github.com/ava-labs/subnet-evm@v0.6.4/trie/trie.go (about)

     1  // (c) 2020-2021, Ava Labs, Inc.
     2  //
     3  // This file is a derived work, based on the go-ethereum library whose original
     4  // notices appear below.
     5  //
     6  // It is distributed under a license compatible with the licensing terms of the
     7  // original code from which it is derived.
     8  //
     9  // Much love to the original authors for their work.
    10  // **********
    11  // Copyright 2014 The go-ethereum Authors
    12  // This file is part of the go-ethereum library.
    13  //
    14  // The go-ethereum library is free software: you can redistribute it and/or modify
    15  // it under the terms of the GNU Lesser General Public License as published by
    16  // the Free Software Foundation, either version 3 of the License, or
    17  // (at your option) any later version.
    18  //
    19  // The go-ethereum library is distributed in the hope that it will be useful,
    20  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    21  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    22  // GNU Lesser General Public License for more details.
    23  //
    24  // You should have received a copy of the GNU Lesser General Public License
    25  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    26  
    27  // Package trie implements Merkle Patricia Tries.
    28  package trie
    29  
    30  import (
    31  	"bytes"
    32  	"errors"
    33  	"fmt"
    34  
    35  	"github.com/ava-labs/subnet-evm/core/types"
    36  	"github.com/ava-labs/subnet-evm/trie/trienode"
    37  	"github.com/ethereum/go-ethereum/common"
    38  	"github.com/ethereum/go-ethereum/log"
    39  )
    40  
    41  // Trie is a Merkle Patricia Trie. Use New to create a trie that sits on
    42  // top of a database. Whenever trie performs a commit operation, the generated
    43  // nodes will be gathered and returned in a set. Once the trie is committed,
    44  // it's not usable anymore. Callers have to re-create the trie with new root
    45  // based on the updated trie database.
    46  //
    47  // Trie is not safe for concurrent use.
    48  type Trie struct {
    49  	root  node
    50  	owner common.Hash
    51  
    52  	// Flag whether the commit operation is already performed. If so the
    53  	// trie is not usable(latest states is invisible).
    54  	committed bool
    55  
    56  	// Keep track of the number leaves which have been inserted since the last
    57  	// hashing operation. This number will not directly map to the number of
    58  	// actually unhashed nodes.
    59  	unhashed int
    60  
    61  	// reader is the handler trie can retrieve nodes from.
    62  	reader *trieReader
    63  
    64  	// tracer is the tool to track the trie changes.
    65  	// It will be reset after each commit operation.
    66  	tracer *tracer
    67  }
    68  
    69  // newFlag returns the cache flag value for a newly created node.
    70  func (t *Trie) newFlag() nodeFlag {
    71  	return nodeFlag{dirty: true}
    72  }
    73  
    74  // Copy returns a copy of Trie.
    75  func (t *Trie) Copy() *Trie {
    76  	return &Trie{
    77  		root:      t.root,
    78  		owner:     t.owner,
    79  		committed: t.committed,
    80  		unhashed:  t.unhashed,
    81  		reader:    t.reader,
    82  		tracer:    t.tracer.copy(),
    83  	}
    84  }
    85  
    86  // New creates the trie instance with provided trie id and the read-only
    87  // database. The state specified by trie id must be available, otherwise
    88  // an error will be returned. The trie root specified by trie id can be
    89  // zero hash or the sha3 hash of an empty string, then trie is initially
    90  // empty, otherwise, the root node must be present in database or returns
    91  // a MissingNodeError if not.
    92  func New(id *ID, db *Database) (*Trie, error) {
    93  	reader, err := newTrieReader(id.StateRoot, id.Owner, db)
    94  	if err != nil {
    95  		return nil, err
    96  	}
    97  	trie := &Trie{
    98  		owner:  id.Owner,
    99  		reader: reader,
   100  		tracer: newTracer(),
   101  	}
   102  	if id.Root != (common.Hash{}) && id.Root != types.EmptyRootHash {
   103  		rootnode, err := trie.resolveAndTrack(id.Root[:], nil)
   104  		if err != nil {
   105  			return nil, err
   106  		}
   107  		trie.root = rootnode
   108  	}
   109  	return trie, nil
   110  }
   111  
   112  // NewEmpty is a shortcut to create empty tree. It's mostly used in tests.
