetStorageAt returns the storage from the state at the given address, key and
   887  // block number. The rpc.LatestBlockNumber and rpc.PendingBlockNumber meta block
   888  // numbers are also allowed.
   889  func (s *BlockChainAPI) GetStorageAt(ctx context.Context, address common.Address, hexKey string, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
   890  	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
   891  	if state == nil || err != nil {
   892  		return nil, err
   893  	}
   894  	key, _, err := decodeHash(hexKey)
   895  	if err != nil {
   896  		return nil, fmt.Errorf("unable to decode storage key: %s", err)
   897  	}
   898  	res := state.GetState(address, key)
   899  	return res[:], state.Error()
   900  }
   901  
   902  // GetBlockReceipts returns the block receipts for the given block hash or number or tag.
   903  func (s *BlockChainAPI) GetBlockReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]map[string]interface{}, error) {
   904  	block, err := s.b.BlockByNumberOrHash(ctx, blockNrOrHash)
   905  	if block == nil || err != nil {
   906  		// When the block doesn't exist, the RPC method should return JSON null
   907  		// as per specification.
   908  		return nil, nil
   909  	}
   910  	receipts, err := s.b.GetReceipts(ctx, block.Hash())
   911  	if err != nil {
   912  		return nil, err
   913  	}
   914  	txs := block.Transactions()
   915  	if len(txs) != len(receipts) {
   916  		return nil, fmt.Errorf("receipts length mismatch: %d vs %d", len(txs), len(receipts))
   917  	}
   918  
   919  	// Derive the sender.
   920  	signer := types.MakeSigner(s.b.ChainConfig(), block.Number(), block.Time())
   921  
   922  	result := make([]map[string]interface{}, len(receipts))
   923  	for i, receipt := range receipts {
   924  		result[i] = marshalReceipt(receipt, block.Hash(), block.NumberU64(), signer, txs[i], i)
   925  	}
   926  
   927  	return result, nil
   928  }
   929  
   930  // OverrideAccount indicates the overriding fields of account during the execution
   931  // of a message call.
   932  // Note, state and stateDiff can't be specified at the same time. If state is
   933  // set, message execution will only use the data in the given state. Otherwise
   934  // if statDiff is set, all diff will be applied first and then execute the call
   935  // message.
   936  type OverrideAccount struct {
   937  	Nonce     *hexutil.Uint64              `json:"nonce"`
   938  	Code      *hexutil.Bytes               `json:"code"`
   939  	Balance   **hexutil.Big                `json:"balance"`
   940  	State     *map[common.Hash]common.Hash `json:"state"`
   941  	StateDiff *map[common.Hash]common.Hash `json:"stateDiff"`
   942  }
   943  
   944  // StateOverride is the collection of overridden accounts.
   945  type StateOverride map[common.Address]OverrideAccount
   946  
   947  // Apply overrides the fields of specified accounts into the given state.
   948  func (diff *StateOverride) Apply(state *state.StateDB) error {
   949  	if diff == nil {
   950  		return nil
   951  	}
   952  	for addr, account := range *diff {
   953  		// Override account nonce.
   954  		if account.Nonce != nil {
   955  			state.SetNonce(addr, uint64(*account.Nonce))
   956  		}
   957  		// Override account(contract) code.
   958  		if account.Code != nil {
   959  			state.SetCode(addr, *account.Code)
   960  		}
   961  		// Override account balance.
   962  		if account.Balance != nil {
   963  			state.SetBalance(addr, (*big.Int)(*account.Balance))
   964  		}
   965  		if account.State != nil && account.StateDiff != nil {
   966  			return fmt.Errorf("account %s has both 'state' and 'stateDiff'", addr.Hex())
   967  		}
   968  		// Replace entire state if caller requires.
   969  		if account.State != nil {
   970  			state.SetStorage(addr, *account.State)
   971  		}
   972  		// Apply state diff into specified accounts.
   973  		if account.StateDiff != nil {
   974  			for key, value := range *account.StateDiff {
   975  				state.SetState(addr, key, value)
   976  			}
   977  		}
   978  	}
   979  	// Now finalize the changes. Finalize is normally performed between transactions.
   980  	// By using finalize, the overrides are semantically behaving as
   981  	// if they were created in a transaction just before the tracing occur.
   982  	state.Finalise(false)
   983  	return nil
   984  }
   985  
   986  // BlockOverrides is a set of header fields to override.
   987  type BlockOverrides struct {
   988  	Number     *hexutil.Big
   989  	Difficulty *hexutil.Big
   990  	Time       *hexutil.Uint64
   991  	GasLimit   *hexutil.Uint64
   992  	Coinbase   *common.Address
   993  	BaseFee    *hexutil.Big
   994  }
   995  
   996  // Apply overrides the given header fields into the given block context.
   997  func (diff *BlockOverrides) Apply(blockCtx *vm.BlockContext) {
   998  	if diff == nil {
   999  		return
  1000  	}
  1001  	if diff.Number != nil {
  1002  		blockCtx.BlockNumber = diff.Number.ToInt()
  1003  	}
  1004  	if diff.Difficulty != nil {
  1005  		blockCtx.Difficulty = diff.Difficulty.ToInt()
  1006  	}
  1007  	if diff.Time != nil {
  1008  		blockCtx.Time = uint64(*diff.Time)
  1009  	}
  1010  	if diff.GasLimit != nil {
  1011  		blockCtx.GasLimit = uint64(*diff.GasLimit)
  1012  	}
  1013  	if diff.Coinbase != nil {
  1014  		blockCtx.Coinbase = *diff.Coinbase
  1015  	}
  1016  	if diff.BaseFee != nil {
  1017  		blockCtx.BaseFee = diff.BaseFee.ToInt()
  1018  	}
  1019  }
  1020  
  1021  // ChainContextBackend provides methods required to implement ChainContext.
  1022  type ChainContextBackend interface {
  1023  	Engine() consensus.Engine
  1024  	HeaderByNumber(context.Context, rpc.BlockNumber) (*types.Header, error)
  1025  }
  1026  
  1027  // ChainContext is an implementation of core.ChainContext. It's main use-case
  1028  // is instantiating a vm.BlockContext without having access to the BlockChain object.
  1029  type ChainContext struct {
  1030  	b   ChainContextBackend
  1031  	ctx context.Context
  1032  }
  1033  
  1034  // NewChainContext creates a new ChainContext object.
  1035  func NewChainContext(ctx context.Context, backend ChainContextBackend) *ChainContext {
  1036  	return &ChainContext{ctx: ctx, b: backend}
  1037  }
  1038  
  1039  func (context *ChainContext) Engine() consensus.Engine {
  1040  	return context.b.Engine()
  1041  }
  1042  
  1043  func (context *ChainContext) GetHeader(hash common.Hash, number uint64) *types.Header {
  1044  	// This method is called to get the hash for a block number when executing the BLOCKHASH
  1045  	// opcode. Hence no need to search for non-canonical blocks.
  1046  	header, err := context.b.HeaderByNumber(context.ctx, rpc.BlockNumber(number))
  1047  	if err != nil || header.Hash() != hash {
  1048  		return nil
  1049  	}
  1050  	return header
  1051  }
  1052  
  1053  func doCall(ctx context.Context, b Backend, args TransactionArgs, state *state.StateDB, header *types.Header, overrides *StateOverride, blockOverrides *BlockOverrides, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) {
  1054  	if err := overrides.Apply(state); err != nil {
  1055  		return nil, err
  1056  	}
  1057  
  1058  	// Setup context so it may be cancelled the call has completed
  1059  	// or, in case of unmetered gas, setup a context with a timeout.
  1060  	var cancel context.CancelFunc
  1061  	if timeout > 0 {
  1062  		ctx, cancel = context.WithTimeout(ctx, timeout)
  1063  	} else {
  1064  		ctx, cancel = context.WithCancel(ctx)
  1065  	}
  1066  	// Make sure the context is cancelled when the call has completed
  1067  	// this makes sure resources are cleaned up.
  1068  	defer cancel()
  1069  
  1070  	// Get a new instance of the EVM.
