github.com/axw/llgo@v0.0.0-20160805011314-95b5fe4dca20/third_party/gofrontend/libgo/go/reflect/value.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package reflect 6 7 import ( 8 "math" 9 "runtime" 10 "unsafe" 11 ) 12 13 const ptrSize = 4 << (^uintptr(0) >> 63) // unsafe.Sizeof(uintptr(0)) but an ideal const 14 const cannotSet = "cannot set value obtained from unexported struct field" 15 16 // Value is the reflection interface to a Go value. 17 // 18 // Not all methods apply to all kinds of values. Restrictions, 19 // if any, are noted in the documentation for each method. 20 // Use the Kind method to find out the kind of value before 21 // calling kind-specific methods. Calling a method 22 // inappropriate to the kind of type causes a run time panic. 23 // 24 // The zero Value represents no value. 25 // Its IsValid method returns false, its Kind method returns Invalid, 26 // its String method returns "<invalid Value>", and all other methods panic. 27 // Most functions and methods never return an invalid value. 28 // If one does, its documentation states the conditions explicitly. 29 // 30 // A Value can be used concurrently by multiple goroutines provided that 31 // the underlying Go value can be used concurrently for the equivalent 32 // direct operations. 33 // 34 // Using == on two Values does not compare the underlying values 35 // they represent, but rather the contents of the Value structs. 36 // To compare two Values, compare the results of the Interface method. 37 type Value struct { 38 // typ holds the type of the value represented by a Value. 39 typ *rtype 40 41 // Pointer-valued data or, if flagIndir is set, pointer to data. 42 // Valid when either flagIndir is set or typ.pointers() is true. 43 ptr unsafe.Pointer 44 45 // flag holds metadata about the value. 46 // The lowest bits are flag bits: 47 // - flagStickyRO: obtained via unexported not embedded field, so read-only 48 // - flagEmbedRO: obtained via unexported embedded field, so read-only 49 // - flagIndir: val holds a pointer to the data 50 // - flagAddr: v.CanAddr is true (implies flagIndir) 51 // - flagMethod: v is a method value. 52 // The next five bits give the Kind of the value. 53 // This repeats typ.Kind() except for method values. 54 // The remaining 23+ bits give a method number for method values. 55 // If flag.kind() != Func, code can assume that flagMethod is unset. 56 // If ifaceIndir(typ), code can assume that flagIndir is set. 57 flag 58 59 // A method value represents a curried method invocation 60 // like r.Read for some receiver r. The typ+val+flag bits describe 61 // the receiver r, but the flag's Kind bits say Func (methods are 62 // functions), and the top bits of the flag give the method number 63 // in r's type's method table. 64 } 65 66 type flag uintptr 67 68 const ( 69 flagKindWidth = 5 // there are 27 kinds 70 flagKindMask flag = 1<<flagKindWidth - 1 71 flagStickyRO flag = 1 << 5 72 flagEmbedRO flag = 1 << 6 73 flagIndir flag = 1 << 7 74 flagAddr flag = 1 << 8 75 flagMethod flag = 1 << 9 76 flagMethodFn flag = 1 << 10 // gccgo: first fn parameter is always pointer 77 flagMethodShift = 11 78 flagRO flag = flagStickyRO | flagEmbedRO 79 ) 80 81 func (f flag) kind() Kind { 82 return Kind(f & flagKindMask) 83 } 84 85 // pointer returns the underlying pointer represented by v. 86 // v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer 87 func (v Value) pointer() unsafe.Pointer { 88 if v.typ.size != ptrSize || !v.typ.pointers() { 89 panic("can't call pointer on a non-pointer Value") 90 } 91 if v.flag&flagIndir != 0 { 92 return *(*unsafe.Pointer)(v.ptr) 93 } 94 return v.ptr 95 } 96 97 // packEface converts v to the empty interface. 98 func packEface(v Value) interface{} { 99 t := v.typ 100 var i interface{} 101 e := (*emptyInterface)(unsafe.Pointer(&i)) 102 // First, fill in the data portion of the interface. 103 switch { 104 case ifaceIndir(t): 105 if v.flag&flagIndir == 0 { 106 panic("bad indir") 107 } 108 // Value is indirect, and so is the interface we're making. 109 ptr := v.ptr 110 if v.flag&flagAddr != 0 { 111 // TODO: pass safe boolean from valueInterface so 112 // we don't need to copy if safe==true? 113 c := unsafe_New(t) 114 typedmemmove(t, c, ptr) 115 ptr = c 116 } 117 e.word = ptr 118 case v.flag&flagIndir != 0: 119 // Value is indirect, but interface is direct. We need 120 // to load the data at v.ptr into the interface data word. 121 e.word = *(*unsafe.Pointer)(v.ptr) 122 default: 123 // Value is direct, and so is the interface. 124 e.word = v.ptr 125 } 126 // Now, fill in the type portion. We're very careful here not 127 // to have any operation between the e.word and e.typ assignments 128 // that would let the garbage collector observe the partially-built 129 // interface value. 130 e.typ = t 131 return i 132 } 133 134 // unpackEface converts the empty interface i to a Value. 135 func unpackEface(i interface{}) Value { 136 e := (*emptyInterface)(unsafe.Pointer(&i)) 137 // NOTE: don't read e.word until we know whether it is really a pointer or not. 138 t := e.typ 139 if t == nil { 140 return Value{} 141 } 142 f := flag(t.Kind()) 143 if ifaceIndir(t) { 144 f |= flagIndir 145 } 146 return Value{t, unsafe.Pointer(e.word), f} 147 } 148 149 // A ValueError occurs when a Value method is invoked on 150 // a Value that does not support it. Such cases are documented 151 // in the description of each method. 152 type ValueError struct { 153 Method string 154 Kind Kind 155 } 156 157 func (e *ValueError) Error() string { 158 if e.Kind == 0 { 159 return "reflect: call of " + e.Method + " on zero Value" 160 } 161 return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value" 162 } 163 164 // methodName returns the name of the calling method, 165 // assumed to be two stack frames above. 166 func methodName() string { 167 pc, _, _, _ := runtime.Caller(2) 168 f := runtime.FuncForPC(pc) 169 if f == nil { 170 return "unknown method" 171 } 172 return f.Name() 173 } 174 175 // emptyInterface is the header for an interface{} value. 176 type emptyInterface struct { 177 typ *rtype 178 word unsafe.Pointer 179 } 180 181 // nonEmptyInterface is the header for a interface value with methods. 182 type nonEmptyInterface struct { 183 // see ../runtime/iface.go:/Itab 184 itab *struct { 185 typ *rtype // dynamic concrete type 186 fun [100000]unsafe.Pointer // method table 187 } 188 word unsafe.Pointer 189 } 190 191 // mustBe panics if f's kind is not expected. 192 // Making this a method on flag instead of on Value 193 // (and embedding flag in Value) means that we can write 194 // the very clear v.mustBe(Bool) and have it compile into 195 // v.flag.mustBe(Bool), which will only bother to copy the 196 // single important word for the receiver. 197 func (f flag) mustBe(expected Kind) { 198 if f.kind() != expected { 199 panic(&ValueError{methodName(), f.kind()}) 200 } 201 } 202 203 // mustBeExported panics if f records that the value was obtained using 204 // an unexported field. 205 func (f flag) mustBeExported() { 206 if f == 0 { 207 panic(&ValueError{methodName(), 0}) 208 } 209 if f&flagRO != 0 { 210 panic("reflect: " + methodName() + " using value obtained using unexported field") 211 } 212 } 213 214 // mustBeAssignable panics if f records that the value is not assignable, 215 // which is to say that either it was obtained using an unexported field 216 // or it is not addressable. 217 func (f flag) mustBeAssignable() { 218 if f == 0 { 219 panic(&ValueError{methodName(), Invalid}) 220 } 221 // Assignable if addressable and not read-only. 222 if f&flagRO != 0 { 223 panic("reflect: " + methodName() + " using value obtained using unexported field") 224 } 225 if f&flagAddr == 0 { 226 panic("reflect: " + methodName() + " using unaddressable value") 227 } 228 } 229 230 // Addr returns a pointer value representing the address of v. 231 // It panics if CanAddr() returns false. 232 // Addr is typically used to obtain a pointer to a struct field 233 // or slice element in order to call a method that requires a 234 // pointer receiver. 235 func (v Value) Addr() Value { 236 if v.flag&flagAddr == 0 { 237 panic("reflect.Value.Addr of unaddressable value") 238 } 239 return Value{v.typ.ptrTo(), v.ptr, (v.flag & flagRO) | flag(Ptr)} 240 } 241 242 // Bool returns v's underlying value. 243 // It panics if v's kind is not Bool. 244 func (v Value) Bool() bool { 245 v.mustBe(Bool) 246 return *(*bool)(v.ptr) 247 } 248 249 // Bytes returns v's underlying value. 250 // It panics if v's underlying value is not a slice of bytes. 251 func (v Value) Bytes() []byte { 252 v.mustBe(Slice) 253 if v.typ.Elem().Kind() != Uint8 { 254 panic("reflect.Value.Bytes of non-byte slice") 255 } 256 // Slice is always bigger than a word; assume flagIndir. 257 return *(*[]byte)(v.ptr) 258 } 259 260 // runes returns v's underlying value. 261 // It panics if v's underlying value is not a slice of runes (int32s). 262 func (v Value) runes() []rune { 263 v.mustBe(Slice) 264 if v.typ.Elem().Kind() != Int32 { 265 panic("reflect.Value.Bytes of non-rune slice") 266 } 267 // Slice is always bigger than a word; assume flagIndir. 268 return *(*[]rune)(v.ptr) 269 } 270 271 // CanAddr reports whether the value's address can be obtained with Addr. 272 // Such values are called addressable. A value is addressable if it is 273 // an element of a slice, an element of an addressable array, 274 // a field of an addressable struct, or the result of dereferencing a pointer. 