   113  func NewEmpty(db *Database) *Trie {
   114  	tr, _ := New(TrieID(types.EmptyRootHash), db)
   115  	return tr
   116  }
   117  
   118  // MustNodeIterator is a wrapper of NodeIterator and will omit any encountered
   119  // error but just print out an error message.
   120  func (t *Trie) MustNodeIterator(start []byte) NodeIterator {
   121  	it, err := t.NodeIterator(start)
   122  	if err != nil {
   123  		log.Error("Unhandled trie error in Trie.NodeIterator", "err", err)
   124  	}
   125  	return it
   126  }
   127  
   128  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
   129  // the key after the given start key.
   130  func (t *Trie) NodeIterator(start []byte) (NodeIterator, error) {
   131  	// Short circuit if the trie is already committed and not usable.
   132  	if t.committed {
   133  		return nil, ErrCommitted
   134  	}
   135  	return newNodeIterator(t, start), nil
   136  }
   137  
   138  // MustGet is a wrapper of Get and will omit any encountered error but just
   139  // print out an error message.
   140  func (t *Trie) MustGet(key []byte) []byte {
   141  	res, err := t.Get(key)
   142  	if err != nil {
   143  		log.Error("Unhandled trie error in Trie.Get", "err", err)
   144  	}
   145  	return res
   146  }
   147  
   148  // Get returns the value for key stored in the trie.
   149  // The value bytes must not be modified by the caller.
   150  //
   151  // If the requested node is not present in trie, no error will be returned.
   152  // If the trie is corrupted, a MissingNodeError is returned.
   153  func (t *Trie) Get(key []byte) ([]byte, error) {
   154  	// Short circuit if the trie is already committed and not usable.
   155  	if t.committed {
   156  		return nil, ErrCommitted
   157  	}
   158  	value, newroot, didResolve, err := t.get(t.root, keybytesToHex(key), 0)
   159  	if err == nil && didResolve {
   160  		t.root = newroot
   161  	}
   162  	return value, err
   163  }
   164  
   165  func (t *Trie) get(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   166  	switch n := (origNode).(type) {
   167  	case nil:
   168  		return nil, nil, false, nil
   169  	case valueNode:
   170  		return n, n, false, nil
   171  	case *shortNode:
   172  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   173  			// key not found in trie
   174  			return nil, n, false, nil
   175  		}
   176  		value, newnode, didResolve, err = t.get(n.Val, key, pos+len(n.Key))
   177  		if err == nil && didResolve {
   178  			n = n.copy()
   179  			n.Val = newnode
   180  		}
   181  		return value, n, didResolve, err
   182  	case *fullNode:
   183  		value, newnode, didResolve, err = t.get(n.Children[key[pos]], key, pos+1)
   184  		if err == nil && didResolve {
   185  			n = n.copy()
   186  			n.Children[key[pos]] = newnode
   187  		}
   188  		return value, n, didResolve, err
   189  	case hashNode:
   190  		child, err := t.resolveAndTrack(n, key[:pos])
   191  		if err != nil {
   192  			return nil, n, true, err
   193  		}
   194  		value, newnode, _, err := t.get(child, key, pos)
   195  		return value, newnode, true, err
   196  	default:
   197  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   198  	}
   199  }
   200  
   201  // MustGetNode is a wrapper of GetNode and will omit any encountered error but
   202  // just print out an error message.
   203  func (t *Trie) MustGetNode(path []byte) ([]byte, int) {
   204  	item, resolved, err := t.GetNode(path)
   205  	if err != nil {
   206  		log.Error("Unhandled trie error in Trie.GetNode", "err", err)
   207  	}
   208  	return item, resolved
   209  }
   210  
   211  // GetNode retrieves a trie node by compact-encoded path. It is not possible
   212  // to use keybyte-encoding as the path might contain odd nibbles.
   213  //
   214  // If the requested node is not present in trie, no error will be returned.
   215  // If the trie is corrupted, a MissingNodeError is returned.
   216  func (t *Trie) GetNode(path []byte) ([]byte, int, error) {
   217  	// Short circuit if the trie is already committed and not usable.