  1071  	msg, err := args.ToMessage(globalGasCap, header.BaseFee)
  1072  	if err != nil {
  1073  		return nil, err
  1074  	}
  1075  	blockCtx := core.NewEVMBlockContext(header, NewChainContext(ctx, b), nil)
  1076  	if blockOverrides != nil {
  1077  		blockOverrides.Apply(&blockCtx)
  1078  	}
  1079  	evm, vmError := b.GetEVM(ctx, msg, state, header, &vm.Config{NoBaseFee: true}, &blockCtx)
  1080  
  1081  	// Wait for the context to be done and cancel the evm. Even if the
  1082  	// EVM has finished, cancelling may be done (repeatedly)
  1083  	go func() {
  1084  		<-ctx.Done()
  1085  		evm.Cancel()
  1086  	}()
  1087  
  1088  	// Execute the message.
  1089  	gp := new(core.GasPool).AddGas(math.MaxUint64)
  1090  	result, err := core.ApplyMessage(evm, msg, gp)
  1091  	if err := vmError(); err != nil {
  1092  		return nil, err
  1093  	}
  1094  
  1095  	// If the timer caused an abort, return an appropriate error message
  1096  	if evm.Cancelled() {
  1097  		return nil, fmt.Errorf("execution aborted (timeout = %v)", timeout)
  1098  	}
  1099  	if err != nil {
  1100  		return result, fmt.Errorf("err: %w (supplied gas %d)", err, msg.GasLimit)
  1101  	}
  1102  	return result, nil
  1103  }
  1104  
  1105  func DoCall(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides, timeout time.Duration, globalGasCap uint64) (*core.ExecutionResult, error) {
  1106  	defer func(start time.Time) { log.Debug("Executing EVM call finished", "runtime", time.Since(start)) }(time.Now())
  1107  
  1108  	state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
  1109  	if state == nil || err != nil {
  1110  		return nil, err
  1111  	}
  1112  
  1113  	// If the request is for the pending block, override the block timestamp, number, and estimated
  1114  	// base fee, so that the check runs as if it were run on a newly generated block.
  1115  	if blkNumber, isNum := blockNrOrHash.Number(); isNum && blkNumber == rpc.PendingBlockNumber {
  1116  		// Override header with a copy to ensure the original header is not modified
  1117  		header = types.CopyHeader(header)
  1118  		// Grab the hash of the unmodified header, so that the modified header can point to the
  1119  		// prior block as its parent.
  1120  		parentHash := header.Hash()
  1121  		header.Time = uint64(time.Now().Unix())
  1122  		header.ParentHash = parentHash
  1123  		header.Number = new(big.Int).Add(header.Number, big.NewInt(1))
  1124  		estimatedBaseFee, err := b.EstimateBaseFee(ctx)
  1125  		if err != nil {
  1126  			return nil, err
  1127  		}
  1128  		header.BaseFee = estimatedBaseFee
  1129  	}
  1130  
  1131  	return doCall(ctx, b, args, state, header, overrides, blockOverrides, timeout, globalGasCap)
  1132  }
  1133  
  1134  // Call executes the given transaction on the state for the given block number.
  1135  //
  1136  // Additionally, the caller can specify a batch of contract for fields overriding.
  1137  //
  1138  // Note, this function doesn't make and changes in the state/blockchain and is
  1139  // useful to execute and retrieve values.
  1140  func (s *BlockChainAPI) Call(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash, overrides *StateOverride, blockOverrides *BlockOverrides) (hexutil.Bytes, error) {
  1141  	if blockNrOrHash == nil {
  1142  		latest := rpc.BlockNumberOrHashWithNumber(rpc.LatestBlockNumber)
  1143  		blockNrOrHash = &latest
  1144  	}
  1145  	result, err := DoCall(ctx, s.b, args, *blockNrOrHash, overrides, blockOverrides, s.b.RPCEVMTimeout(), s.b.RPCGasCap())
  1146  	if err != nil {
  1147  		return nil, err
  1148  	}
  1149  	// If the result contains a revert reason, try to unpack and return it.
  1150  	if len(result.Revert()) > 0 {
  1151  		return nil, newRevertError(result.Revert())
  1152  	}
  1153  	return result.Return(), result.Err
  1154  }
  1155  
  1156  // executeEstimate is a helper that executes the transaction under a given gas limit and returns
  1157  // true if the transaction fails for a reason that might be related to not enough gas. A non-nil
  1158  // error means execution failed due to reasons unrelated to the gas limit.
  1159  func executeEstimate(ctx context.Context, b Backend, args TransactionArgs, state *state.StateDB, header *types.Header, gasCap uint64, gasLimit uint64) (bool, *core.ExecutionResult, error) {
  1160  	args.Gas = (*hexutil.Uint64)(&gasLimit)
  1161  	result, err := doCall(ctx, b, args, state, header, nil, nil, 0, gasCap)
  1162  	if err != nil {
  1163  		if errors.Is(err, core.ErrIntrinsicGas) {
  1164  			return true, nil, nil // Special case, raise gas limit
  1165  		}
  1166  		return true, nil, err // Bail out
  1167  	}
  1168  	return result.Failed(), result, nil
  1169  }
  1170  
  1171  // DoEstimateGas returns the lowest possible gas limit that allows the transaction to run
  1172  // successfully at block `blockNrOrHash`. It returns error if the transaction would revert, or if
  1173  // there are unexpected failures. The gas limit is capped by both `args.Gas` (if non-nil &
  1174  // non-zero) and `gasCap` (if non-zero).
  1175  func DoEstimateGas(ctx context.Context, b Backend, args TransactionArgs, blockNrOrHash rpc.BlockNumberOrHash, overrides *StateOverride, gasCap uint64) (hexutil.Uint64, error) {
  1176  	// Binary search the gas limit, as it may need to be higher than the amount used
  1177  	var (
  1178  		lo uint64 // lowest-known gas limit where tx execution fails
  1179  		hi uint64 // lowest-known gas limit where tx execution succeeds
  1180  	)
  1181  	// Use zero address if sender unspecified.
  1182  	if args.From == nil {
  1183  		args.From = new(common.Address)
  1184  	}
  1185  	// Determine the highest gas limit can be used during the estimation.
  1186  	if args.Gas != nil && uint64(*args.Gas) >= params.TxGas {
  1187  		hi = uint64(*args.Gas)
  1188  	} else {
  1189  		// Retrieve the block to act as the gas ceiling
  1190  		block, err := b.BlockByNumberOrHash(ctx, blockNrOrHash)
  1191  		if err != nil {
  1192  			return 0, err
  1193  		}
  1194  		if block == nil {
  1195  			return 0, errors.New("block not found")
  1196  		}
  1197  		hi = block.GasLimit()
  1198  	}
  1199  	// Normalize the max fee per gas the call is willing to spend.
  1200  	var feeCap *big.Int
  1201  	if args.GasPrice != nil && (args.MaxFeePerGas != nil || args.MaxPriorityFeePerGas != nil) {
  1202  		return 0, errors.New("both gasPrice and (maxFeePerGas or maxPriorityFeePerGas) specified")
  1203  	} else if args.GasPrice != nil {
  1204  		feeCap = args.GasPrice.ToInt()
  1205  	} else if args.MaxFeePerGas != nil {
  1206  		feeCap = args.MaxFeePerGas.ToInt()
  1207  	} else {
  1208  		feeCap = common.Big0
  1209  	}
  1210  
  1211  	state, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
  1212  	if state == nil || err != nil {
  1213  		return 0, err
  1214  	}
  1215  	if err := overrides.Apply(state); err != nil {
  1216  		return 0, err
  1217  	}
  1218  
  1219  	// Recap the highest gas limit with account's available balance.
  1220  	if feeCap.BitLen() != 0 {
  1221  		balance := state.GetBalance(*args.From) // from can't be nil
  1222  		available := new(big.Int).Set(balance)
  1223  		if args.Value != nil {
  1224  			if args.Value.ToInt().Cmp(available) >= 0 {
  1225  				return 0, core.ErrInsufficientFundsForTransfer
  1226  			}
  1227  			available.Sub(available, args.Value.ToInt())
  1228  		}
  1229  		allowance := new(big.Int).Div(available, feeCap)
  1230  
  1231  		// If the allowance is larger than maximum uint64, skip checking
  1232  		if allowance.IsUint64() && hi > allowance.Uint64() {
  1233  			transfer := args.Value
  1234  			if transfer == nil {
  1235  				transfer = new(hexutil.Big)
  1236  			}
  1237  			log.Info("Gas estimation capped by limited funds", "original", hi, "balance", balance,
  1238  				"sent", transfer.ToInt(), "maxFeePerGas", feeCap, "fundable", allowance)
  1239  			hi = allowance.Uint64()
  1240  		}
  1241  	}
  1242  	// Recap the highest gas allowance with specified gascap.