275 // If CanAddr returns false, calling Addr will panic. 276 func (v Value) CanAddr() bool { 277 return v.flag&flagAddr != 0 278 } 279 280 // CanSet reports whether the value of v can be changed. 281 // A Value can be changed only if it is addressable and was not 282 // obtained by the use of unexported struct fields. 283 // If CanSet returns false, calling Set or any type-specific 284 // setter (e.g., SetBool, SetInt) will panic. 285 func (v Value) CanSet() bool { 286 return v.flag&(flagAddr|flagRO) == flagAddr 287 } 288 289 // Call calls the function v with the input arguments in. 290 // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]). 291 // Call panics if v's Kind is not Func. 292 // It returns the output results as Values. 293 // As in Go, each input argument must be assignable to the 294 // type of the function's corresponding input parameter. 295 // If v is a variadic function, Call creates the variadic slice parameter 296 // itself, copying in the corresponding values. 297 func (v Value) Call(in []Value) []Value { 298 v.mustBe(Func) 299 v.mustBeExported() 300 return v.call("Call", in) 301 } 302 303 // CallSlice calls the variadic function v with the input arguments in, 304 // assigning the slice in[len(in)-1] to v's final variadic argument. 305 // For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...). 306 // CallSlice panics if v's Kind is not Func or if v is not variadic. 307 // It returns the output results as Values. 308 // As in Go, each input argument must be assignable to the 309 // type of the function's corresponding input parameter. 310 func (v Value) CallSlice(in []Value) []Value { 311 v.mustBe(Func) 312 v.mustBeExported() 313 return v.call("CallSlice", in) 314 } 315 316 var callGC bool // for testing; see TestCallMethodJump 317 318 func (v Value) call(op string, in []Value) []Value { 319 // Get function pointer, type. 320 t := v.typ 321 var ( 322 fn unsafe.Pointer 323 rcvr Value 324 ) 325 if v.flag&flagMethod != 0 { 326 rcvr = v 327 _, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift) 328 } else if v.flag&flagIndir != 0 { 329 fn = *(*unsafe.Pointer)(v.ptr) 330 } else { 331 fn = v.ptr 332 } 333 334 if fn == nil { 335 panic("reflect.Value.Call: call of nil function") 336 } 337 338 isSlice := op == "CallSlice" 339 n := t.NumIn() 340 if isSlice { 341 if !t.IsVariadic() { 342 panic("reflect: CallSlice of non-variadic function") 343 } 344 if len(in) < n { 345 panic("reflect: CallSlice with too few input arguments") 346 } 347 if len(in) > n { 348 panic("reflect: CallSlice with too many input arguments") 349 } 350 } else { 351 if t.IsVariadic() { 352 n-- 353 } 354 if len(in) < n { 355 panic("reflect: Call with too few input arguments") 356 } 357 if !t.IsVariadic() && len(in) > n { 358 panic("reflect: Call with too many input arguments") 359 } 360 } 361 for _, x := range in { 362 if x.Kind() == Invalid { 363 panic("reflect: " + op + " using zero Value argument") 364 } 365 } 366 for i := 0; i < n; i++ { 367 if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) { 368 panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String()) 369 } 370 } 371 if !isSlice && t.IsVariadic() { 372 // prepare slice for remaining values 373 m := len(in) - n 374 slice := MakeSlice(t.In(n), m, m) 375 elem := t.In(n).Elem() 376 for i := 0; i < m; i++ { 377 x := in[n+i] 378 if xt := x.Type(); !xt.AssignableTo(elem) { 379 panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op) 380 } 381 slice.Index(i).Set(x) 382 } 383 origIn := in 384 in = make([]Value, n+1) 385 copy(in[:n], origIn) 386 in[n] = slice 387 } 388 389 nin := len(in) 390 if nin != t.NumIn() { 391 panic("reflect.Value.Call: wrong argument count") 392 } 393 nout := t.NumOut() 394 395 if v.flag&flagMethod != 0 { 396 nin++ 397 } 398 firstPointer := len(in) > 0 && t.In(0).Kind() != Ptr && v.flag&flagMethodFn != 0 399 params := make([]unsafe.Pointer, nin) 400 off := 0 401 if v.flag&flagMethod != 0 { 402 // Hard-wired first argument. 403 p := new(unsafe.Pointer) 404 if rcvr.typ.Kind() == Interface { 405 *p = unsafe.Pointer((*nonEmptyInterface)(v.ptr).word) 406 } else if rcvr.typ.Kind() == Ptr || rcvr.typ.Kind() == UnsafePointer { 407 *p = rcvr.pointer() 408 } else { 409 *p = rcvr.ptr 410 } 411 params[0] = unsafe.Pointer(p) 412 off = 1 413 } 414 for i, pv := range in { 415 pv.mustBeExported() 416 targ := t.In(i).(*rtype) 417 pv = pv.assignTo("reflect.Value.Call", targ, nil) 418 if pv.flag&flagIndir == 0 { 419 p := new(unsafe.Pointer) 420 *p = pv.ptr 421 params[off] = unsafe.Pointer(p) 422 } else { 423 params[off] = pv.ptr 424 } 425 if i == 0 && firstPointer { 426 p := new(unsafe.Pointer) 427 *p = params[off] 428 params[off] = unsafe.Pointer(p) 429 } 430 off++ 431 } 432 433 ret := make([]Value, nout) 434 results := make([]unsafe.Pointer, nout) 435 for i := 0; i < nout; i++ { 436 v := New(t.Out(i)) 437 results[i] = unsafe.Pointer(v.Pointer()) 438 ret[i] = Indirect(v) 439 } 440 441 var pp *unsafe.Pointer 442 if len(params) > 0 { 443 pp = ¶ms[0] 444 } 445 var pr *unsafe.Pointer 446 if len(results) > 0 { 447 pr = &results[0] 448 } 449 450 call(t, fn, v.flag&flagMethod != 0, firstPointer, pp, pr) 451 452 // For testing; see TestCallMethodJump. 453 if callGC { 454 runtime.GC() 455 } 456 457 return ret 458 } 459 460 // methodReceiver returns information about the receiver 461 // described by v. The Value v may or may not have the 462 // flagMethod bit set, so the kind cached in v.flag should 463 // not be used. 464 // The return value rcvrtype gives the method's actual receiver type. 465 // The return value t gives the method type signature (without the receiver). 466 // The return value fn is a pointer to the method code. 467 func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn unsafe.Pointer) { 468 i := methodIndex 469 if v.typ.Kind() == Interface { 470 tt := (*interfaceType)(unsafe.Pointer(v.typ)) 471 if uint(i) >= uint(len(tt.methods)) { 472 panic("reflect: internal error: invalid method index") 473 } 474 m := &tt.methods[i] 475 if m.pkgPath != nil { 476 panic("reflect: " + op + " of unexported method") 477 } 478 iface := (*nonEmptyInterface)(v.ptr) 479 if iface.itab == nil { 480 panic("reflect: " + op + " of method on nil interface value") 481 } 482 rcvrtype = iface.itab.typ 483 fn = unsafe.Pointer(&iface.itab.fun[i]) 484 t = m.typ 485 } else { 486 rcvrtype = v.typ 487 ut := v.typ.uncommon() 488 if ut == nil || uint(i) >= uint(len(ut.methods)) { 489 panic("reflect: internal error: invalid method index") 490 } 491 m := &ut.methods[i] 492 if m.pkgPath != nil { 493 panic("reflect: " + op + " of unexported method") 494 } 495 fn = unsafe.Pointer(&m.tfn) 496 t = m.mtyp 497 } 498 return 499 } 500 501 // v is a method receiver. Store at p the word which is used to 502 // encode that receiver at the start of the argument list. 503 // Reflect uses the "interface" calling convention for 504 // methods, which always uses one word to record the receiver. 505 func storeRcvr(v Value, p unsafe.Pointer) { 506 t := v.typ 507 if t.Kind() == Interface { 508 // the interface data word becomes the receiver word 509 iface := (*nonEmptyInterface)(v.ptr) 510 *(*unsafe.Pointer)(p) = unsafe.Pointer(iface.word) 511 } else if v.flag&flagIndir != 0 && !ifaceIndir(t) { 512 *(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr) 513 } else { 514 *(*unsafe.Pointer)(p) = v.ptr 515 } 516 } 517 518 // align returns the result of rounding x up to a multiple of n. 519 // n must be a power of two. 520 func align(x, n uintptr) uintptr { 521 return (x + n - 1) &^ (n - 1) 522 } 523 524 // funcName returns the name of f, for use in error messages. 525 func funcName(f func([]Value) []Value) string { 526 pc := *(*uintptr)(unsafe.Pointer(&f)) 527 rf := runtime.FuncForPC(pc) 528 if rf != nil { 529 return rf.Name() 530 } 531 return "closure" 532 } 533 534 // Cap returns v's capacity. 535 // It panics if v's Kind is not Array, Chan, or Slice. 536 func (v Value) Cap() int { 537 k := v.kind() 538 switch k { 539 case Array: 540 return v.typ.Len() 541 case Chan: 542 return int(chancap(v.pointer())) 543 case Slice: 544 // Slice is always bigger than a word; assume flagIndir. 545 return (*sliceHeader)(v.ptr).Cap 546 } 547 panic(&ValueError{"reflect.Value.Cap", v.kind()}) 548 } 549 550 // Close closes the channel v. 551 // It panics if v's Kind is not Chan. 552 func (v Value) Close() { 553 v.mustBe(Chan) 554 v.mustBeExported() 555 chanclose(v.pointer()) 556 } 557 558 // Complex returns v's underlying value, as a complex128. 559 // It panics if v's Kind is not Complex64 or Complex128 560 func (v Value) Complex() complex128 { 561 k := v.kind() 562 switch k { 563 case Complex64: 564 return complex128(*(*complex64)(v.ptr)) 565 case Complex128: 566 return *(*complex128)(v.ptr) 567 } 568 panic(&ValueError{"reflect.Value.Complex", v.kind()}) 569 } 570 571 // Elem returns the value that the interface v contains 572 // or that the pointer v points to. 573 // It panics if v's Kind is not Interface or Ptr. 574 // It returns the zero Value if v is nil. 575 func (v Value) Elem() Value { 576 k := v.kind() 577 switch k { 578 case Interface: 579 var eface interface{} 580 if v.typ.NumMethod() == 0 { 581 eface = *(*interface{})(v.ptr) 582 } else { 583 eface = (interface{})(*(*interface { 584 M() 585 })(v.ptr)) 586 } 587 x := unpackEface(eface) 588 if x.flag != 0 { 589 x.flag |= v.flag & flagRO 590 } 591 return x 592 case Ptr: 593 ptr := v.ptr 594 if v.flag&flagIndir != 0 { 595 ptr = *(*unsafe.Pointer)(ptr) 596 } 597 // The returned value's address is v's value. 