   218  	if t.committed {
   219  		return nil, 0, ErrCommitted
   220  	}
   221  	item, newroot, resolved, err := t.getNode(t.root, compactToHex(path), 0)
   222  	if err != nil {
   223  		return nil, resolved, err
   224  	}
   225  	if resolved > 0 {
   226  		t.root = newroot
   227  	}
   228  	if item == nil {
   229  		return nil, resolved, nil
   230  	}
   231  	return item, resolved, nil
   232  }
   233  
   234  func (t *Trie) getNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) {
   235  	// If non-existent path requested, abort
   236  	if origNode == nil {
   237  		return nil, nil, 0, nil
   238  	}
   239  	// If we reached the requested path, return the current node
   240  	if pos >= len(path) {
   241  		// Although we most probably have the original node expanded, encoding
   242  		// that into consensus form can be nasty (needs to cascade down) and
   243  		// time consuming. Instead, just pull the hash up from disk directly.
   244  		var hash hashNode
   245  		if node, ok := origNode.(hashNode); ok {
   246  			hash = node
   247  		} else {
   248  			hash, _ = origNode.cache()
   249  		}
   250  		if hash == nil {
   251  			return nil, origNode, 0, errors.New("non-consensus node")
   252  		}
   253  		blob, err := t.reader.node(path, common.BytesToHash(hash))
   254  		return blob, origNode, 1, err
   255  	}
   256  	// Path still needs to be traversed, descend into children
   257  	switch n := (origNode).(type) {
   258  	case valueNode:
   259  		// Path prematurely ended, abort
   260  		return nil, nil, 0, nil
   261  
   262  	case *shortNode:
   263  		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
   264  			// Path branches off from short node
   265  			return nil, n, 0, nil
   266  		}
   267  		item, newnode, resolved, err = t.getNode(n.Val, path, pos+len(n.Key))
   268  		if err == nil && resolved > 0 {
   269  			n = n.copy()
   270  			n.Val = newnode
   271  		}
   272  		return item, n, resolved, err
   273  
   274  	case *fullNode:
   275  		item, newnode, resolved, err = t.getNode(n.Children[path[pos]], path, pos+1)
   276  		if err == nil && resolved > 0 {
   277  			n = n.copy()
   278  			n.Children[path[pos]] = newnode
   279  		}
   280  		return item, n, resolved, err
   281  
   282  	case hashNode:
   283  		child, err := t.resolveAndTrack(n, path[:pos])
   284  		if err != nil {
   285  			return nil, n, 1, err
   286  		}
   287  		item, newnode, resolved, err := t.getNode(child, path, pos)
   288  		return item, newnode, resolved + 1, err
   289  
   290  	default:
   291  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   292  	}
   293  }
   294  
   295  // MustUpdate is a wrapper of Update and will omit any encountered error but
   296  // just print out an error message.
   297  func (t *Trie) MustUpdate(key, value []byte) {
   298  	if err := t.Update(key, value); err != nil {
   299  		log.Error("Unhandled trie error in Trie.Update", "err", err)
   300  	}
   301  }
   302  
   303  // Update associates key with value in the trie. Subsequent calls to
   304  // Get will return value. If value has length zero, any existing value
   305  // is deleted from the trie and calls to Get will return nil.
   306  //
   307  // The value bytes must not be modified by the caller while they are
   308  // stored in the trie.
   309  //
   310  // If the requested node is not present in trie, no error will be returned.
   311  // If the trie is corrupted, a MissingNodeError is returned.
   312  func (t *Trie) Update(key, value []byte) error {
   313  	// Short circuit if the trie is already committed and not usable.
   314  	if t.committed {
   315  		return ErrCommitted
   316  	}
   317  	return t.update(key, value)
   318  }
   319  
   320  func (t *Trie) update(key, value []byte) error {
   321  	t.unhashed++
   322  	k := keybytesToHex(key)
   323  	if len(value) != 0 {
   324  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   325  		if err != nil {
   326  			return err
   327  		}
   328  		t.root = n
   329  	} else {
   330  		_, n, err := t.delete(t.root, nil, k)
   331  		if err != nil {
   332  			return err
   333  		}
   334  		t.root = n
   335  	}
   336  	return nil
   337  }
   338  
   339  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   340  	if len(key) == 0 {
   341  		if v, ok := n.(valueNode); ok {
   342  			return !bytes.Equal(v, value.(valueNode)), value, nil
   343  		}
   344  		return true, value, nil
   345  	}
   346  	switch n := n.(type) {
   347  	case *shortNode:
   348  		matchlen := prefixLen(key, n.Key)
   349  		// If the whole key matches, keep this short node as is
   350  		// and only update the value.