  1243  	if gasCap != 0 && hi > gasCap {
  1244  		log.Info("Caller gas above allowance, capping", "requested", hi, "cap", gasCap)
  1245  		hi = gasCap
  1246  	}
  1247  
  1248  	// We first execute the transaction at the highest allowable gas limit, since if this fails we
  1249  	// can return error immediately.
  1250  	failed, result, err := executeEstimate(ctx, b, args, state.Copy(), header, gasCap, hi)
  1251  	if err != nil {
  1252  		return 0, err
  1253  	}
  1254  	if failed {
  1255  		if result != nil && result.Err != vmerrs.ErrOutOfGas {
  1256  			if len(result.Revert()) > 0 {
  1257  				return 0, newRevertError(result.Revert())
  1258  			}
  1259  			return 0, result.Err
  1260  		}
  1261  		return 0, fmt.Errorf("gas required exceeds allowance (%d)", hi)
  1262  	}
  1263  	// For almost any transaction, the gas consumed by the unconstrained execution above
  1264  	// lower-bounds the gas limit required for it to succeed. One exception is those txs that
  1265  	// explicitly check gas remaining in order to successfully execute within a given limit, but we
  1266  	// probably don't want to return a lowest possible gas limit for these cases anyway.
  1267  	lo = result.UsedGas - 1
  1268  
  1269  	// Binary search for the smallest gas limit that allows the tx to execute successfully.
  1270  	for lo+1 < hi {
  1271  		mid := (hi + lo) / 2
  1272  		if mid > lo*2 {
  1273  			// Most txs don't need much higher gas limit than their gas used, and most txs don't
  1274  			// require near the full block limit of gas, so the selection of where to bisect the
  1275  			// range here is skewed to favor the low side.
  1276  			mid = lo * 2
  1277  		}
  1278  		failed, _, err = executeEstimate(ctx, b, args, state.Copy(), header, gasCap, mid)
  1279  		if err != nil {
  1280  			// This should not happen under normal conditions since if we make it this far the
  1281  			// transaction had run without error at least once before.
  1282  			log.Error("execution error in estimate gas", "err", err)
  1283  			return 0, err
  1284  		}
  1285  		if failed {
  1286  			lo = mid
  1287  		} else {
  1288  			hi = mid
  1289  		}
  1290  	}
  1291  	return hexutil.Uint64(hi), nil
  1292  }
  1293  
  1294  // EstimateGas returns the lowest possible gas limit that allows the transaction to run
  1295  // successfully at block `blockNrOrHash`, or the latest block if `blockNrOrHash` is unspecified. It
  1296  // returns error if the transaction would revert or if there are unexpected failures. The returned
  1297  // value is capped by both `args.Gas` (if non-nil & non-zero) and the backend's RPCGasCap
  1298  // configuration (if non-zero).
  1299  func (s *BlockChainAPI) EstimateGas(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash, overrides *StateOverride) (hexutil.Uint64, error) {
  1300  	bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.LatestBlockNumber)
  1301  	if blockNrOrHash != nil {
  1302  		bNrOrHash = *blockNrOrHash
  1303  	}
  1304  	return DoEstimateGas(ctx, s.b, args, bNrOrHash, overrides, s.b.RPCGasCap())
  1305  }
  1306  
  1307  // RPCMarshalHeader converts the given header to the RPC output .
  1308  func RPCMarshalHeader(head *types.Header) map[string]interface{} {
  1309  	result := map[string]interface{}{
  1310  		"number":           (*hexutil.Big)(head.Number),
  1311  		"hash":             head.Hash(),
  1312  		"parentHash":       head.ParentHash,
  1313  		"nonce":            head.Nonce,
  1314  		"mixHash":          head.MixDigest,
  1315  		"sha3Uncles":       head.UncleHash,
  1316  		"logsBloom":        head.Bloom,
  1317  		"stateRoot":        head.Root,
  1318  		"miner":            head.Coinbase,
  1319  		"difficulty":       (*hexutil.Big)(head.Difficulty),
  1320  		"extraData":        hexutil.Bytes(head.Extra),
  1321  		"gasLimit":         hexutil.Uint64(head.GasLimit),
  1322  		"gasUsed":          hexutil.Uint64(head.GasUsed),
  1323  		"timestamp":        hexutil.Uint64(head.Time),
  1324  		"transactionsRoot": head.TxHash,
  1325  		"receiptsRoot":     head.ReceiptHash,
  1326  	}
  1327  	if head.BaseFee != nil {
  1328  		result["baseFeePerGas"] = (*hexutil.Big)(head.BaseFee)
  1329  	}
  1330  	if head.BlockGasCost != nil {
  1331  		result["blockGasCost"] = (*hexutil.Big)(head.BlockGasCost)
  1332  	}
  1333  	if head.BlobGasUsed != nil {
  1334  		result["blobGasUsed"] = hexutil.Uint64(*head.BlobGasUsed)
  1335  	}
  1336  	if head.ExcessBlobGas != nil {
  1337  		result["excessBlobGas"] = hexutil.Uint64(*head.ExcessBlobGas)
  1338  	}
  1339  	if head.ParentBeaconRoot != nil {
  1340  		result["parentBeaconBlockRoot"] = head.ParentBeaconRoot
  1341  	}
  1342  	return result
  1343  }
  1344  
  1345  // RPCMarshalBlock converts the given block to the RPC output which depends on fullTx. If inclTx is true transactions are
  1346  // returned. When fullTx is true the returned block contains full transaction details, otherwise it will only contain
  1347  // transaction hashes.
  1348  func RPCMarshalBlock(block *types.Block, inclTx bool, fullTx bool, config *params.ChainConfig) map[string]interface{} {
  1349  	fields := RPCMarshalHeader(block.Header())
  1350  	fields["size"] = hexutil.Uint64(block.Size())
  1351  
  1352  	if inclTx {
  1353  		formatTx := func(idx int, tx *types.Transaction) interface{} {
  1354  			return tx.Hash()
  1355  		}
  1356  		if fullTx {
  1357  			formatTx = func(idx int, tx *types.Transaction) interface{} {
  1358  				return newRPCTransactionFromBlockIndex(block, uint64(idx), config)
  1359  			}
  1360  		}
  1361  		txs := block.Transactions()
  1362  		transactions := make([]interface{}, len(txs))
  1363  		for i, tx := range txs {
  1364  			transactions[i] = formatTx(i, tx)
  1365  		}
  1366  		fields["transactions"] = transactions
  1367  	}
  1368  	uncles := block.Uncles()
  1369  	uncleHashes := make([]common.Hash, len(uncles))
  1370  	for i, uncle := range uncles {
  1371  		uncleHashes[i] = uncle.Hash()
  1372  	}
  1373  	fields["uncles"] = uncleHashes
  1374  	return fields
  1375  }
  1376  
  1377  // rpcMarshalHeader uses the generalized output filler, then adds the total difficulty field, which requires
  1378  // a `BlockchainAPI`.
  1379  func (s *BlockChainAPI) rpcMarshalHeader(ctx context.Context, header *types.Header) map[string]interface{} {
  1380  	fields := RPCMarshalHeader(header)
  1381  	// Note: Subnet-EVM enforces that the difficulty of a block is always 1, such that the total difficulty of a block
  1382  	// will be equivalent to its height.
  1383  	fields["totalDifficulty"] = (*hexutil.Big)(header.Number)
  1384  	return fields
  1385  }
  1386  
  1387  // rpcMarshalBlock uses the generalized output filler, then adds the total difficulty field, which requires
  1388  // a `BlockchainAPI`.
  1389  func (s *BlockChainAPI) rpcMarshalBlock(ctx context.Context, b *types.Block, inclTx bool, fullTx bool) (map[string]interface{}, error) {
  1390  	fields := RPCMarshalBlock(b, inclTx, fullTx, s.b.ChainConfig())
  1391  	if inclTx {
  1392  		// Note: Subnet-EVM enforces that the difficulty of a block is always 1, such that the total difficulty of a block
  1393  		// will be equivalent to its height.