598 if ptr == nil { 599 return Value{} 600 } 601 tt := (*ptrType)(unsafe.Pointer(v.typ)) 602 typ := tt.elem 603 fl := v.flag&flagRO | flagIndir | flagAddr 604 fl |= flag(typ.Kind()) 605 return Value{typ, ptr, fl} 606 } 607 panic(&ValueError{"reflect.Value.Elem", v.kind()}) 608 } 609 610 // Field returns the i'th field of the struct v. 611 // It panics if v's Kind is not Struct or i is out of range. 612 func (v Value) Field(i int) Value { 613 if v.kind() != Struct { 614 panic(&ValueError{"reflect.Value.Field", v.kind()}) 615 } 616 tt := (*structType)(unsafe.Pointer(v.typ)) 617 if uint(i) >= uint(len(tt.fields)) { 618 panic("reflect: Field index out of range") 619 } 620 field := &tt.fields[i] 621 typ := field.typ 622 623 // Inherit permission bits from v, but clear flagEmbedRO. 624 fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind()) 625 // Using an unexported field forces flagRO. 626 if field.pkgPath != nil { 627 if field.name == nil { 628 fl |= flagEmbedRO 629 } else { 630 fl |= flagStickyRO 631 } 632 } 633 // Either flagIndir is set and v.ptr points at struct, 634 // or flagIndir is not set and v.ptr is the actual struct data. 635 // In the former case, we want v.ptr + offset. 636 // In the latter case, we must have field.offset = 0, 637 // so v.ptr + field.offset is still okay. 638 ptr := unsafe.Pointer(uintptr(v.ptr) + field.offset) 639 return Value{typ, ptr, fl} 640 } 641 642 // FieldByIndex returns the nested field corresponding to index. 643 // It panics if v's Kind is not struct. 644 func (v Value) FieldByIndex(index []int) Value { 645 if len(index) == 1 { 646 return v.Field(index[0]) 647 } 648 v.mustBe(Struct) 649 for i, x := range index { 650 if i > 0 { 651 if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct { 652 if v.IsNil() { 653 panic("reflect: indirection through nil pointer to embedded struct") 654 } 655 v = v.Elem() 656 } 657 } 658 v = v.Field(x) 659 } 660 return v 661 } 662 663 // FieldByName returns the struct field with the given name. 664 // It returns the zero Value if no field was found. 665 // It panics if v's Kind is not struct. 666 func (v Value) FieldByName(name string) Value { 667 v.mustBe(Struct) 668 if f, ok := v.typ.FieldByName(name); ok { 669 return v.FieldByIndex(f.Index) 670 } 671 return Value{} 672 } 673 674 // FieldByNameFunc returns the struct field with a name 675 // that satisfies the match function. 676 // It panics if v's Kind is not struct. 677 // It returns the zero Value if no field was found. 678 func (v Value) FieldByNameFunc(match func(string) bool) Value { 679 if f, ok := v.typ.FieldByNameFunc(match); ok { 680 return v.FieldByIndex(f.Index) 681 } 682 return Value{} 683 } 684 685 // Float returns v's underlying value, as a float64. 686 // It panics if v's Kind is not Float32 or Float64 687 func (v Value) Float() float64 { 688 k := v.kind() 689 switch k { 690 case Float32: 691 return float64(*(*float32)(v.ptr)) 692 case Float64: 693 return *(*float64)(v.ptr) 694 } 695 panic(&ValueError{"reflect.Value.Float", v.kind()}) 696 } 697 698 var uint8Type = TypeOf(uint8(0)).(*rtype) 699 700 // Index returns v's i'th element. 701 // It panics if v's Kind is not Array, Slice, or String or i is out of range. 702 func (v Value) Index(i int) Value { 703 switch v.kind() { 704 case Array: 705 tt := (*arrayType)(unsafe.Pointer(v.typ)) 706 if uint(i) >= uint(tt.len) { 707 panic("reflect: array index out of range") 708 } 709 typ := tt.elem 710 offset := uintptr(i) * typ.size 711 712 // Either flagIndir is set and v.ptr points at array, 713 // or flagIndir is not set and v.ptr is the actual array data. 714 // In the former case, we want v.ptr + offset. 715 // In the latter case, we must be doing Index(0), so offset = 0, 716 // so v.ptr + offset is still okay. 717 val := unsafe.Pointer(uintptr(v.ptr) + offset) 718 fl := v.flag&(flagRO|flagIndir|flagAddr) | flag(typ.Kind()) // bits same as overall array 719 return Value{typ, val, fl} 720 721 case Slice: 722 // Element flag same as Elem of Ptr. 723 // Addressable, indirect, possibly read-only. 724 s := (*sliceHeader)(v.ptr) 725 if uint(i) >= uint(s.Len) { 726 panic("reflect: slice index out of range") 727 } 728 tt := (*sliceType)(unsafe.Pointer(v.typ)) 729 typ := tt.elem 730 val := arrayAt(s.Data, i, typ.size) 731 fl := flagAddr | flagIndir | v.flag&flagRO | flag(typ.Kind()) 732 return Value{typ, val, fl} 733 734 case String: 735 s := (*stringHeader)(v.ptr) 736 if uint(i) >= uint(s.Len) { 737 panic("reflect: string index out of range") 738 } 739 p := arrayAt(s.Data, i, 1) 740 fl := v.flag&flagRO | flag(Uint8) | flagIndir 741 return Value{uint8Type, p, fl} 742 } 743 panic(&ValueError{"reflect.Value.Index", v.kind()}) 744 } 745 746 // Int returns v's underlying value, as an int64. 747 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64. 748 func (v Value) Int() int64 { 749 k := v.kind() 750 p := v.ptr 751 switch k { 752 case Int: 753 return int64(*(*int)(p)) 754 case Int8: 755 return int64(*(*int8)(p)) 756 case Int16: 757 return int64(*(*int16)(p)) 758 case Int32: 759 return int64(*(*int32)(p)) 760 case Int64: 761 return int64(*(*int64)(p)) 762 } 763 panic(&ValueError{"reflect.Value.Int", v.kind()}) 764 } 765 766 // CanInterface reports whether Interface can be used without panicking. 767 func (v Value) CanInterface() bool { 768 if v.flag == 0 { 769 panic(&ValueError{"reflect.Value.CanInterface", Invalid}) 770 } 771 return v.flag&flagRO == 0 772 } 773 774 // Interface returns v's current value as an interface{}. 775 // It is equivalent to: 776 // var i interface{} = (v's underlying value) 777 // It panics if the Value was obtained by accessing 778 // unexported struct fields. 779 func (v Value) Interface() (i interface{}) { 780 return valueInterface(v, true) 781 } 782 783 func valueInterface(v Value, safe bool) interface{} { 784 if v.flag == 0 { 785 panic(&ValueError{"reflect.Value.Interface", 0}) 786 } 787 if safe && v.flag&flagRO != 0 { 788 // Do not allow access to unexported values via Interface, 789 // because they might be pointers that should not be 790 // writable or methods or function that should not be callable. 791 panic("reflect.Value.Interface: cannot return value obtained from unexported field or method") 792 } 793 if v.flag&flagMethod != 0 { 794 v = makeMethodValue("Interface", v) 795 } 796 797 if v.flag&flagMethodFn != 0 { 798 if v.typ.Kind() != Func { 799 panic("reflect: MethodFn of non-Func") 800 } 801 ft := (*funcType)(unsafe.Pointer(v.typ)) 802 if ft.in[0].Kind() != Ptr { 803 v = makeValueMethod(v) 804 } 805 } 806 807 if v.kind() == Interface { 808 // Special case: return the element inside the interface. 809 // Empty interface has one layout, all interfaces with 810 // methods have a second layout. 811 if v.NumMethod() == 0 { 812 return *(*interface{})(v.ptr) 813 } 814 return *(*interface { 815 M() 816 })(v.ptr) 817 } 818 819 // TODO: pass safe to packEface so we don't need to copy if safe==true? 820 return packEface(v) 821 } 822 823 // InterfaceData returns the interface v's value as a uintptr pair. 824 // It panics if v's Kind is not Interface. 825 func (v Value) InterfaceData() [2]uintptr { 826 // TODO: deprecate this 827 v.mustBe(Interface) 828 // We treat this as a read operation, so we allow 829 // it even for unexported data, because the caller 830 // has to import "unsafe" to turn it into something 831 // that can be abused. 832 // Interface value is always bigger than a word; assume flagIndir. 833 return *(*[2]uintptr)(v.ptr) 834 } 835 836 // IsNil reports whether its argument v is nil. The argument must be 837 // a chan, func, interface, map, pointer, or slice value; if it is 838 // not, IsNil panics. Note that IsNil is not always equivalent to a 839 // regular comparison with nil in Go. For example, if v was created 840 // by calling ValueOf with an uninitialized interface variable i, 841 // i==nil will be true but v.IsNil will panic as v will be the zero 842 // Value. 843 func (v Value) IsNil() bool { 844 k := v.kind() 845 switch k { 846 case Chan, Func, Map, Ptr: 847 if v.flag&flagMethod != 0 { 848 return false 849 } 850 ptr := v.ptr 851 if v.flag&flagIndir != 0 { 852 ptr = *(*unsafe.Pointer)(ptr) 853 } 854 return ptr == nil 855 case Interface, Slice: 856 // Both interface and slice are nil if first word is 0. 857 // Both are always bigger than a word; assume flagIndir. 858 return *(*unsafe.Pointer)(v.ptr) == nil 859 } 860 panic(&ValueError{"reflect.Value.IsNil", v.kind()}) 861 } 862 863 // IsValid reports whether v represents a value. 864 // It returns false if v is the zero Value. 865 // If IsValid returns false, all other methods except String panic. 866 // Most functions and methods never return an invalid value. 867 // If one does, its documentation states the conditions explicitly. 868 func (v Value) IsValid() bool { 869 return v.flag != 0 870 } 871 872 // Kind returns v's Kind. 873 // If v is the zero Value (IsValid returns false), Kind returns Invalid. 874 func (v Value) Kind() Kind { 875 return v.kind() 876 } 877 878 // Len returns v's length. 879 // It panics if v's Kind is not Array, Chan, Map, Slice, or String. 880 func (v Value) Len() int { 881 k := v.kind() 882 switch k { 883 case Array: 884 tt := (*arrayType)(unsafe.Pointer(v.typ)) 885 return int(tt.len) 886 case Chan: 887 return chanlen(v.pointer()) 888 case Map: 889 return maplen(v.pointer()) 890 case Slice: 891 // Slice is bigger than a word; assume flagIndir. 