   351  		if matchlen == len(n.Key) {
   352  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   353  			if !dirty || err != nil {
   354  				return false, n, err
   355  			}
   356  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   357  		}
   358  		// Otherwise branch out at the index where they differ.
   359  		branch := &fullNode{flags: t.newFlag()}
   360  		var err error
   361  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   362  		if err != nil {
   363  			return false, nil, err
   364  		}
   365  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   366  		if err != nil {
   367  			return false, nil, err
   368  		}
   369  		// Replace this shortNode with the branch if it occurs at index 0.
   370  		if matchlen == 0 {
   371  			return true, branch, nil
   372  		}
   373  		// New branch node is created as a child of the original short node.
   374  		// Track the newly inserted node in the tracer. The node identifier
   375  		// passed is the path from the root node.
   376  		t.tracer.onInsert(append(prefix, key[:matchlen]...))
   377  
   378  		// Replace it with a short node leading up to the branch.
   379  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   380  
   381  	case *fullNode:
   382  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   383  		if !dirty || err != nil {
   384  			return false, n, err
   385  		}
   386  		n = n.copy()
   387  		n.flags = t.newFlag()
   388  		n.Children[key[0]] = nn
   389  		return true, n, nil
   390  
   391  	case nil:
   392  		// New short node is created and track it in the tracer. The node identifier
   393  		// passed is the path from the root node. Note the valueNode won't be tracked
   394  		// since it's always embedded in its parent.
   395  		t.tracer.onInsert(prefix)
   396  
   397  		return true, &shortNode{key, value, t.newFlag()}, nil
   398  
   399  	case hashNode:
   400  		// We've hit a part of the trie that isn't loaded yet. Load
   401  		// the node and insert into it. This leaves all child nodes on
   402  		// the path to the value in the trie.
   403  		rn, err := t.resolveAndTrack(n, prefix)
   404  		if err != nil {
   405  			return false, nil, err
   406  		}
   407  		dirty, nn, err := t.insert(rn, prefix, key, value)
   408  		if !dirty || err != nil {
   409  			return false, rn, err
   410  		}
   411  		return true, nn, nil
   412  
   413  	default:
   414  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   415  	}
   416  }
   417  
   418  // MustDelete is a wrapper of Delete and will omit any encountered error but
   419  // just print out an error message.
   420  func (t *Trie) MustDelete(key []byte) {
   421  	if err := t.Delete(key); err != nil {
   422  		log.Error("Unhandled trie error in Trie.Delete", "err", err)
   423  	}
   424  }
   425  
   426  // Delete removes any existing value for key from the trie.
   427  //
   428  // If the requested node is not present in trie, no error will be returned.
   429  // If the trie is corrupted, a MissingNodeError is returned.
   430  func (t *Trie) Delete(key []byte) error {
   431  	// Short circuit if the trie is already committed and not usable.
   432  	if t.committed {
   433  		return ErrCommitted
   434  	}
   435  	t.unhashed++
   436  	k := keybytesToHex(key)
   437  	_, n, err := t.delete(t.root, nil, k)
   438  	if err != nil {
   439  		return err
   440  	}
   441  	t.root = n
   442  	return nil
   443  }
   444  
   445  // delete returns the new root of the trie with key deleted.
   446  // It reduces the trie to minimal form by simplifying
   447  // nodes on the way up after deleting recursively.
   448  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   449  	switch n := n.(type) {
   450  	case *shortNode:
   451  		matchlen := prefixLen(key, n.Key)
   452  		if matchlen < len(n.Key) {
   453  			return false, n, nil // don't replace n on mismatch
   454  		}
   455  		if matchlen == len(key) {
   456  			// The matched short node is deleted entirely and track
   457  			// it in the deletion set. The same the valueNode doesn't
   458  			// need to be tracked at all since it's always embedded.
   459  			t.tracer.onDelete(prefix)
   460  
   461  			return true, nil, nil // remove n entirely for whole matches
   462  		}
   463  		// The key is longer than n.Key. Remove the remaining suffix
   464  		// from the subtrie. Child can never be nil here since the
   465  		// subtrie must contain at least two other values with keys
   466  		// longer than n.Key.