  1394  		fields["totalDifficulty"] = (*hexutil.Big)(b.Number())
  1395  	}
  1396  	return fields, nil
  1397  }
  1398  
  1399  // RPCTransaction represents a transaction that will serialize to the RPC representation of a transaction
  1400  type RPCTransaction struct {
  1401  	BlockHash           *common.Hash      `json:"blockHash"`
  1402  	BlockNumber         *hexutil.Big      `json:"blockNumber"`
  1403  	From                common.Address    `json:"from"`
  1404  	Gas                 hexutil.Uint64    `json:"gas"`
  1405  	GasPrice            *hexutil.Big      `json:"gasPrice"`
  1406  	GasFeeCap           *hexutil.Big      `json:"maxFeePerGas,omitempty"`
  1407  	GasTipCap           *hexutil.Big      `json:"maxPriorityFeePerGas,omitempty"`
  1408  	MaxFeePerBlobGas    *hexutil.Big      `json:"maxFeePerBlobGas,omitempty"`
  1409  	Hash                common.Hash       `json:"hash"`
  1410  	Input               hexutil.Bytes     `json:"input"`
  1411  	Nonce               hexutil.Uint64    `json:"nonce"`
  1412  	To                  *common.Address   `json:"to"`
  1413  	TransactionIndex    *hexutil.Uint64   `json:"transactionIndex"`
  1414  	Value               *hexutil.Big      `json:"value"`
  1415  	Type                hexutil.Uint64    `json:"type"`
  1416  	Accesses            *types.AccessList `json:"accessList,omitempty"`
  1417  	ChainID             *hexutil.Big      `json:"chainId,omitempty"`
  1418  	BlobVersionedHashes []common.Hash     `json:"blobVersionedHashes,omitempty"`
  1419  	V                   *hexutil.Big      `json:"v"`
  1420  	R                   *hexutil.Big      `json:"r"`
  1421  	S                   *hexutil.Big      `json:"s"`
  1422  	YParity             *hexutil.Uint64   `json:"yParity,omitempty"`
  1423  }
  1424  
  1425  // newRPCTransaction returns a transaction that will serialize to the RPC
  1426  // representation, with the given location metadata set (if available).
  1427  func newRPCTransaction(tx *types.Transaction, blockHash common.Hash, blockNumber uint64, blockTime uint64, index uint64, baseFee *big.Int, config *params.ChainConfig) *RPCTransaction {
  1428  	signer := types.MakeSigner(config, new(big.Int).SetUint64(blockNumber), blockTime)
  1429  	from, _ := types.Sender(signer, tx)
  1430  	v, r, s := tx.RawSignatureValues()
  1431  	result := &RPCTransaction{
  1432  		Type:     hexutil.Uint64(tx.Type()),
  1433  		From:     from,
  1434  		Gas:      hexutil.Uint64(tx.Gas()),
  1435  		GasPrice: (*hexutil.Big)(tx.GasPrice()),
  1436  		Hash:     tx.Hash(),
  1437  		Input:    hexutil.Bytes(tx.Data()),
  1438  		Nonce:    hexutil.Uint64(tx.Nonce()),
  1439  		To:       tx.To(),
  1440  		Value:    (*hexutil.Big)(tx.Value()),
  1441  		V:        (*hexutil.Big)(v),
  1442  		R:        (*hexutil.Big)(r),
  1443  		S:        (*hexutil.Big)(s),
  1444  	}
  1445  	if blockHash != (common.Hash{}) {
  1446  		result.BlockHash = &blockHash
  1447  		result.BlockNumber = (*hexutil.Big)(new(big.Int).SetUint64(blockNumber))
  1448  		result.TransactionIndex = (*hexutil.Uint64)(&index)
  1449  	}
  1450  
  1451  	switch tx.Type() {
  1452  	case types.LegacyTxType:
  1453  		// if a legacy transaction has an EIP-155 chain id, include it explicitly
  1454  		if id := tx.ChainId(); id.Sign() != 0 {
  1455  			result.ChainID = (*hexutil.Big)(id)
  1456  		}
  1457  
  1458  	case types.AccessListTxType:
  1459  		al := tx.AccessList()
  1460  		yparity := hexutil.Uint64(v.Sign())
  1461  		result.Accesses = &al
  1462  		result.ChainID = (*hexutil.Big)(tx.ChainId())
  1463  		result.YParity = &yparity
  1464  
  1465  	case types.DynamicFeeTxType:
  1466  		al := tx.AccessList()
  1467  		yparity := hexutil.Uint64(v.Sign())
  1468  		result.Accesses = &al
  1469  		result.ChainID = (*hexutil.Big)(tx.ChainId())
  1470  		result.YParity = &yparity
  1471  		result.GasFeeCap = (*hexutil.Big)(tx.GasFeeCap())
  1472  		result.GasTipCap = (*hexutil.Big)(tx.GasTipCap())
  1473  		// if the transaction has been mined, compute the effective gas price
  1474  		if baseFee != nil && blockHash != (common.Hash{}) {
  1475  			// price = min(gasTipCap + baseFee, gasFeeCap)
  1476  			result.GasPrice = (*hexutil.Big)(effectiveGasPrice(tx, baseFee))
  1477  		} else {
  1478  			result.GasPrice = (*hexutil.Big)(tx.GasFeeCap())
  1479  		}
  1480  
  1481  	case types.BlobTxType:
  1482  		al := tx.AccessList()
  1483  		yparity := hexutil.Uint64(v.Sign())
  1484  		result.Accesses = &al
  1485  		result.ChainID = (*hexutil.Big)(tx.ChainId())
  1486  		result.YParity = &yparity
  1487  		result.GasFeeCap = (*hexutil.Big)(tx.GasFeeCap())
  1488  		result.GasTipCap = (*hexutil.Big)(tx.GasTipCap())
  1489  		// if the transaction has been mined, compute the effective gas price
  1490  		if baseFee != nil && blockHash != (common.Hash{}) {
  1491  			result.GasPrice = (*hexutil.Big)(effectiveGasPrice(tx, baseFee))
  1492  		} else {
  1493  			result.GasPrice = (*hexutil.Big)(tx.GasFeeCap())
  1494  		}
  1495  		result.MaxFeePerBlobGas = (*hexutil.Big)(tx.BlobGasFeeCap())
  1496  		result.BlobVersionedHashes = tx.BlobHashes()
  1497  	}
  1498  	return result
  1499  }
  1500  
  1501  // effectiveGasPrice computes the transaction gas fee, based on the given basefee value.
  1502  //
  1503  //	price = min(gasTipCap + baseFee, gasFeeCap)
  1504  func effectiveGasPrice(tx *types.Transaction, baseFee *big.Int) *big.Int {
  1505  	fee := tx.GasTipCap()
  1506  	fee = fee.Add(fee, baseFee)
  1507  	if tx.GasFeeCapIntCmp(fee) < 0 {
  1508  		return tx.GasFeeCap()
  1509  	}
  1510  	return fee
  1511  }
  1512  
  1513  // NewRPCTransaction returns a pending transaction that will serialize to the RPC representation
  1514  // Note: in go-ethereum this function is called NewRPCPendingTransaction.
  1515  // In subnet-evm, we have renamed it to NewRPCTransaction as it is used for accepted transactions as well.
  1516  func NewRPCTransaction(tx *types.Transaction, current *types.Header, baseFee *big.Int, config *params.ChainConfig) *RPCTransaction {
  1517  	var (
  1518  		blockNumber = uint64(0)
  1519  		blockTime   = uint64(0)
  1520  	)
  1521  	if current != nil {
  1522  		blockNumber = current.Number.Uint64()
  1523  		blockTime = current.Time
  1524  	}
  1525  	return newRPCTransaction(tx, common.Hash{}, blockNumber, blockTime, 0, baseFee, config)
  1526  }
  1527  
  1528  // newRPCTransactionFromBlockIndex returns a transaction that will serialize to the RPC representation.
  1529  func newRPCTransactionFromBlockIndex(b *types.Block, index uint64, config *params.ChainConfig) *RPCTransaction {
  1530  	txs := b.Transactions()
  1531  	if index >= uint64(len(txs)) {
  1532  		return nil
  1533  	}
  1534  	return newRPCTransaction(txs[index], b.Hash(), b.NumberU64(), b.Time(), index, b.BaseFee(), config)
  1535  }
  1536  
  1537  // newRPCRawTransactionFromBlockIndex returns the bytes of a transaction given a block and a transaction index.