892 return (*sliceHeader)(v.ptr).Len 893 case String: 894 // String is bigger than a word; assume flagIndir. 895 return (*stringHeader)(v.ptr).Len 896 } 897 panic(&ValueError{"reflect.Value.Len", v.kind()}) 898 } 899 900 // MapIndex returns the value associated with key in the map v. 901 // It panics if v's Kind is not Map. 902 // It returns the zero Value if key is not found in the map or if v represents a nil map. 903 // As in Go, the key's value must be assignable to the map's key type. 904 func (v Value) MapIndex(key Value) Value { 905 v.mustBe(Map) 906 tt := (*mapType)(unsafe.Pointer(v.typ)) 907 908 // Do not require key to be exported, so that DeepEqual 909 // and other programs can use all the keys returned by 910 // MapKeys as arguments to MapIndex. If either the map 911 // or the key is unexported, though, the result will be 912 // considered unexported. This is consistent with the 913 // behavior for structs, which allow read but not write 914 // of unexported fields. 915 key = key.assignTo("reflect.Value.MapIndex", tt.key, nil) 916 917 var k unsafe.Pointer 918 if key.flag&flagIndir != 0 { 919 k = key.ptr 920 } else { 921 k = unsafe.Pointer(&key.ptr) 922 } 923 e := mapaccess(v.typ, v.pointer(), k) 924 if e == nil { 925 return Value{} 926 } 927 typ := tt.elem 928 fl := (v.flag | key.flag) & flagRO 929 fl |= flag(typ.Kind()) 930 if ifaceIndir(typ) { 931 // Copy result so future changes to the map 932 // won't change the underlying value. 933 c := unsafe_New(typ) 934 typedmemmove(typ, c, e) 935 return Value{typ, c, fl | flagIndir} 936 } else { 937 return Value{typ, *(*unsafe.Pointer)(e), fl} 938 } 939 } 940 941 // MapKeys returns a slice containing all the keys present in the map, 942 // in unspecified order. 943 // It panics if v's Kind is not Map. 944 // It returns an empty slice if v represents a nil map. 945 func (v Value) MapKeys() []Value { 946 v.mustBe(Map) 947 tt := (*mapType)(unsafe.Pointer(v.typ)) 948 keyType := tt.key 949 950 fl := v.flag&flagRO | flag(keyType.Kind()) 951 952 m := v.pointer() 953 mlen := int(0) 954 if m != nil { 955 mlen = maplen(m) 956 } 957 it := mapiterinit(v.typ, m) 958 a := make([]Value, mlen) 959 var i int 960 for i = 0; i < len(a); i++ { 961 key := mapiterkey(it) 962 if key == nil { 963 // Someone deleted an entry from the map since we 964 // called maplen above. It's a data race, but nothing 965 // we can do about it. 966 break 967 } 968 if ifaceIndir(keyType) { 969 // Copy result so future changes to the map 970 // won't change the underlying value. 971 c := unsafe_New(keyType) 972 typedmemmove(keyType, c, key) 973 a[i] = Value{keyType, c, fl | flagIndir} 974 } else { 975 a[i] = Value{keyType, *(*unsafe.Pointer)(key), fl} 976 } 977 mapiternext(it) 978 } 979 return a[:i] 980 } 981 982 // Method returns a function value corresponding to v's i'th method. 983 // The arguments to a Call on the returned function should not include 984 // a receiver; the returned function will always use v as the receiver. 985 // Method panics if i is out of range or if v is a nil interface value. 986 func (v Value) Method(i int) Value { 987 if v.typ == nil { 988 panic(&ValueError{"reflect.Value.Method", Invalid}) 989 } 990 if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) { 991 panic("reflect: Method index out of range") 992 } 993 if v.typ.Kind() == Interface && v.IsNil() { 994 panic("reflect: Method on nil interface value") 995 } 996 fl := v.flag & (flagStickyRO | flagIndir) // Clear flagEmbedRO 997 fl |= flag(Func) 998 fl |= flag(i)<<flagMethodShift | flagMethod 999 return Value{v.typ, v.ptr, fl} 1000 } 1001 1002 // NumMethod returns the number of methods in the value's method set. 1003 func (v Value) NumMethod() int { 1004 if v.typ == nil { 1005 panic(&ValueError{"reflect.Value.NumMethod", Invalid}) 1006 } 1007 if v.flag&flagMethod != 0 { 1008 return 0 1009 } 1010 return v.typ.NumMethod() 1011 } 1012 1013 // MethodByName returns a function value corresponding to the method 1014 // of v with the given name. 1015 // The arguments to a Call on the returned function should not include 1016 // a receiver; the returned function will always use v as the receiver. 1017 // It returns the zero Value if no method was found. 1018 func (v Value) MethodByName(name string) Value { 1019 if v.typ == nil { 1020 panic(&ValueError{"reflect.Value.MethodByName", Invalid}) 1021 } 1022 if v.flag&flagMethod != 0 { 1023 return Value{} 1024 } 1025 m, ok := v.typ.MethodByName(name) 1026 if !ok { 1027 return Value{} 1028 } 1029 return v.Method(m.Index) 1030 } 1031 1032 // NumField returns the number of fields in the struct v. 1033 // It panics if v's Kind is not Struct. 1034 func (v Value) NumField() int { 1035 v.mustBe(Struct) 1036 tt := (*structType)(unsafe.Pointer(v.typ)) 1037 return len(tt.fields) 1038 } 1039 1040 // OverflowComplex reports whether the complex128 x cannot be represented by v's type. 1041 // It panics if v's Kind is not Complex64 or Complex128. 1042 func (v Value) OverflowComplex(x complex128) bool { 1043 k := v.kind() 1044 switch k { 1045 case Complex64: 1046 return overflowFloat32(real(x)) || overflowFloat32(imag(x)) 1047 case Complex128: 1048 return false 1049 } 1050 panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()}) 1051 } 1052 1053 // OverflowFloat reports whether the float64 x cannot be represented by v's type. 1054 // It panics if v's Kind is not Float32 or Float64. 1055 func (v Value) OverflowFloat(x float64) bool { 1056 k := v.kind() 1057 switch k { 1058 case Float32: 1059 return overflowFloat32(x) 1060 case Float64: 1061 return false 1062 } 1063 panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()}) 1064 } 1065 1066 func overflowFloat32(x float64) bool { 1067 if x < 0 { 1068 x = -x 1069 } 1070 return math.MaxFloat32 < x && x <= math.MaxFloat64 1071 } 1072 1073 // OverflowInt reports whether the int64 x cannot be represented by v's type. 1074 // It panics if v's Kind is not Int, Int8, int16, Int32, or Int64. 1075 func (v Value) OverflowInt(x int64) bool { 1076 k := v.kind() 1077 switch k { 1078 case Int, Int8, Int16, Int32, Int64: 1079 bitSize := v.typ.size * 8 1080 trunc := (x << (64 - bitSize)) >> (64 - bitSize) 1081 return x != trunc 1082 } 1083 panic(&ValueError{"reflect.Value.OverflowInt", v.kind()}) 1084 } 1085 1086 // OverflowUint reports whether the uint64 x cannot be represented by v's type. 1087 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64. 1088 func (v Value) OverflowUint(x uint64) bool { 1089 k := v.kind() 1090 switch k { 1091 case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64: 1092 bitSize := v.typ.size * 8 1093 trunc := (x << (64 - bitSize)) >> (64 - bitSize) 1094 return x != trunc 1095 } 1096 panic(&ValueError{"reflect.Value.OverflowUint", v.kind()}) 1097 } 1098 1099 // Pointer returns v's value as a uintptr. 1100 // It returns uintptr instead of unsafe.Pointer so that 1101 // code using reflect cannot obtain unsafe.Pointers 1102 // without importing the unsafe package explicitly. 1103 // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer. 1104 // 1105 // If v's Kind is Func, the returned pointer is an underlying 1106 // code pointer, but not necessarily enough to identify a 1107 // single function uniquely. The only guarantee is that the 1108 // result is zero if and only if v is a nil func Value. 1109 // 1110 // If v's Kind is Slice, the returned pointer is to the first 1111 // element of the slice. If the slice is nil the returned value 1112 // is 0. If the slice is empty but non-nil the return value is non-zero. 1113 func (v Value) Pointer() uintptr { 1114 // TODO: deprecate 1115 k := v.kind() 1116 switch k { 1117 case Chan, Map, Ptr, UnsafePointer: 1118 return uintptr(v.pointer()) 1119 case Func: 1120 p := v.pointer() 1121 // Non-nil func value points at data block. 1122 // First word of data block is actual code. 1123 if p != nil { 1124 p = *(*unsafe.Pointer)(p) 1125 } 1126 return uintptr(p) 1127 1128 case Slice: 1129 return (*SliceHeader)(v.ptr).Data 1130 } 1131 panic(&ValueError{"reflect.Value.Pointer", v.kind()}) 1132 } 1133 1134 // Recv receives and returns a value from the channel v. 1135 // It panics if v's Kind is not Chan. 1136 // The receive blocks until a value is ready. 1137 // The boolean value ok is true if the value x corresponds to a send 1138 // on the channel, false if it is a zero value received because the channel is closed. 1139 func (v Value) Recv() (x Value, ok bool) { 1140 v.mustBe(Chan) 1141 v.mustBeExported() 1142 return v.recv(false) 1143 } 1144 1145 // internal recv, possibly non-blocking (nb). 1146 // v is known to be a channel. 1147 func (v Value) recv(nb bool) (val Value, ok bool) { 1148 tt := (*chanType)(unsafe.Pointer(v.typ)) 1149 if ChanDir(tt.dir)&RecvDir == 0 { 1150 panic("reflect: recv on send-only channel") 1151 } 1152 t := tt.elem 1153 val = Value{t, nil, flag(t.Kind())} 1154 var p unsafe.Pointer 1155 if ifaceIndir(t) { 1156 p = unsafe_New(t) 1157 val.ptr = p 1158 val.flag |= flagIndir 1159 } else { 1160 p = unsafe.Pointer(&val.ptr) 1161 } 1162 selected, ok := chanrecv(v.typ, v.pointer(), nb, p) 1163 if !selected { 1164 val = Value{} 1165 } 1166 return 1167 } 1168 1169 // Send sends x on the channel v. 1170 // It panics if v's kind is not Chan or if x's type is not the same type as v's element type. 1171 // As in Go, x's value must be assignable to the channel's element type. 1172 func (v Value) Send(x Value) { 1173 v.mustBe(Chan) 1174 v.mustBeExported() 1175 v.send(x, false) 1176 } 1177 1178 // internal send, possibly non-blocking. 