   467  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   468  		if !dirty || err != nil {
   469  			return false, n, err
   470  		}
   471  		switch child := child.(type) {
   472  		case *shortNode:
   473  			// The child shortNode is merged into its parent, track
   474  			// is deleted as well.
   475  			t.tracer.onDelete(append(prefix, n.Key...))
   476  
   477  			// Deleting from the subtrie reduced it to another
   478  			// short node. Merge the nodes to avoid creating a
   479  			// shortNode{..., shortNode{...}}. Use concat (which
   480  			// always creates a new slice) instead of append to
   481  			// avoid modifying n.Key since it might be shared with
   482  			// other nodes.
   483  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   484  		default:
   485  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   486  		}
   487  
   488  	case *fullNode:
   489  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   490  		if !dirty || err != nil {
   491  			return false, n, err
   492  		}
   493  		n = n.copy()
   494  		n.flags = t.newFlag()
   495  		n.Children[key[0]] = nn
   496  
   497  		// Because n is a full node, it must've contained at least two children
   498  		// before the delete operation. If the new child value is non-nil, n still
   499  		// has at least two children after the deletion, and cannot be reduced to
   500  		// a short node.
   501  		if nn != nil {
   502  			return true, n, nil
   503  		}
   504  		// Reduction:
   505  		// Check how many non-nil entries are left after deleting and
   506  		// reduce the full node to a short node if only one entry is
   507  		// left. Since n must've contained at least two children
   508  		// before deletion (otherwise it would not be a full node) n
   509  		// can never be reduced to nil.
   510  		//
   511  		// When the loop is done, pos contains the index of the single
   512  		// value that is left in n or -2 if n contains at least two
   513  		// values.
   514  		pos := -1
   515  		for i, cld := range &n.Children {
   516  			if cld != nil {
   517  				if pos == -1 {
   518  					pos = i
   519  				} else {
   520  					pos = -2
   521  					break
   522  				}
   523  			}
   524  		}
   525  		if pos >= 0 {
   526  			if pos != 16 {
   527  				// If the remaining entry is a short node, it replaces
   528  				// n and its key gets the missing nibble tacked to the
   529  				// front. This avoids creating an invalid
   530  				// shortNode{..., shortNode{...}}.  Since the entry
   531  				// might not be loaded yet, resolve it just for this
   532  				// check.
   533  				cnode, err := t.resolve(n.Children[pos], append(prefix, byte(pos)))
   534  				if err != nil {
   535  					return false, nil, err
   536  				}
   537  				if cnode, ok := cnode.(*shortNode); ok {
   538  					// Replace the entire full node with the short node.
   539  					// Mark the original short node as deleted since the
   540  					// value is embedded into the parent now.
   541  					t.tracer.onDelete(append(prefix, byte(pos)))
   542  
   543  					k := append([]byte{byte(pos)}, cnode.Key...)
   544  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   545  				}
   546  			}
   547  			// Otherwise, n is replaced by a one-nibble short node
   548  			// containing the child.
   549  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   550  		}
   551  		// n still contains at least two values and cannot be reduced.
   552  		return true, n, nil
   553  
   554  	case valueNode:
   555  		return true, nil, nil
   556  
   557  	case nil:
   558  		return false, nil, nil
   559  
   560  	case hashNode:
   561  		// We've hit a part of the trie that isn't loaded yet. Load
   562  		// the node and delete from it. This leaves all child nodes on
   563  		// the path to the value in the trie.
   564  		rn, err := t.resolveAndTrack(n, prefix)
   565  		if err != nil {
   566  			return false, nil, err
   567  		}
   568  		dirty, nn, err := t.delete(rn, prefix, key)
   569  		if !dirty || err != nil {
   570  			return false, rn, err
   571  		}
   572  		return true, nn, nil
   573  
   574  	default:
   575  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   576  	}
   577  }
   578  
   579  func concat(s1 []byte, s2 ...byte) []byte {
   580  	r := make([]byte, len(s1)+len(s2))
   581  	copy(r, s1)
   582  	copy(r[len(s1):], s2)
   583  	return r
   584  }
   585  
   586  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   587  	if n, ok := n.(hashNode); ok {
   588  		return t.resolveAndTrack(n, prefix)
   589  	}
   590  	return n, nil
   591  }
   592  
   593  // resolveAndTrack loads node from the underlying store with the given node hash
   594  // and path prefix and also tracks the loaded node blob in tracer treated as the
   595  // node's original value. The rlp-encoded blob is preferred to be loaded from
   596  // database because it's easy to decode node while complex to encode node to blob.