  1538  func newRPCRawTransactionFromBlockIndex(b *types.Block, index uint64) hexutil.Bytes {
  1539  	txs := b.Transactions()
  1540  	if index >= uint64(len(txs)) {
  1541  		return nil
  1542  	}
  1543  	blob, _ := txs[index].MarshalBinary()
  1544  	return blob
  1545  }
  1546  
  1547  // accessListResult returns an optional accesslist
  1548  // It's the result of the `debug_createAccessList` RPC call.
  1549  // It contains an error if the transaction itself failed.
  1550  type accessListResult struct {
  1551  	Accesslist *types.AccessList `json:"accessList"`
  1552  	Error      string            `json:"error,omitempty"`
  1553  	GasUsed    hexutil.Uint64    `json:"gasUsed"`
  1554  }
  1555  
  1556  // CreateAccessList creates an EIP-2930 type AccessList for the given transaction.
  1557  // Reexec and BlockNrOrHash can be specified to create the accessList on top of a certain state.
  1558  func (s *BlockChainAPI) CreateAccessList(ctx context.Context, args TransactionArgs, blockNrOrHash *rpc.BlockNumberOrHash) (*accessListResult, error) {
  1559  	bNrOrHash := rpc.BlockNumberOrHashWithNumber(rpc.PendingBlockNumber)
  1560  	if blockNrOrHash != nil {
  1561  		bNrOrHash = *blockNrOrHash
  1562  	}
  1563  	acl, gasUsed, vmerr, err := AccessList(ctx, s.b, bNrOrHash, args)
  1564  	if err != nil {
  1565  		return nil, err
  1566  	}
  1567  	result := &accessListResult{Accesslist: &acl, GasUsed: hexutil.Uint64(gasUsed)}
  1568  	if vmerr != nil {
  1569  		result.Error = vmerr.Error()
  1570  	}
  1571  	return result, nil
  1572  }
  1573  
  1574  // AccessList creates an access list for the given transaction.
  1575  // If the accesslist creation fails an error is returned.
  1576  // If the transaction itself fails, an vmErr is returned.
  1577  func AccessList(ctx context.Context, b Backend, blockNrOrHash rpc.BlockNumberOrHash, args TransactionArgs) (acl types.AccessList, gasUsed uint64, vmErr error, err error) {
  1578  	// Retrieve the execution context
  1579  	db, header, err := b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
  1580  	if db == nil || err != nil {
  1581  		return nil, 0, nil, err
  1582  	}
  1583  	// If the gas amount is not set, default to RPC gas cap.
  1584  	if args.Gas == nil {
  1585  		tmp := hexutil.Uint64(b.RPCGasCap())
  1586  		args.Gas = &tmp
  1587  	}
  1588  
  1589  	// Ensure any missing fields are filled, extract the recipient and input data
  1590  	if err := args.setDefaults(ctx, b); err != nil {
  1591  		return nil, 0, nil, err
  1592  	}
  1593  	var to common.Address
  1594  	if args.To != nil {
  1595  		to = *args.To
  1596  	} else {
  1597  		to = crypto.CreateAddress(args.from(), uint64(*args.Nonce))
  1598  	}
  1599  	// Retrieve the precompiles since they don't need to be added to the access list
  1600  	precompiles := vm.ActivePrecompiles(b.ChainConfig().Rules(header.Number, header.Time))
  1601  
  1602  	// Create an initial tracer
  1603  	prevTracer := logger.NewAccessListTracer(nil, args.from(), to, precompiles)
  1604  	if args.AccessList != nil {
  1605  		prevTracer = logger.NewAccessListTracer(*args.AccessList, args.from(), to, precompiles)
  1606  	}
  1607  	for {
  1608  		// Retrieve the current access list to expand
  1609  		accessList := prevTracer.AccessList()
  1610  		log.Trace("Creating access list", "input", accessList)
  1611  
  1612  		// Copy the original db so we don't modify it
  1613  		statedb := db.Copy()
  1614  		// Set the accesslist to the last al
  1615  		args.AccessList = &accessList
  1616  		msg, err := args.ToMessage(b.RPCGasCap(), header.BaseFee)
  1617  		if err != nil {
  1618  			return nil, 0, nil, err
  1619  		}
  1620  
  1621  		// Apply the transaction with the access list tracer
  1622  		tracer := logger.NewAccessListTracer(accessList, args.from(), to, precompiles)
  1623  		config := vm.Config{Tracer: tracer, NoBaseFee: true}
  1624  		vmenv, _ := b.GetEVM(ctx, msg, statedb, header, &config, nil)
  1625  		res, err := core.ApplyMessage(vmenv, msg, new(core.GasPool).AddGas(msg.GasLimit))
  1626  		if err != nil {
  1627  			return nil, 0, nil, fmt.Errorf("failed to apply transaction: %v err: %v", args.toTransaction().Hash(), err)
  1628  		}
  1629  		if tracer.Equal(prevTracer) {
  1630  			return accessList, res.UsedGas, res.Err, nil
  1631  		}
  1632  		prevTracer = tracer
  1633  	}
  1634  }
  1635  
  1636  // TransactionAPI exposes methods for reading and creating transaction data.
  1637  type TransactionAPI struct {
  1638  	b         Backend
  1639  	nonceLock *AddrLocker
  1640  	signer    types.Signer
  1641  }
  1642  
  1643  // NewTransactionAPI creates a new RPC service with methods for interacting with transactions.
  1644  func NewTransactionAPI(b Backend, nonceLock *AddrLocker) *TransactionAPI {
  1645  	// The signer used by the API should always be the 'latest' known one because we expect
  1646  	// signers to be backwards-compatible with old transactions.
  1647  	signer := types.LatestSigner(b.ChainConfig())
  1648  	return &TransactionAPI{b, nonceLock, signer}
  1649  }
  1650  
  1651  // GetBlockTransactionCountByNumber returns the number of transactions in the block with the given block number.
  1652  func (s *TransactionAPI) GetBlockTransactionCountByNumber(ctx context.Context, blockNr rpc.BlockNumber) *hexutil.Uint {
  1653  	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
  1654  		n := hexutil.Uint(len(block.Transactions()))
  1655  		return &n
  1656  	}
  1657  	return nil
  1658  }
  1659  
  1660  // GetBlockTransactionCountByHash returns the number of transactions in the block with the given hash.
  1661  func (s *TransactionAPI) GetBlockTransactionCountByHash(ctx context.Context, blockHash common.Hash) *hexutil.Uint {
  1662  	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
  1663  		n := hexutil.Uint(len(block.Transactions()))
  1664  		return &n
  1665  	}
  1666  	return nil
  1667  }
  1668  
  1669  // GetTransactionByBlockNumberAndIndex returns the transaction for the given block number and index.
  1670  func (s *TransactionAPI) GetTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) *RPCTransaction {
  1671  	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
  1672  		return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig())
  1673  	}
  1674  	return nil
  1675  }
  1676  
  1677  // GetTransactionByBlockHashAndIndex returns the transaction for the given block hash and index.
  1678  func (s *TransactionAPI) GetTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) *RPCTransaction {
  1679  	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
  1680  		return newRPCTransactionFromBlockIndex(block, uint64(index), s.b.ChainConfig())
  1681  	}
  1682  	return nil
  1683  }
  1684  
  1685  // GetRawTransactionByBlockNumberAndIndex returns the bytes of the transaction for the given block number and index.
  1686  func (s *TransactionAPI) GetRawTransactionByBlockNumberAndIndex(ctx context.Context, blockNr rpc.BlockNumber, index hexutil.Uint) hexutil.Bytes {
  1687  	if block, _ := s.b.BlockByNumber(ctx, blockNr); block != nil {
  1688  		return newRPCRawTransactionFromBlockIndex(block, uint64(index))
  1689  	}
  1690  	return nil
  1691  }
  1692  
  1693  // GetRawTransactionByBlockHashAndIndex returns the bytes of the transaction for the given block hash and index.