1179 // v is known to be a channel. 1180 func (v Value) send(x Value, nb bool) (selected bool) { 1181 tt := (*chanType)(unsafe.Pointer(v.typ)) 1182 if ChanDir(tt.dir)&SendDir == 0 { 1183 panic("reflect: send on recv-only channel") 1184 } 1185 x.mustBeExported() 1186 x = x.assignTo("reflect.Value.Send", tt.elem, nil) 1187 var p unsafe.Pointer 1188 if x.flag&flagIndir != 0 { 1189 p = x.ptr 1190 } else { 1191 p = unsafe.Pointer(&x.ptr) 1192 } 1193 return chansend(v.typ, v.pointer(), p, nb) 1194 } 1195 1196 // Set assigns x to the value v. 1197 // It panics if CanSet returns false. 1198 // As in Go, x's value must be assignable to v's type. 1199 func (v Value) Set(x Value) { 1200 v.mustBeAssignable() 1201 x.mustBeExported() // do not let unexported x leak 1202 var target unsafe.Pointer 1203 if v.kind() == Interface { 1204 target = v.ptr 1205 } 1206 x = x.assignTo("reflect.Set", v.typ, target) 1207 if x.flag&flagIndir != 0 { 1208 typedmemmove(v.typ, v.ptr, x.ptr) 1209 } else { 1210 *(*unsafe.Pointer)(v.ptr) = x.ptr 1211 } 1212 } 1213 1214 // SetBool sets v's underlying value. 1215 // It panics if v's Kind is not Bool or if CanSet() is false. 1216 func (v Value) SetBool(x bool) { 1217 v.mustBeAssignable() 1218 v.mustBe(Bool) 1219 *(*bool)(v.ptr) = x 1220 } 1221 1222 // SetBytes sets v's underlying value. 1223 // It panics if v's underlying value is not a slice of bytes. 1224 func (v Value) SetBytes(x []byte) { 1225 v.mustBeAssignable() 1226 v.mustBe(Slice) 1227 if v.typ.Elem().Kind() != Uint8 { 1228 panic("reflect.Value.SetBytes of non-byte slice") 1229 } 1230 *(*[]byte)(v.ptr) = x 1231 } 1232 1233 // setRunes sets v's underlying value. 1234 // It panics if v's underlying value is not a slice of runes (int32s). 1235 func (v Value) setRunes(x []rune) { 1236 v.mustBeAssignable() 1237 v.mustBe(Slice) 1238 if v.typ.Elem().Kind() != Int32 { 1239 panic("reflect.Value.setRunes of non-rune slice") 1240 } 1241 *(*[]rune)(v.ptr) = x 1242 } 1243 1244 // SetComplex sets v's underlying value to x. 1245 // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false. 1246 func (v Value) SetComplex(x complex128) { 1247 v.mustBeAssignable() 1248 switch k := v.kind(); k { 1249 default: 1250 panic(&ValueError{"reflect.Value.SetComplex", v.kind()}) 1251 case Complex64: 1252 *(*complex64)(v.ptr) = complex64(x) 1253 case Complex128: 1254 *(*complex128)(v.ptr) = x 1255 } 1256 } 1257 1258 // SetFloat sets v's underlying value to x. 1259 // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false. 1260 func (v Value) SetFloat(x float64) { 1261 v.mustBeAssignable() 1262 switch k := v.kind(); k { 1263 default: 1264 panic(&ValueError{"reflect.Value.SetFloat", v.kind()}) 1265 case Float32: 1266 *(*float32)(v.ptr) = float32(x) 1267 case Float64: 1268 *(*float64)(v.ptr) = x 1269 } 1270 } 1271 1272 // SetInt sets v's underlying value to x. 1273 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false. 1274 func (v Value) SetInt(x int64) { 1275 v.mustBeAssignable() 1276 switch k := v.kind(); k { 1277 default: 1278 panic(&ValueError{"reflect.Value.SetInt", v.kind()}) 1279 case Int: 1280 *(*int)(v.ptr) = int(x) 1281 case Int8: 1282 *(*int8)(v.ptr) = int8(x) 1283 case Int16: 1284 *(*int16)(v.ptr) = int16(x) 1285 case Int32: 1286 *(*int32)(v.ptr) = int32(x) 1287 case Int64: 1288 *(*int64)(v.ptr) = x 1289 } 1290 } 1291 1292 // SetLen sets v's length to n. 1293 // It panics if v's Kind is not Slice or if n is negative or 1294 // greater than the capacity of the slice. 1295 func (v Value) SetLen(n int) { 1296 v.mustBeAssignable() 1297 v.mustBe(Slice) 1298 s := (*sliceHeader)(v.ptr) 1299 if uint(n) > uint(s.Cap) { 1300 panic("reflect: slice length out of range in SetLen") 1301 } 1302 s.Len = n 1303 } 1304 1305 // SetCap sets v's capacity to n. 1306 // It panics if v's Kind is not Slice or if n is smaller than the length or 1307 // greater than the capacity of the slice. 1308 func (v Value) SetCap(n int) { 1309 v.mustBeAssignable() 1310 v.mustBe(Slice) 1311 s := (*sliceHeader)(v.ptr) 1312 if n < int(s.Len) || n > int(s.Cap) { 1313 panic("reflect: slice capacity out of range in SetCap") 1314 } 1315 s.Cap = n 1316 } 1317 1318 // SetMapIndex sets the value associated with key in the map v to val. 1319 // It panics if v's Kind is not Map. 1320 // If val is the zero Value, SetMapIndex deletes the key from the map. 1321 // Otherwise if v holds a nil map, SetMapIndex will panic. 1322 // As in Go, key's value must be assignable to the map's key type, 1323 // and val's value must be assignable to the map's value type. 1324 func (v Value) SetMapIndex(key, val Value) { 1325 v.mustBe(Map) 1326 v.mustBeExported() 1327 key.mustBeExported() 1328 tt := (*mapType)(unsafe.Pointer(v.typ)) 1329 key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil) 1330 var k unsafe.Pointer 1331 if key.flag&flagIndir != 0 { 1332 k = key.ptr 1333 } else { 1334 k = unsafe.Pointer(&key.ptr) 1335 } 1336 if val.typ == nil { 1337 mapdelete(v.typ, v.pointer(), k) 1338 return 1339 } 1340 val.mustBeExported() 1341 val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil) 1342 var e unsafe.Pointer 1343 if val.flag&flagIndir != 0 { 1344 e = val.ptr 1345 } else { 1346 e = unsafe.Pointer(&val.ptr) 1347 } 1348 mapassign(v.typ, v.pointer(), k, e) 1349 } 1350 1351 // SetUint sets v's underlying value to x. 1352 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false. 1353 func (v Value) SetUint(x uint64) { 1354 v.mustBeAssignable() 1355 switch k := v.kind(); k { 1356 default: 1357 panic(&ValueError{"reflect.Value.SetUint", v.kind()}) 1358 case Uint: 1359 *(*uint)(v.ptr) = uint(x) 1360 case Uint8: 1361 *(*uint8)(v.ptr) = uint8(x) 1362 case Uint16: 1363 *(*uint16)(v.ptr) = uint16(x) 1364 case Uint32: 1365 *(*uint32)(v.ptr) = uint32(x) 1366 case Uint64: 1367 *(*uint64)(v.ptr) = x 1368 case Uintptr: 1369 *(*uintptr)(v.ptr) = uintptr(x) 1370 } 1371 } 1372 1373 // SetPointer sets the unsafe.Pointer value v to x. 1374 // It panics if v's Kind is not UnsafePointer. 1375 func (v Value) SetPointer(x unsafe.Pointer) { 1376 v.mustBeAssignable() 1377 v.mustBe(UnsafePointer) 1378 *(*unsafe.Pointer)(v.ptr) = x 1379 } 1380 1381 // SetString sets v's underlying value to x. 1382 // It panics if v's Kind is not String or if CanSet() is false. 1383 func (v Value) SetString(x string) { 1384 v.mustBeAssignable() 1385 v.mustBe(String) 1386 *(*string)(v.ptr) = x 1387 } 1388 1389 // Slice returns v[i:j]. 1390 // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array, 1391 // or if the indexes are out of bounds. 1392 func (v Value) Slice(i, j int) Value { 1393 var ( 1394 cap int 1395 typ *sliceType 1396 base unsafe.Pointer 1397 ) 1398 switch kind := v.kind(); kind { 1399 default: 1400 panic(&ValueError{"reflect.Value.Slice", v.kind()}) 1401 1402 case Array: 1403 if v.flag&flagAddr == 0 { 1404 panic("reflect.Value.Slice: slice of unaddressable array") 1405 } 1406 tt := (*arrayType)(unsafe.Pointer(v.typ)) 1407 cap = int(tt.len) 1408 typ = (*sliceType)(unsafe.Pointer(tt.slice)) 1409 base = v.ptr 1410 1411 case Slice: 1412 typ = (*sliceType)(unsafe.Pointer(v.typ)) 1413 s := (*sliceHeader)(v.ptr) 1414 base = unsafe.Pointer(s.Data) 1415 cap = s.Cap 1416 1417 case String: 1418 s := (*stringHeader)(v.ptr) 1419 if i < 0 || j < i || j > s.Len { 1420 panic("reflect.Value.Slice: string slice index out of bounds") 1421 } 1422 t := stringHeader{arrayAt(s.Data, i, 1), j - i} 1423 return Value{v.typ, unsafe.Pointer(&t), v.flag} 1424 } 1425 1426 if i < 0 || j < i || j > cap { 1427 panic("reflect.Value.Slice: slice index out of bounds") 1428 } 1429 1430 // Declare slice so that gc can see the base pointer in it. 1431 var x []unsafe.Pointer 1432 1433 // Reinterpret as *sliceHeader to edit. 1434 s := (*sliceHeader)(unsafe.Pointer(&x)) 1435 s.Len = j - i 1436 s.Cap = cap - i 1437 if cap-i > 0 { 1438 s.Data = arrayAt(base, i, typ.elem.Size()) 1439 } else { 1440 // do not advance pointer, to avoid pointing beyond end of slice 1441 s.Data = base 1442 } 1443 1444 fl := v.flag&flagRO | flagIndir | flag(Slice) 1445 return Value{typ.common(), unsafe.Pointer(&x), fl} 1446 } 1447 1448 // Slice3 is the 3-index form of the slice operation: it returns v[i:j:k]. 1449 // It panics if v's Kind is not Array or Slice, or if v is an unaddressable array, 1450 // or if the indexes are out of bounds. 1451 func (v Value) Slice3(i, j, k int) Value { 1452 var ( 1453 cap int 1454 typ *sliceType 1455 base unsafe.Pointer 1456 ) 1457 switch kind := v.kind(); kind { 1458 default: 1459 panic(&ValueError{"reflect.Value.Slice3", v.kind()}) 1460 1461 case Array: 1462 if v.flag&flagAddr == 0 { 1463 panic("reflect.Value.Slice3: slice of unaddressable array") 1464 } 1465 tt := (*arrayType)(unsafe.Pointer(v.typ)) 1466 cap = int(tt.len) 1467 typ = (*sliceType)(unsafe.Pointer(tt.slice)) 1468 base = v.ptr 1469 1470 case Slice: 1471 typ = (*sliceType)(unsafe.Pointer(v.typ)) 1472 s := (*sliceHeader)(v.ptr) 1473 base = s.Data 1474 cap = s.Cap 1475 } 1476 1477 if i < 0 || j < i || k < j || k > cap { 1478 panic("reflect.Value.Slice3: slice index out of bounds") 1479 } 1480 1481 // Declare slice so that the garbage collector 1482 // can see the base pointer in it. 1483 var x []unsafe.Pointer 1484 1485 // Reinterpret as *sliceHeader to edit. 1486 s := (*sliceHeader)(unsafe.Pointer(&x)) 1487 s.Len = j - i 1488 s.Cap = k - i 1489 if k-i > 0 { 1490 s.Data = arrayAt(base, i, typ.elem.Size()) 1491 } else { 1492 // do not advance pointer, to avoid pointing beyond end of slice 1493 s.Data = base 1494 } 1495 1496 fl := v.flag&flagRO | flagIndir | flag(Slice) 1497 return Value{typ.common(), unsafe.Pointer(&x), fl} 1498 } 1499 1500 // String returns the string v's underlying value, as a string. 