   597  func (t *Trie) resolveAndTrack(n hashNode, prefix []byte) (node, error) {
   598  	blob, err := t.reader.node(prefix, common.BytesToHash(n))
   599  	if err != nil {
   600  		return nil, err
   601  	}
   602  	t.tracer.onRead(prefix, blob)
   603  	return mustDecodeNode(n, blob), nil
   604  }
   605  
   606  // Hash returns the root hash of the trie. It does not write to the
   607  // database and can be used even if the trie doesn't have one.
   608  func (t *Trie) Hash() common.Hash {
   609  	hash, cached := t.hashRoot()
   610  	t.root = cached
   611  	return common.BytesToHash(hash.(hashNode))
   612  }
   613  
   614  // Commit collects all dirty nodes in the trie and replaces them with the
   615  // corresponding node hash. All collected nodes (including dirty leaves if
   616  // collectLeaf is true) will be encapsulated into a nodeset for return.
   617  // The returned nodeset can be nil if the trie is clean (nothing to commit).
   618  // Once the trie is committed, it's not usable anymore. A new trie must
   619  // be created with new root and updated trie database for following usage
   620  func (t *Trie) Commit(collectLeaf bool) (common.Hash, *trienode.NodeSet, error) {
   621  	defer t.tracer.reset()
   622  	defer func() {
   623  		t.committed = true
   624  	}()
   625  	// Trie is empty and can be classified into two types of situations:
   626  	// (a) The trie was empty and no update happens => return nil
   627  	// (b) The trie was non-empty and all nodes are dropped => return
   628  	//     the node set includes all deleted nodes
   629  	if t.root == nil {
   630  		paths := t.tracer.deletedNodes()
   631  		if len(paths) == 0 {
   632  			return types.EmptyRootHash, nil, nil // case (a)
   633  		}
   634  		nodes := trienode.NewNodeSet(t.owner)
   635  		for _, path := range paths {
   636  			nodes.AddNode([]byte(path), trienode.NewDeleted())
   637  		}
   638  		return types.EmptyRootHash, nodes, nil // case (b)
   639  	}
   640  	// Derive the hash for all dirty nodes first. We hold the assumption
   641  	// in the following procedure that all nodes are hashed.
   642  	rootHash := t.Hash()
   643  
   644  	// Do a quick check if we really need to commit. This can happen e.g.
   645  	// if we load a trie for reading storage values, but don't write to it.
   646  	if hashedNode, dirty := t.root.cache(); !dirty {
   647  		// Replace the root node with the origin hash in order to
   648  		// ensure all resolved nodes are dropped after the commit.
   649  		t.root = hashedNode
   650  		return rootHash, nil, nil
   651  	}
   652  	nodes := trienode.NewNodeSet(t.owner)
   653  	for _, path := range t.tracer.deletedNodes() {
   654  		nodes.AddNode([]byte(path), trienode.NewDeleted())
   655  	}
   656  	t.root = newCommitter(nodes, t.tracer, collectLeaf).Commit(t.root)
   657  	return rootHash, nodes, nil
   658  }
   659  
   660  // hashRoot calculates the root hash of the given trie
   661  func (t *Trie) hashRoot() (node, node) {
   662  	if t.root == nil {
   663  		return hashNode(types.EmptyRootHash.Bytes()), nil
   664  	}
   665  	// If the number of changes is below 100, we let one thread handle it
   666  	h := newHasher(t.unhashed >= 100)
   667  	defer func() {
   668  		returnHasherToPool(h)
   669  		t.unhashed = 0
   670  	}()
   671  	hashed, cached := h.hash(t.root, true)
   672  	return hashed, cached
   673  }
   674  
   675  // Reset drops the referenced root node and cleans all internal state.
   676  func (t *Trie) Reset() {
   677  	t.root = nil
   678  	t.owner = common.Hash{}
   679  	t.unhashed = 0
   680  	t.tracer.reset()
   681  	t.committed = false
   682  }