  1694  func (s *TransactionAPI) GetRawTransactionByBlockHashAndIndex(ctx context.Context, blockHash common.Hash, index hexutil.Uint) hexutil.Bytes {
  1695  	if block, _ := s.b.BlockByHash(ctx, blockHash); block != nil {
  1696  		return newRPCRawTransactionFromBlockIndex(block, uint64(index))
  1697  	}
  1698  	return nil
  1699  }
  1700  
  1701  // GetTransactionCount returns the number of transactions the given address has sent for the given block number
  1702  func (s *TransactionAPI) GetTransactionCount(ctx context.Context, address common.Address, blockNrOrHash rpc.BlockNumberOrHash) (*hexutil.Uint64, error) {
  1703  	// Ask transaction pool for the nonce which includes pending transactions
  1704  	if blockNr, ok := blockNrOrHash.Number(); ok && blockNr == rpc.PendingBlockNumber {
  1705  		nonce, err := s.b.GetPoolNonce(ctx, address)
  1706  		if err != nil {
  1707  			return nil, err
  1708  		}
  1709  		return (*hexutil.Uint64)(&nonce), nil
  1710  	}
  1711  	// Resolve block number and use its state to ask for the nonce
  1712  	state, _, err := s.b.StateAndHeaderByNumberOrHash(ctx, blockNrOrHash)
  1713  	if state == nil || err != nil {
  1714  		return nil, err
  1715  	}
  1716  	nonce := state.GetNonce(address)
  1717  	return (*hexutil.Uint64)(&nonce), state.Error()
  1718  }
  1719  
  1720  // GetTransactionByHash returns the transaction for the given hash
  1721  func (s *TransactionAPI) GetTransactionByHash(ctx context.Context, hash common.Hash) (*RPCTransaction, error) {
  1722  	// Try to return an already finalized transaction
  1723  	tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
  1724  	if err != nil {
  1725  		return nil, err
  1726  	}
  1727  	if tx != nil {
  1728  		header, err := s.b.HeaderByHash(ctx, blockHash)
  1729  		if err != nil {
  1730  			return nil, err
  1731  		}
  1732  		return newRPCTransaction(tx, blockHash, blockNumber, header.Time, index, header.BaseFee, s.b.ChainConfig()), nil
  1733  	}
  1734  	// No finalized transaction, try to retrieve it from the pool
  1735  	if tx := s.b.GetPoolTransaction(hash); tx != nil {
  1736  		estimatedBaseFee, _ := s.b.EstimateBaseFee(ctx)
  1737  		return NewRPCTransaction(tx, s.b.CurrentHeader(), estimatedBaseFee, s.b.ChainConfig()), nil
  1738  	}
  1739  
  1740  	// Transaction unknown, return as such
  1741  	return nil, nil
  1742  }
  1743  
  1744  // GetRawTransactionByHash returns the bytes of the transaction for the given hash.
  1745  func (s *TransactionAPI) GetRawTransactionByHash(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
  1746  	// Retrieve a finalized transaction, or a pooled otherwise
  1747  	tx, _, _, _, err := s.b.GetTransaction(ctx, hash)
  1748  	if err != nil {
  1749  		return nil, err
  1750  	}
  1751  	if tx == nil {
  1752  		if tx = s.b.GetPoolTransaction(hash); tx == nil {
  1753  			// Transaction not found anywhere, abort
  1754  			return nil, nil
  1755  		}
  1756  	}
  1757  	// Serialize to RLP and return
  1758  	return tx.MarshalBinary()
  1759  }
  1760  
  1761  // GetTransactionReceipt returns the transaction receipt for the given transaction hash.
  1762  func (s *TransactionAPI) GetTransactionReceipt(ctx context.Context, hash common.Hash) (map[string]interface{}, error) {
  1763  	tx, blockHash, blockNumber, index, err := s.b.GetTransaction(ctx, hash)
  1764  	if tx == nil || err != nil {
  1765  		// When the transaction doesn't exist, the RPC method should return JSON null
  1766  		// as per specification.
  1767  		return nil, nil
  1768  	}
  1769  	header, err := s.b.HeaderByHash(ctx, blockHash)
  1770  	if err != nil {
  1771  		return nil, err
  1772  	}
  1773  	receipts, err := s.b.GetReceipts(ctx, blockHash)
  1774  	if err != nil {
  1775  		return nil, err
  1776  	}
  1777  	if uint64(len(receipts)) <= index {
  1778  		return nil, nil
  1779  	}
  1780  	receipt := receipts[index]
  1781  
  1782  	// Derive the sender.
  1783  	signer := types.MakeSigner(s.b.ChainConfig(), header.Number, header.Time)
  1784  	return marshalReceipt(receipt, blockHash, blockNumber, signer, tx, int(index)), nil
  1785  }
  1786  
  1787  // marshalReceipt marshals a transaction receipt into a JSON object.
  1788  func marshalReceipt(receipt *types.Receipt, blockHash common.Hash, blockNumber uint64, signer types.Signer, tx *types.Transaction, txIndex int) map[string]interface{} {
  1789  	from, _ := types.Sender(signer, tx)
  1790  
  1791  	fields := map[string]interface{}{
  1792  		"blockHash":         blockHash,
  1793  		"blockNumber":       hexutil.Uint64(blockNumber),
  1794  		"transactionHash":   tx.Hash(),
  1795  		"transactionIndex":  hexutil.Uint64(txIndex),
  1796  		"from":              from,
  1797  		"to":                tx.To(),
  1798  		"gasUsed":           hexutil.Uint64(receipt.GasUsed),
  1799  		"cumulativeGasUsed": hexutil.Uint64(receipt.CumulativeGasUsed),
  1800  		"contractAddress":   nil,
  1801  		"logs":              receipt.Logs,
  1802  		"logsBloom":         receipt.Bloom,
  1803  		"type":              hexutil.Uint(tx.Type()),
  1804  		"effectiveGasPrice": (*hexutil.Big)(receipt.EffectiveGasPrice),
  1805  	}
  1806  
  1807  	// Assign receipt status or post state.
  1808  	if len(receipt.PostState) > 0 {
  1809  		fields["root"] = hexutil.Bytes(receipt.PostState)
  1810  	} else {
  1811  		fields["status"] = hexutil.Uint(receipt.Status)
  1812  	}
  1813  	if receipt.Logs == nil {
  1814  		fields["logs"] = []*types.Log{}
  1815  	}
  1816  
  1817  	if tx.Type() == types.BlobTxType {
  1818  		fields["blobGasUsed"] = hexutil.Uint64(receipt.BlobGasUsed)
  1819  		fields["blobGasPrice"] = (*hexutil.Big)(receipt.BlobGasPrice)
  1820  	}
  1821  
  1822  	// If the ContractAddress is 20 0x0 bytes, assume it is not a contract creation
  1823  	if receipt.ContractAddress != (common.Address{}) {
  1824  		fields["contractAddress"] = receipt.ContractAddress
  1825  	}
  1826  	return fields
  1827  }
  1828  
  1829  // sign is a helper function that signs a transaction with the private key of the given address.
  1830  func (s *TransactionAPI) sign(addr common.Address, tx *types.Transaction) (*types.Transaction, error) {
  1831  	// Look up the wallet containing the requested signer
  1832  	account := accounts.Account{Address: addr}
  1833  
  1834  	wallet, err := s.b.AccountManager().Find(account)
  1835  	if err != nil {
  1836  		return nil, err
  1837  	}
  1838  	// Request the wallet to sign the transaction
  1839  	return wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
  1840  }
  1841  
  1842  // SubmitTransaction is a helper function that submits tx to txPool and logs a message.
  1843  func SubmitTransaction(ctx context.Context, b Backend, tx *types.Transaction) (common.Hash, error) {
  1844  	// If the transaction fee cap is already specified, ensure the
  1845  	// fee of the given transaction is _reasonable_.
  1846  	if err := checkTxFee(tx.GasPrice(), tx.Gas(), b.RPCTxFeeCap()); err != nil {
  1847  		return common.Hash{}, err
  1848  	}
  1849  	if !b.UnprotectedAllowed(tx) && !tx.Protected() {
  1850  		// Ensure only eip155 signed transactions are submitted if EIP155Required is set.