1501 // String is a special case because of Go's String method convention. 1502 // Unlike the other getters, it does not panic if v's Kind is not String. 1503 // Instead, it returns a string of the form "<T value>" where T is v's type. 1504 // The fmt package treats Values specially. It does not call their String 1505 // method implicitly but instead prints the concrete values they hold. 1506 func (v Value) String() string { 1507 switch k := v.kind(); k { 1508 case Invalid: 1509 return "<invalid Value>" 1510 case String: 1511 return *(*string)(v.ptr) 1512 } 1513 // If you call String on a reflect.Value of other type, it's better to 1514 // print something than to panic. Useful in debugging. 1515 return "<" + v.Type().String() + " Value>" 1516 } 1517 1518 // TryRecv attempts to receive a value from the channel v but will not block. 1519 // It panics if v's Kind is not Chan. 1520 // If the receive delivers a value, x is the transferred value and ok is true. 1521 // If the receive cannot finish without blocking, x is the zero Value and ok is false. 1522 // If the channel is closed, x is the zero value for the channel's element type and ok is false. 1523 func (v Value) TryRecv() (x Value, ok bool) { 1524 v.mustBe(Chan) 1525 v.mustBeExported() 1526 return v.recv(true) 1527 } 1528 1529 // TrySend attempts to send x on the channel v but will not block. 1530 // It panics if v's Kind is not Chan. 1531 // It reports whether the value was sent. 1532 // As in Go, x's value must be assignable to the channel's element type. 1533 func (v Value) TrySend(x Value) bool { 1534 v.mustBe(Chan) 1535 v.mustBeExported() 1536 return v.send(x, true) 1537 } 1538 1539 // Type returns v's type. 1540 func (v Value) Type() Type { 1541 f := v.flag 1542 if f == 0 { 1543 panic(&ValueError{"reflect.Value.Type", Invalid}) 1544 } 1545 if f&flagMethod == 0 { 1546 // Easy case 1547 return toType(v.typ) 1548 } 1549 1550 // Method value. 1551 // v.typ describes the receiver, not the method type. 1552 i := int(v.flag) >> flagMethodShift 1553 if v.typ.Kind() == Interface { 1554 // Method on interface. 1555 tt := (*interfaceType)(unsafe.Pointer(v.typ)) 1556 if uint(i) >= uint(len(tt.methods)) { 1557 panic("reflect: internal error: invalid method index") 1558 } 1559 m := &tt.methods[i] 1560 return toType(m.typ) 1561 } 1562 // Method on concrete type. 1563 ut := v.typ.uncommon() 1564 if ut == nil || uint(i) >= uint(len(ut.methods)) { 1565 panic("reflect: internal error: invalid method index") 1566 } 1567 m := &ut.methods[i] 1568 return toType(m.mtyp) 1569 } 1570 1571 // Uint returns v's underlying value, as a uint64. 1572 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64. 1573 func (v Value) Uint() uint64 { 1574 k := v.kind() 1575 p := v.ptr 1576 switch k { 1577 case Uint: 1578 return uint64(*(*uint)(p)) 1579 case Uint8: 1580 return uint64(*(*uint8)(p)) 1581 case Uint16: 1582 return uint64(*(*uint16)(p)) 1583 case Uint32: 1584 return uint64(*(*uint32)(p)) 1585 case Uint64: 1586 return uint64(*(*uint64)(p)) 1587 case Uintptr: 1588 return uint64(*(*uintptr)(p)) 1589 } 1590 panic(&ValueError{"reflect.Value.Uint", v.kind()}) 1591 } 1592 1593 // UnsafeAddr returns a pointer to v's data. 1594 // It is for advanced clients that also import the "unsafe" package. 1595 // It panics if v is not addressable. 1596 func (v Value) UnsafeAddr() uintptr { 1597 // TODO: deprecate 1598 if v.typ == nil { 1599 panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid}) 1600 } 1601 if v.flag&flagAddr == 0 { 1602 panic("reflect.Value.UnsafeAddr of unaddressable value") 1603 } 1604 return uintptr(v.ptr) 1605 } 1606 1607 // StringHeader is the runtime representation of a string. 1608 // It cannot be used safely or portably and its representation may 1609 // change in a later release. 1610 // Moreover, the Data field is not sufficient to guarantee the data 1611 // it references will not be garbage collected, so programs must keep 1612 // a separate, correctly typed pointer to the underlying data. 1613 type StringHeader struct { 1614 Data uintptr 1615 Len int 1616 } 1617 1618 // stringHeader is a safe version of StringHeader used within this package. 1619 type stringHeader struct { 1620 Data unsafe.Pointer 1621 Len int 1622 } 1623 1624 // SliceHeader is the runtime representation of a slice. 1625 // It cannot be used safely or portably and its representation may 1626 // change in a later release. 1627 // Moreover, the Data field is not sufficient to guarantee the data 1628 // it references will not be garbage collected, so programs must keep 1629 // a separate, correctly typed pointer to the underlying data. 1630 type SliceHeader struct { 1631 Data uintptr 1632 Len int 1633 Cap int 1634 } 1635 1636 // sliceHeader is a safe version of SliceHeader used within this package. 1637 type sliceHeader struct { 1638 Data unsafe.Pointer 1639 Len int 1640 Cap int 1641 } 1642 1643 func typesMustMatch(what string, t1, t2 Type) { 1644 if t1 != t2 { 1645 panic(what + ": " + t1.String() + " != " + t2.String()) 1646 } 1647 } 1648 1649 // arrayAt returns the i-th element of p, a C-array whose elements are 1650 // eltSize wide (in bytes). 1651 func arrayAt(p unsafe.Pointer, i int, eltSize uintptr) unsafe.Pointer { 1652 return unsafe.Pointer(uintptr(p) + uintptr(i)*eltSize) 1653 } 1654 1655 // grow grows the slice s so that it can hold extra more values, allocating 1656 // more capacity if needed. It also returns the old and new slice lengths. 1657 func grow(s Value, extra int) (Value, int, int) { 1658 i0 := s.Len() 1659 i1 := i0 + extra 1660 if i1 < i0 { 1661 panic("reflect.Append: slice overflow") 1662 } 1663 m := s.Cap() 1664 if i1 <= m { 1665 return s.Slice(0, i1), i0, i1 1666 } 1667 if m == 0 { 1668 m = extra 1669 } else { 1670 for m < i1 { 1671 if i0 < 1024 { 1672 m += m 1673 } else { 1674 m += m / 4 1675 } 1676 } 1677 } 1678 t := MakeSlice(s.Type(), i1, m) 1679 Copy(t, s) 1680 return t, i0, i1 1681 } 1682 1683 // Append appends the values x to a slice s and returns the resulting slice. 1684 // As in Go, each x's value must be assignable to the slice's element type. 1685 func Append(s Value, x ...Value) Value { 1686 s.mustBe(Slice) 1687 s, i0, i1 := grow(s, len(x)) 1688 for i, j := i0, 0; i < i1; i, j = i+1, j+1 { 1689 s.Index(i).Set(x[j]) 1690 } 1691 return s 1692 } 1693 1694 // AppendSlice appends a slice t to a slice s and returns the resulting slice. 1695 // The slices s and t must have the same element type. 1696 func AppendSlice(s, t Value) Value { 1697 s.mustBe(Slice) 1698 t.mustBe(Slice) 1699 typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem()) 1700 s, i0, i1 := grow(s, t.Len()) 1701 Copy(s.Slice(i0, i1), t) 1702 return s 1703 } 1704 1705 // Copy copies the contents of src into dst until either 1706 // dst has been filled or src has been exhausted. 1707 // It returns the number of elements copied. 1708 // Dst and src each must have kind Slice or Array, and 1709 // dst and src must have the same element type. 1710 func Copy(dst, src Value) int { 1711 dk := dst.kind() 1712 if dk != Array && dk != Slice { 1713 panic(&ValueError{"reflect.Copy", dk}) 1714 } 1715 if dk == Array { 1716 dst.mustBeAssignable() 1717 } 1718 dst.mustBeExported() 1719 1720 sk := src.kind() 1721 if sk != Array && sk != Slice { 1722 panic(&ValueError{"reflect.Copy", sk}) 1723 } 1724 src.mustBeExported() 1725 1726 de := dst.typ.Elem() 1727 se := src.typ.Elem() 1728 typesMustMatch("reflect.Copy", de, se) 1729 1730 var ds, ss sliceHeader 1731 if dk == Array { 1732 ds.Data = dst.ptr 1733 ds.Len = dst.Len() 1734 ds.Cap = ds.Len 1735 } else { 1736 ds = *(*sliceHeader)(dst.ptr) 1737 } 1738 if sk == Array { 1739 ss.Data = src.ptr 1740 ss.Len = src.Len() 1741 ss.Cap = ss.Len 1742 } else { 1743 ss = *(*sliceHeader)(src.ptr) 1744 } 1745 1746 return typedslicecopy(de.common(), ds, ss) 1747 } 1748 1749 // A runtimeSelect is a single case passed to rselect. 1750 // This must match ../runtime/select.go:/runtimeSelect 1751 type runtimeSelect struct { 1752 dir uintptr // 0, SendDir, or RecvDir 1753 typ *rtype // channel type 1754 ch unsafe.Pointer // channel 1755 val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir) 1756 } 1757 1758 // rselect runs a select. It returns the index of the chosen case. 1759 // If the case was a receive, val is filled in with the received value. 1760 // The conventional OK bool indicates whether the receive corresponds 1761 // to a sent value. 1762 //go:noescape 1763 func rselect([]runtimeSelect) (chosen int, recvOK bool) 1764 1765 // A SelectDir describes the communication direction of a select case. 1766 type SelectDir int 1767 1768 // NOTE: These values must match ../runtime/select.go:/selectDir. 1769 1770 const ( 1771 _ SelectDir = iota 1772 SelectSend // case Chan <- Send 1773 SelectRecv // case <-Chan: 1774 SelectDefault // default 1775 ) 1776 1777 // A SelectCase describes a single case in a select operation. 1778 // The kind of case depends on Dir, the communication direction. 