  1851  		return common.Hash{}, errors.New("only replay-protected (EIP-155) transactions allowed over RPC")
  1852  	}
  1853  	if err := b.SendTx(ctx, tx); err != nil {
  1854  		return common.Hash{}, err
  1855  	}
  1856  	// Print a log with full tx details for manual investigations and interventions
  1857  	head := b.CurrentBlock()
  1858  	signer := types.MakeSigner(b.ChainConfig(), head.Number, head.Time)
  1859  	from, err := types.Sender(signer, tx)
  1860  	if err != nil {
  1861  		return common.Hash{}, err
  1862  	}
  1863  
  1864  	if tx.To() == nil {
  1865  		addr := crypto.CreateAddress(from, tx.Nonce())
  1866  		log.Info("Submitted contract creation", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "contract", addr.Hex(), "value", tx.Value(), "type", tx.Type(), "gasFeeCap", tx.GasFeeCap(), "gasTipCap", tx.GasTipCap(), "gasPrice", tx.GasPrice())
  1867  	} else {
  1868  		log.Info("Submitted transaction", "hash", tx.Hash().Hex(), "from", from, "nonce", tx.Nonce(), "recipient", tx.To(), "value", tx.Value(), "type", tx.Type(), "gasFeeCap", tx.GasFeeCap(), "gasTipCap", tx.GasTipCap(), "gasPrice", tx.GasPrice())
  1869  	}
  1870  	return tx.Hash(), nil
  1871  }
  1872  
  1873  // SendTransaction creates a transaction for the given argument, sign it and submit it to the
  1874  // transaction pool.
  1875  func (s *TransactionAPI) SendTransaction(ctx context.Context, args TransactionArgs) (common.Hash, error) {
  1876  	// Look up the wallet containing the requested signer
  1877  	account := accounts.Account{Address: args.from()}
  1878  
  1879  	wallet, err := s.b.AccountManager().Find(account)
  1880  	if err != nil {
  1881  		return common.Hash{}, err
  1882  	}
  1883  
  1884  	if args.Nonce == nil {
  1885  		// Hold the mutex around signing to prevent concurrent assignment of
  1886  		// the same nonce to multiple accounts.
  1887  		s.nonceLock.LockAddr(args.from())
  1888  		defer s.nonceLock.UnlockAddr(args.from())
  1889  	}
  1890  
  1891  	// Set some sanity defaults and terminate on failure
  1892  	if err := args.setDefaults(ctx, s.b); err != nil {
  1893  		return common.Hash{}, err
  1894  	}
  1895  	// Assemble the transaction and sign with the wallet
  1896  	tx := args.toTransaction()
  1897  
  1898  	signed, err := wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)
  1899  	if err != nil {
  1900  		return common.Hash{}, err
  1901  	}
  1902  	return SubmitTransaction(ctx, s.b, signed)
  1903  }
  1904  
  1905  // FillTransaction fills the defaults (nonce, gas, gasPrice or 1559 fields)
  1906  // on a given unsigned transaction, and returns it to the caller for further
  1907  // processing (signing + broadcast).
  1908  func (s *TransactionAPI) FillTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) {
  1909  	// Set some sanity defaults and terminate on failure
  1910  	if err := args.setDefaults(ctx, s.b); err != nil {
  1911  		return nil, err
  1912  	}
  1913  	// Assemble the transaction and obtain rlp
  1914  	tx := args.toTransaction()
  1915  	data, err := tx.MarshalBinary()
  1916  	if err != nil {
  1917  		return nil, err
  1918  	}
  1919  	return &SignTransactionResult{data, tx}, nil
  1920  }
  1921  
  1922  // SendRawTransaction will add the signed transaction to the transaction pool.
  1923  // The sender is responsible for signing the transaction and using the correct nonce.
  1924  func (s *TransactionAPI) SendRawTransaction(ctx context.Context, input hexutil.Bytes) (common.Hash, error) {
  1925  	tx := new(types.Transaction)
  1926  	if err := tx.UnmarshalBinary(input); err != nil {
  1927  		return common.Hash{}, err
  1928  	}
  1929  	return SubmitTransaction(ctx, s.b, tx)
  1930  }
  1931  
  1932  // Sign calculates an ECDSA signature for:
  1933  // keccak256("\x19Ethereum Signed Message:\n" + len(message) + message).
  1934  //
  1935  // Note, the produced signature conforms to the secp256k1 curve R, S and V values,
  1936  // where the V value will be 27 or 28 for legacy reasons.
  1937  //
  1938  // The account associated with addr must be unlocked.
  1939  //
  1940  // https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
  1941  func (s *TransactionAPI) Sign(addr common.Address, data hexutil.Bytes) (hexutil.Bytes, error) {
  1942  	// Look up the wallet containing the requested signer
  1943  	account := accounts.Account{Address: addr}
  1944  
  1945  	wallet, err := s.b.AccountManager().Find(account)
  1946  	if err != nil {
  1947  		return nil, err
  1948  	}
  1949  	// Sign the requested hash with the wallet
  1950  	signature, err := wallet.SignText(account, data)
  1951  	if err == nil {
  1952  		signature[64] += 27 // Transform V from 0/1 to 27/28 according to the yellow paper
  1953  	}
  1954  	return signature, err
  1955  }
  1956  
  1957  // SignTransactionResult represents a RLP encoded signed transaction.
  1958  type SignTransactionResult struct {
  1959  	Raw hexutil.Bytes      `json:"raw"`
  1960  	Tx  *types.Transaction `json:"tx"`
  1961  }
  1962  
  1963  // SignTransaction will sign the given transaction with the from account.
  1964  // The node needs to have the private key of the account corresponding with
  1965  // the given from address and it needs to be unlocked.
  1966  func (s *TransactionAPI) SignTransaction(ctx context.Context, args TransactionArgs) (*SignTransactionResult, error) {
  1967  	if args.Gas == nil {
  1968  		return nil, errors.New("gas not specified")
  1969  	}
  1970  	if args.GasPrice == nil && (args.MaxPriorityFeePerGas == nil || args.MaxFeePerGas == nil) {
  1971  		return nil, errors.New("missing gasPrice or maxFeePerGas/maxPriorityFeePerGas")
  1972  	}
  1973  	if args.Nonce == nil {
  1974  		return nil, errors.New("nonce not specified")
  1975  	}
  1976  	if err := args.setDefaults(ctx, s.b); err != nil {
  1977  		return nil, err
  1978  	}
  1979  	// Before actually sign the transaction, ensure the transaction fee is reasonable.
  1980  	tx := args.toTransaction()
  1981  	if err := checkTxFee(tx.GasPrice(), tx.Gas(), s.b.RPCTxFeeCap()); err != nil {
  1982  		return nil, err
  1983  	}
  1984  	signed, err := s.sign(args.from(), tx)
  1985  	if err != nil {
  1986  		return nil, err
  1987  	}
  1988  	data, err := signed.MarshalBinary()
  1989  	if err != nil {
  1990  		return nil, err
  1991  	}
  1992  	return &SignTransactionResult{data, signed}, nil
  1993  }
  1994  
  1995  // PendingTransactions returns the transactions that are in the transaction pool
  1996  // and have a from address that is one of the accounts this node manages.
  1997  func (s *TransactionAPI) PendingTransactions() ([]*RPCTransaction, error) {
  1998  	pending, err := s.b.GetPoolTransactions()
  1999  	if err != nil {
  2000  		return nil, err
  2001  	}
  2002  	accounts := make(map[common.Address]struct{})
  2003  	for _, wallet := range s.b.AccountManager().Wallets() {
  2004  		for _, account := range wallet.Accounts() {
  2005  			accounts[account.Address] = struct{}{}
  2006  		}
  2007  	}
  2008  	curHeader := s.b.CurrentHeader()
  2009  	transactions := make([]*RPCTransaction, 0, len(pending))
  2010  	for _, tx := range pending {
  2011  		from, _ := types.Sender(s.signer, tx)
  2012  		if _, exists := accounts[from]; exists {
  2013  			estimatedBaseFee, _ := s.b.EstimateBaseFee(context.Background())
  2014  			transactions = append(transactions, NewRPCTransaction(tx, curHeader, estimatedBaseFee, s.b.ChainConfig()))
  2015  		}
  2016  	}
  2017  	return transactions, nil
  2018  }
  2019  
  2020  // Resend accepts an existing transaction and a new gas price and limit. It will remove
  2021  // the given transaction from the pool and reinsert it with the new gas price and limit.
  2022  func (s *TransactionAPI) Resend(ctx context.Context, sendArgs TransactionArgs, gasPrice *hexutil.Big, gasLimit *hexutil.Uint64) (common.Hash, error) {
  2023  	if sendArgs.Nonce == nil {
  2024  		return common.Hash{}, errors.New("missing transaction nonce in transaction spec")
  2025  	}
  2026  	if err := sendArgs.setDefaults(ctx, s.b); err != nil {
  2027  		return common.Hash{}, err
  2028  	}
  2029  	matchTx := sendArgs.toTransaction()
  2030  
  2031  	// Before replacing the old transaction, ensure the _new_ transaction fee is reasonable.
  2032  	var price = matchTx.GasPrice()
  2033  	if gasPrice != nil {
  2034  		price = gasPrice.ToInt()
  2035  	}
  2036  	var gas = matchTx.Gas()
  2037  	if gasLimit != nil {
  2038  		gas = uint64(*gasLimit)
  2039  	}
  2040  	if err := checkTxFee(price, gas, s.b.RPCTxFeeCap()); err != nil {
  2041  		return common.Hash{}, err
  2042  	}
  2043  	// Iterate the pending list for replacement
  2044  	pending, err := s.b.GetPoolTransactions()
  2045  	if err != nil {
  2046  		return common.Hash{}, err
  2047  	}
  2048  	for _, p := range pending {
  2049  		wantSigHash := s.signer.Hash(matchTx)
  2050  		pFrom, err := types.Sender(s.signer, p)
  2051  		if err == nil && pFrom == sendArgs.from() && s.signer.Hash(p) == wantSigHash {
  2052  			// Match. Re-sign and send the transaction.
  2053  			if gasPrice != nil && (*big.Int)(gasPrice).Sign() != 0 {
  2054  				sendArgs.GasPrice = gasPrice
  2055  			}
  2056  			if gasLimit != nil && *gasLimit != 0 {
  2057  				sendArgs.Gas = gasLimit
  2058  			}
  2059  			signedTx, err := s.sign(sendArgs.from(), sendArgs.toTransaction())
  2060  			if err != nil {
  2061  				return common.Hash{}, err
  2062  			}
  2063  			if err = s.b.SendTx(ctx, signedTx); err != nil {
  2064  				return common.Hash{}, err
  2065  			}
  2066  			return signedTx.Hash(), nil
  2067  		}
  2068  	}
  2069  	return common.Hash{}, fmt.Errorf("transaction %#x not found", matchTx.Hash())
  2070  }
  2071  
  2072  // DebugAPI is the collection of Ethereum APIs exposed over the debugging
  2073  // namespace.
  2074  type DebugAPI struct {
  2075  	b Backend
  2076  }
  2077  
  2078  // NewDebugAPI creates a new instance of DebugAPI.
  2079  func NewDebugAPI(b Backend) *DebugAPI {
  2080  	return &DebugAPI{b: b}
  2081  }
  2082  
  2083  // GetRawHeader retrieves the RLP encoding for a single header.
  2084  func (api *DebugAPI) GetRawHeader(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
  2085  	var hash common.Hash
  2086  	if h, ok := blockNrOrHash.Hash(); ok {
  2087  		hash = h
  2088  	} else {
  2089  		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
  2090  		if err != nil {
  2091  			return nil, err
  2092  		}
  2093  		hash = block.Hash()
  2094  	}
  2095  	header, _ := api.b.HeaderByHash(ctx, hash)
  2096  	if header == nil {
  2097  		return nil, fmt.Errorf("header #%d not found", hash)
  2098  	}
  2099  	return rlp.EncodeToBytes(header)
  2100  }
  2101  
  2102  // GetRawBlock retrieves the RLP encoded for a single block.
  2103  func (api *DebugAPI) GetRawBlock(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) (hexutil.Bytes, error) {
  2104  	var hash common.Hash
  2105  	if h, ok := blockNrOrHash.Hash(); ok {
  2106  		hash = h
  2107  	} else {
  2108  		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
  2109  		if err != nil {
  2110  			return nil, err
  2111  		}
  2112  		hash = block.Hash()
  2113  	}
  2114  	block, _ := api.b.BlockByHash(ctx, hash)
  2115  	if block == nil {
  2116  		return nil, fmt.Errorf("block #%d not found", hash)
  2117  	}
  2118  	return rlp.EncodeToBytes(block)
  2119  }
  2120  
  2121  // GetRawReceipts retrieves the binary-encoded receipts of a single block.
  2122  func (api *DebugAPI) GetRawReceipts(ctx context.Context, blockNrOrHash rpc.BlockNumberOrHash) ([]hexutil.Bytes, error) {
  2123  	var hash common.Hash
  2124  	if h, ok := blockNrOrHash.Hash(); ok {
  2125  		hash = h
  2126  	} else {
  2127  		block, err := api.b.BlockByNumberOrHash(ctx, blockNrOrHash)
  2128  		if err != nil {
  2129  			return nil, err
  2130  		}
  2131  		hash = block.Hash()
  2132  	}
  2133  	receipts, err := api.b.GetReceipts(ctx, hash)
  2134  	if err != nil {
  2135  		return nil, err
  2136  	}
  2137  	result := make([]hexutil.Bytes, len(receipts))
  2138  	for i, receipt := range receipts {
  2139  		b, err := receipt.MarshalBinary()
  2140  		if err != nil {
  2141  			return nil, err
  2142  		}
  2143  		result[i] = b
  2144  	}
  2145  	return result, nil
  2146  }
  2147  
  2148  // GetRawTransaction returns the bytes of the transaction for the given hash.
  2149  func (s *DebugAPI) GetRawTransaction(ctx context.Context, hash common.Hash) (hexutil.Bytes, error) {
  2150  	// Retrieve a finalized transaction, or a pooled otherwise
  2151  	tx, _, _, _, err := s.b.GetTransaction(ctx, hash)
  2152  	if err != nil {
  2153  		return nil, err
  2154  	}
  2155  	if tx == nil {
  2156  		if tx = s.b.GetPoolTransaction(hash); tx == nil {
  2157  			// Transaction not found anywhere, abort
  2158  			return nil, nil
  2159  		}
  2160  	}
  2161  	return tx.MarshalBinary()
  2162  }
  2163  
  2164  // PrintBlock retrieves a block and returns its pretty printed form.
  2165  func (api *DebugAPI) PrintBlock(ctx context.Context, number uint64) (string, error) {
  2166  	block, _ := api.b.BlockByNumber(ctx, rpc.BlockNumber(number))
  2167  	if block == nil {
  2168  		return "", fmt.Errorf("block #%d not found", number)
  2169  	}
  2170  	return spew.Sdump(block), nil
  2171  }
  2172  
  2173  // NetAPI offers network related RPC methods
  2174  type NetAPI struct {
  2175  	networkVersion uint64
  2176  }
  2177  
  2178  // NewNetAPI creates a new net API instance.
  2179  func NewNetAPI(networkVersion uint64) *NetAPI {
  2180  	return &NetAPI{networkVersion}
  2181  }
  2182  
  2183  // Listening returns an indication if the node is listening for network connections.
  2184  func (s *NetAPI) Listening() bool {
  2185  	return true // always listening
  2186  }
  2187  
  2188  // PeerCount returns the number of connected peers
  2189  func (s *NetAPI) PeerCount() hexutil.Uint {
  2190  	return hexutil.Uint(0)
  2191  }
  2192  
  2193  // Version returns the current ethereum protocol version.
  2194  func (s *NetAPI) Version() string {
  2195  	return fmt.Sprintf("%d", s.networkVersion)
  2196  }
  2197  
  2198  // checkTxFee is an internal function used to check whether the fee of
  2199  // the given transaction is _reasonable_(under the cap).
  2200  func checkTxFee(gasPrice *big.Int, gas uint64, cap float64) error {
  2201  	// Short circuit if there is no cap for transaction fee at all.
  2202  	if cap == 0 {
  2203  		return nil
  2204  	}
  2205  	feeEth := new(big.Float).Quo(new(big.Float).SetInt(new(big.Int).Mul(gasPrice, new(big.Int).SetUint64(gas))), new(big.Float).SetInt(big.NewInt(params.Ether)))
  2206  	feeFloat, _ := feeEth.Float64()
  2207  	if feeFloat > cap {
  2208  		return fmt.Errorf("tx fee (%.2f ether) exceeds the configured cap (%.2f ether)", feeFloat, cap)
  2209  	}
  2210  	return nil
  2211  }