1779 // 1780 // If Dir is SelectDefault, the case represents a default case. 1781 // Chan and Send must be zero Values. 1782 // 1783 // If Dir is SelectSend, the case represents a send operation. 1784 // Normally Chan's underlying value must be a channel, and Send's underlying value must be 1785 // assignable to the channel's element type. As a special case, if Chan is a zero Value, 1786 // then the case is ignored, and the field Send will also be ignored and may be either zero 1787 // or non-zero. 1788 // 1789 // If Dir is SelectRecv, the case represents a receive operation. 1790 // Normally Chan's underlying value must be a channel and Send must be a zero Value. 1791 // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value. 1792 // When a receive operation is selected, the received Value is returned by Select. 1793 // 1794 type SelectCase struct { 1795 Dir SelectDir // direction of case 1796 Chan Value // channel to use (for send or receive) 1797 Send Value // value to send (for send) 1798 } 1799 1800 // Select executes a select operation described by the list of cases. 1801 // Like the Go select statement, it blocks until at least one of the cases 1802 // can proceed, makes a uniform pseudo-random choice, 1803 // and then executes that case. It returns the index of the chosen case 1804 // and, if that case was a receive operation, the value received and a 1805 // boolean indicating whether the value corresponds to a send on the channel 1806 // (as opposed to a zero value received because the channel is closed). 1807 func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) { 1808 // NOTE: Do not trust that caller is not modifying cases data underfoot. 1809 // The range is safe because the caller cannot modify our copy of the len 1810 // and each iteration makes its own copy of the value c. 1811 runcases := make([]runtimeSelect, len(cases)) 1812 haveDefault := false 1813 for i, c := range cases { 1814 rc := &runcases[i] 1815 rc.dir = uintptr(c.Dir) 1816 switch c.Dir { 1817 default: 1818 panic("reflect.Select: invalid Dir") 1819 1820 case SelectDefault: // default 1821 if haveDefault { 1822 panic("reflect.Select: multiple default cases") 1823 } 1824 haveDefault = true 1825 if c.Chan.IsValid() { 1826 panic("reflect.Select: default case has Chan value") 1827 } 1828 if c.Send.IsValid() { 1829 panic("reflect.Select: default case has Send value") 1830 } 1831 1832 case SelectSend: 1833 ch := c.Chan 1834 if !ch.IsValid() { 1835 break 1836 } 1837 ch.mustBe(Chan) 1838 ch.mustBeExported() 1839 tt := (*chanType)(unsafe.Pointer(ch.typ)) 1840 if ChanDir(tt.dir)&SendDir == 0 { 1841 panic("reflect.Select: SendDir case using recv-only channel") 1842 } 1843 rc.ch = ch.pointer() 1844 rc.typ = &tt.rtype 1845 v := c.Send 1846 if !v.IsValid() { 1847 panic("reflect.Select: SendDir case missing Send value") 1848 } 1849 v.mustBeExported() 1850 v = v.assignTo("reflect.Select", tt.elem, nil) 1851 if v.flag&flagIndir != 0 { 1852 rc.val = v.ptr 1853 } else { 1854 rc.val = unsafe.Pointer(&v.ptr) 1855 } 1856 1857 case SelectRecv: 1858 if c.Send.IsValid() { 1859 panic("reflect.Select: RecvDir case has Send value") 1860 } 1861 ch := c.Chan 1862 if !ch.IsValid() { 1863 break 1864 } 1865 ch.mustBe(Chan) 1866 ch.mustBeExported() 1867 tt := (*chanType)(unsafe.Pointer(ch.typ)) 1868 if ChanDir(tt.dir)&RecvDir == 0 { 1869 panic("reflect.Select: RecvDir case using send-only channel") 1870 } 1871 rc.ch = ch.pointer() 1872 rc.typ = &tt.rtype 1873 rc.val = unsafe_New(tt.elem) 1874 } 1875 } 1876 1877 chosen, recvOK = rselect(runcases) 1878 if runcases[chosen].dir == uintptr(SelectRecv) { 1879 tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ)) 1880 t := tt.elem 1881 p := runcases[chosen].val 1882 fl := flag(t.Kind()) 1883 if ifaceIndir(t) { 1884 recv = Value{t, p, fl | flagIndir} 1885 } else { 1886 recv = Value{t, *(*unsafe.Pointer)(p), fl} 1887 } 1888 } 1889 return chosen, recv, recvOK 1890 } 1891 1892 /* 1893 * constructors 1894 */ 1895 1896 // implemented in package runtime 1897 func unsafe_New(*rtype) unsafe.Pointer 1898 func unsafe_NewArray(*rtype, int) unsafe.Pointer 1899 1900 // MakeSlice creates a new zero-initialized slice value 1901 // for the specified slice type, length, and capacity. 1902 func MakeSlice(typ Type, len, cap int) Value { 1903 if typ.Kind() != Slice { 1904 panic("reflect.MakeSlice of non-slice type") 1905 } 1906 if len < 0 { 1907 panic("reflect.MakeSlice: negative len") 1908 } 1909 if cap < 0 { 1910 panic("reflect.MakeSlice: negative cap") 1911 } 1912 if len > cap { 1913 panic("reflect.MakeSlice: len > cap") 1914 } 1915 1916 s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap} 1917 return Value{typ.common(), unsafe.Pointer(&s), flagIndir | flag(Slice)} 1918 } 1919 1920 // MakeChan creates a new channel with the specified type and buffer size. 1921 func MakeChan(typ Type, buffer int) Value { 1922 if typ.Kind() != Chan { 1923 panic("reflect.MakeChan of non-chan type") 1924 } 1925 if buffer < 0 { 1926 panic("reflect.MakeChan: negative buffer size") 1927 } 1928 if typ.ChanDir() != BothDir { 1929 panic("reflect.MakeChan: unidirectional channel type") 1930 } 1931 ch := makechan(typ.(*rtype), uint64(buffer)) 1932 return Value{typ.common(), unsafe.Pointer(&ch), flag(Chan) | flagIndir} 1933 } 1934 1935 // MakeMap creates a new map of the specified type. 1936 func MakeMap(typ Type) Value { 1937 if typ.Kind() != Map { 1938 panic("reflect.MakeMap of non-map type") 1939 } 1940 m := makemap(typ.(*rtype)) 1941 return Value{typ.common(), unsafe.Pointer(&m), flag(Map) | flagIndir} 1942 } 1943 1944 // Indirect returns the value that v points to. 1945 // If v is a nil pointer, Indirect returns a zero Value. 1946 // If v is not a pointer, Indirect returns v. 1947 func Indirect(v Value) Value { 1948 if v.Kind() != Ptr { 1949 return v 1950 } 1951 return v.Elem() 1952 } 1953 1954 // ValueOf returns a new Value initialized to the concrete value 1955 // stored in the interface i. ValueOf(nil) returns the zero Value. 1956 func ValueOf(i interface{}) Value { 1957 if i == nil { 1958 return Value{} 1959 } 1960 1961 // TODO(rsc): Eliminate this terrible hack. 1962 // In the call to unpackEface, i.typ doesn't escape, 1963 // and i.word is an integer. So it looks like 1964 // i doesn't escape. But really it does, 1965 // because i.word is actually a pointer. 1966 escapes(i) 1967 1968 return unpackEface(i) 1969 } 1970 1971 // Zero returns a Value representing the zero value for the specified type. 1972 // The result is different from the zero value of the Value struct, 1973 // which represents no value at all. 1974 // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0. 1975 // The returned value is neither addressable nor settable. 1976 func Zero(typ Type) Value { 1977 if typ == nil { 1978 panic("reflect: Zero(nil)") 1979 } 1980 t := typ.common() 1981 fl := flag(t.Kind()) 1982 if ifaceIndir(t) { 1983 return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir} 1984 } 1985 return Value{t, nil, fl} 1986 } 1987 1988 // New returns a Value representing a pointer to a new zero value 1989 // for the specified type. That is, the returned Value's Type is PtrTo(typ). 1990 func New(typ Type) Value { 1991 if typ == nil { 1992 panic("reflect: New(nil)") 1993 } 1994 ptr := unsafe_New(typ.(*rtype)) 1995 fl := flag(Ptr) 1996 return Value{typ.common().ptrTo(), ptr, fl} 1997 } 1998 1999 // NewAt returns a Value representing a pointer to a value of the 2000 // specified type, using p as that pointer. 2001 func NewAt(typ Type, p unsafe.Pointer) Value { 2002 fl := flag(Ptr) 2003 return Value{typ.common().ptrTo(), p, fl} 2004 } 2005 2006 // assignTo returns a value v that can be assigned directly to typ. 2007 // It panics if v is not assignable to typ. 2008 // For a conversion to an interface type, target is a suggested scratch space to use. 2009 func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value { 2010 if v.flag&flagMethod != 0 { 2011 v = makeMethodValue(context, v) 2012 } 2013 2014 switch { 2015 case directlyAssignable(dst, v.typ): 2016 // Overwrite type so that they match. 2017 // Same memory layout, so no harm done. 2018 v.typ = dst 2019 fl := v.flag & (flagRO | flagAddr | flagIndir) 2020 fl |= flag(dst.Kind()) 2021 return Value{dst, v.ptr, fl} 2022 2023 case implements(dst, v.typ): 2024 if target == nil { 2025 target = unsafe_New(dst) 2026 } 2027 x := valueInterface(v, false) 2028 if dst.NumMethod() == 0 { 2029 *(*interface{})(target) = x 2030 } else { 2031 ifaceE2I(dst, x, target) 2032 } 2033 return Value{dst, target, flagIndir | flag(Interface)} 2034 } 2035 2036 // Failed. 2037 panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String()) 2038 } 2039 2040 // Convert returns the value v converted to type t. 2041 // If the usual Go conversion rules do not allow conversion 2042 // of the value v to type t, Convert panics. 2043 func (v Value) Convert(t Type) Value { 2044 if v.flag&flagMethod != 0 { 2045 v = makeMethodValue("Convert", v) 2046 } 2047 op := convertOp(t.common(), v.typ) 2048 if op == nil { 2049 panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String()) 2050 } 2051 return op(v, t) 2052 } 2053 2054 // convertOp returns the function to convert a value of type src 2055 // to a value of type dst. If the conversion is illegal, convertOp returns nil. 2056 func convertOp(dst, src *rtype) func(Value, Type) Value { 2057 switch src.Kind() { 2058 case Int, Int8, Int16, Int32, Int64: 2059 switch dst.Kind() { 2060 case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: 2061 return cvtInt 2062 case Float32, Float64: 2063 return cvtIntFloat 2064 case String: 2065 return cvtIntString 2066 } 2067 2068 case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: 2069 switch dst.Kind() { 2070 case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: 2071 return cvtUint 2072 case Float32, Float64: 2073 return cvtUintFloat 2074 case String: 2075 return cvtUintString 2076 } 2077 2078 case Float32, Float64: 2079 switch dst.Kind() { 2080 case Int, Int8, Int16, Int32, Int64: 2081 return cvtFloatInt 2082 case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: 2083 return cvtFloatUint 2084 case Float32, Float64: 2085 return cvtFloat 2086 } 2087 2088 case Complex64, Complex128: 2089 switch dst.Kind() { 2090 case Complex64, Complex128: 2091 return cvtComplex 2092 } 2093 2094 case String: 2095 if dst.Kind() == Slice && dst.Elem().PkgPath() == "" { 2096 switch dst.Elem().Kind() { 2097 case Uint8: 2098 return cvtStringBytes 2099 case Int32: 2100 return cvtStringRunes 2101 } 2102 } 2103 2104 case Slice: 2105 if dst.Kind() == String && src.Elem().PkgPath() == "" { 2106 switch src.Elem().Kind() { 2107 case Uint8: 2108 return cvtBytesString 2109 case Int32: 2110 return cvtRunesString 2111 } 2112 } 2113 } 2114 2115 // dst and src have same underlying type. 2116 if haveIdenticalUnderlyingType(dst, src) { 2117 return cvtDirect 2118 } 2119 2120 // dst and src are unnamed pointer types with same underlying base type. 2121 if dst.Kind() == Ptr && dst.Name() == "" && 2122 src.Kind() == Ptr && src.Name() == "" && 2123 haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) { 2124 return cvtDirect 2125 } 2126 2127 if implements(dst, src) { 2128 if src.Kind() == Interface { 2129 return cvtI2I 2130 } 2131 return cvtT2I 2132 } 2133 2134 return nil 2135 } 2136 2137 // makeInt returns a Value of type t equal to bits (possibly truncated), 2138 // where t is a signed or unsigned int type. 2139 func makeInt(f flag, bits uint64, t Type) Value { 2140 typ := t.common() 2141 ptr := unsafe_New(typ) 2142 switch typ.size { 2143 case 1: 2144 *(*uint8)(unsafe.Pointer(ptr)) = uint8(bits) 2145 case 2: 2146 *(*uint16)(unsafe.Pointer(ptr)) = uint16(bits) 2147 case 4: 2148 *(*uint32)(unsafe.Pointer(ptr)) = uint32(bits) 2149 case 8: 2150 *(*uint64)(unsafe.Pointer(ptr)) = bits 2151 } 2152 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())} 2153 } 2154 2155 // makeFloat returns a Value of type t equal to v (possibly truncated to float32), 2156 // where t is a float32 or float64 type. 2157 func makeFloat(f flag, v float64, t Type) Value { 2158 typ := t.common() 2159 ptr := unsafe_New(typ) 2160 switch typ.size { 2161 case 4: 2162 *(*float32)(unsafe.Pointer(ptr)) = float32(v) 2163 case 8: 2164 *(*float64)(unsafe.Pointer(ptr)) = v 2165 } 2166 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())} 2167 } 2168 2169 // makeComplex returns a Value of type t equal to v (possibly truncated to complex64), 2170 // where t is a complex64 or complex128 type. 2171 func makeComplex(f flag, v complex128, t Type) Value { 2172 typ := t.common() 2173 ptr := unsafe_New(typ) 2174 switch typ.size { 2175 case 8: 2176 *(*complex64)(unsafe.Pointer(ptr)) = complex64(v) 2177 case 16: 2178 *(*complex128)(unsafe.Pointer(ptr)) = v 2179 } 2180 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())} 2181 } 2182 2183 func makeString(f flag, v string, t Type) Value { 2184 ret := New(t).Elem() 2185 ret.SetString(v) 2186 ret.flag = ret.flag&^flagAddr | f 2187 return ret 2188 } 2189 2190 func makeBytes(f flag, v []byte, t Type) Value { 2191 ret := New(t).Elem() 2192 ret.SetBytes(v) 2193 ret.flag = ret.flag&^flagAddr | f 2194 return ret 2195 } 2196 2197 func makeRunes(f flag, v []rune, t Type) Value { 2198 ret := New(t).Elem() 2199 ret.setRunes(v) 2200 ret.flag = ret.flag&^flagAddr | f 2201 return ret 2202 } 2203 2204 // These conversion functions are returned by convertOp 2205 // for classes of conversions. For example, the first function, cvtInt, 2206 // takes any value v of signed int type and returns the value converted 2207 // to type t, where t is any signed or unsigned int type. 2208 2209 // convertOp: intXX -> [u]intXX 2210 func cvtInt(v Value, t Type) Value { 2211 return makeInt(v.flag&flagRO, uint64(v.Int()), t) 2212 } 2213 2214 // convertOp: uintXX -> [u]intXX 2215 func cvtUint(v Value, t Type) Value { 2216 return makeInt(v.flag&flagRO, v.Uint(), t) 2217 } 2218 2219 // convertOp: floatXX -> intXX 2220 func cvtFloatInt(v Value, t Type) Value { 2221 return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t) 2222 } 2223 2224 // convertOp: floatXX -> uintXX 2225 func cvtFloatUint(v Value, t Type) Value { 2226 return makeInt(v.flag&flagRO, uint64(v.Float()), t) 2227 } 2228 2229 // convertOp: intXX -> floatXX 2230 func cvtIntFloat(v Value, t Type) Value { 2231 return makeFloat(v.flag&flagRO, float64(v.Int()), t) 2232 } 2233 2234 // convertOp: uintXX -> floatXX 2235 func cvtUintFloat(v Value, t Type) Value { 2236 return makeFloat(v.flag&flagRO, float64(v.Uint()), t) 2237 } 2238 2239 // convertOp: floatXX -> floatXX 2240 func cvtFloat(v Value, t Type) Value { 2241 return makeFloat(v.flag&flagRO, v.Float(), t) 2242 } 2243 2244 // convertOp: complexXX -> complexXX 2245 func cvtComplex(v Value, t Type) Value { 2246 return makeComplex(v.flag&flagRO, v.Complex(), t) 2247 } 2248 2249 // convertOp: intXX -> string 2250 func cvtIntString(v Value, t Type) Value { 2251 return makeString(v.flag&flagRO, string(v.Int()), t) 2252 } 2253 2254 // convertOp: uintXX -> string 2255 func cvtUintString(v Value, t Type) Value { 2256 return makeString(v.flag&flagRO, string(v.Uint()), t) 2257 } 2258 2259 // convertOp: []byte -> string 2260 func cvtBytesString(v Value, t Type) Value { 2261 return makeString(v.flag&flagRO, string(v.Bytes()), t) 2262 } 2263 2264 // convertOp: string -> []byte 2265 func cvtStringBytes(v Value, t Type) Value { 2266 return makeBytes(v.flag&flagRO, []byte(v.String()), t) 2267 } 2268 2269 // convertOp: []rune -> string 2270 func cvtRunesString(v Value, t Type) Value { 2271 return makeString(v.flag&flagRO, string(v.runes()), t) 2272 } 2273 2274 // convertOp: string -> []rune 2275 func cvtStringRunes(v Value, t Type) Value { 2276 return makeRunes(v.flag&flagRO, []rune(v.String()), t) 2277 } 2278 2279 // convertOp: direct copy 2280 func cvtDirect(v Value, typ Type) Value { 2281 f := v.flag 2282 t := typ.common() 2283 ptr := v.ptr 2284 if f&flagAddr != 0 { 2285 // indirect, mutable word - make a copy 2286 c := unsafe_New(t) 2287 typedmemmove(t, c, ptr) 2288 ptr = c 2289 f &^= flagAddr 2290 } 2291 return Value{t, ptr, v.flag&flagRO | f} // v.flag&flagRO|f == f? 2292 } 2293 2294 // convertOp: concrete -> interface 2295 func cvtT2I(v Value, typ Type) Value { 2296 target := unsafe_New(typ.common()) 2297 x := valueInterface(v, false) 2298 if typ.NumMethod() == 0 { 2299 *(*interface{})(target) = x 2300 } else { 2301 ifaceE2I(typ.(*rtype), x, target) 2302 } 2303 return Value{typ.common(), target, v.flag&flagRO | flagIndir | flag(Interface)} 2304 } 2305 2306 // convertOp: interface -> interface 2307 func cvtI2I(v Value, typ Type) Value { 2308 if v.IsNil() { 2309 ret := Zero(typ) 2310 ret.flag |= v.flag & flagRO 2311 return ret 2312 } 2313 return cvtT2I(v.Elem(), typ) 2314 } 2315 2316 // implemented in ../runtime 2317 func chancap(ch unsafe.Pointer) int 2318 func chanclose(ch unsafe.Pointer) 2319 func chanlen(ch unsafe.Pointer) int 2320 2321 //go:noescape 2322 func chanrecv(t *rtype, ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool) 2323 2324 //go:noescape 2325 func chansend(t *rtype, ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool 2326 2327 func makechan(typ *rtype, size uint64) (ch unsafe.Pointer) 2328 func makemap(t *rtype) (m unsafe.Pointer) 2329 2330 //go:noescape 2331 func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer) 2332 2333 func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer) 2334 2335 //go:noescape 2336 func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer) 2337 2338 // m escapes into the return value, but the caller of mapiterinit 2339 // doesn't let the return value escape. 2340 //go:noescape 2341 func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer 2342 2343 //go:noescape 2344 func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer) 2345 2346 //go:noescape 2347 func mapiternext(it unsafe.Pointer) 2348 2349 //go:noescape 2350 func maplen(m unsafe.Pointer) int 2351 func call(typ *rtype, fnaddr unsafe.Pointer, isInterface bool, isMethod bool, params *unsafe.Pointer, results *unsafe.Pointer) 2352 2353 func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer) 2354 2355 // typedmemmove copies a value of type t to dst from src. 2356 //go:noescape 2357 func typedmemmove(t *rtype, dst, src unsafe.Pointer) 2358 2359 // typedslicecopy copies a slice of elemType values from src to dst, 2360 // returning the number of elements copied. 2361 //go:noescape 2362 func typedslicecopy(elemType *rtype, dst, src sliceHeader) int 2363 2364 //go:noescape 2365 //extern memmove 2366 func memmove(adst, asrc unsafe.Pointer, n uintptr) 2367 2368 // Dummy annotation marking that the value x escapes, 2369 // for use in cases where the reflect code is so clever that 2370 // the compiler cannot follow. 2371 func escapes(x interface{}) { 2372 if dummy.b { 2373 dummy.x = x 2374 } 2375 } 2376 2377 var dummy struct { 2378 b bool 2379 x interface{} 2380 }