github.com/bananabytelabs/wazero@v0.0.0-20240105073314-54b22a776da8/internal/wasm/module.go (about) 1 package wasm 2 3 import ( 4 "bytes" 5 "crypto/sha256" 6 "encoding/binary" 7 "errors" 8 "fmt" 9 "io" 10 "sort" 11 "strings" 12 "sync" 13 14 "github.com/bananabytelabs/wazero/api" 15 "github.com/bananabytelabs/wazero/experimental" 16 "github.com/bananabytelabs/wazero/internal/ieee754" 17 "github.com/bananabytelabs/wazero/internal/leb128" 18 "github.com/bananabytelabs/wazero/internal/wasmdebug" 19 ) 20 21 // Module is a WebAssembly binary representation. 22 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#modules%E2%91%A8 23 // 24 // Differences from the specification: 25 // * NameSection is the only key ("name") decoded from the SectionIDCustom. 26 // * ExportSection is represented as a map for lookup convenience. 27 // * Code.GoFunc is contains any go `func`. It may be present when Code.Body is not. 28 type Module struct { 29 // TypeSection contains the unique FunctionType of functions imported or defined in this module. 30 // 31 // Note: Currently, there is no type ambiguity in the index as WebAssembly 1.0 only defines function type. 32 // In the future, other types may be introduced to support CoreFeatures such as module linking. 33 // 34 // Note: In the Binary Format, this is SectionIDType. 35 // 36 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#types%E2%91%A0%E2%91%A0 37 TypeSection []FunctionType 38 39 // ImportSection contains imported functions, tables, memories or globals required for instantiation 40 // (Store.Instantiate). 41 // 42 // Note: there are no unique constraints relating to the two-level namespace of Import.Module and Import.Name. 43 // 44 // Note: In the Binary Format, this is SectionIDImport. 45 // 46 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#import-section%E2%91%A0 47 ImportSection []Import 48 // ImportFunctionCount ImportGlobalCount ImportMemoryCount, and ImportTableCount are 49 // the cached import count per ExternType set during decoding. 50 ImportFunctionCount, 51 ImportGlobalCount, 52 ImportMemoryCount, 53 ImportTableCount Index 54 // ImportPerModule maps a module name to the list of Import to be imported from the module. 55 // This is used to do fast import resolution during instantiation. 56 ImportPerModule map[string][]*Import 57 58 // FunctionSection contains the index in TypeSection of each function defined in this module. 59 // 60 // Note: The function Index space begins with imported functions and ends with those defined in this module. 61 // For example, if there are two imported functions and one defined in this module, the function Index 3 is defined 62 // in this module at FunctionSection[0]. 63 // 64 // Note: FunctionSection is index correlated with the CodeSection. If given the same position, e.g. 2, a function 65 // type is at TypeSection[FunctionSection[2]], while its locals and body are at CodeSection[2]. 66 // 67 // Note: In the Binary Format, this is SectionIDFunction. 68 // 69 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#function-section%E2%91%A0 70 FunctionSection []Index 71 72 // TableSection contains each table defined in this module. 73 // 74 // Note: The table Index space begins with imported tables and ends with those defined in this module. 75 // For example, if there are two imported tables and one defined in this module, the table Index 3 is defined in 76 // this module at TableSection[0]. 77 // 78 // Note: Version 1.0 (20191205) of the WebAssembly spec allows at most one table definition per module, so the 79 // length of the TableSection can be zero or one, and can only be one if there is no imported table. 80 // 81 // Note: In the Binary Format, this is SectionIDTable. 82 // 83 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#table-section%E2%91%A0 84 TableSection []Table 85 86 // MemorySection contains each memory defined in this module. 87 // 88 // Note: The memory Index space begins with imported memories and ends with those defined in this module. 89 // For example, if there are two imported memories and one defined in this module, the memory Index 3 is defined in 90 // this module at TableSection[0]. 91 // 92 // Note: Version 1.0 (20191205) of the WebAssembly spec allows at most one memory definition per module, so the 93 // length of the MemorySection can be zero or one, and can only be one if there is no imported memory. 94 // 95 // Note: In the Binary Format, this is SectionIDMemory. 96 // 97 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#memory-section%E2%91%A0 98 MemorySection *Memory 99 100 // GlobalSection contains each global defined in this module. 101 // 102 // Global indexes are offset by any imported globals because the global index begins with imports, followed by 103 // ones defined in this module. For example, if there are two imported globals and three defined in this module, the 104 // global at index 3 is defined in this module at GlobalSection[0]. 105 // 106 // Note: In the Binary Format, this is SectionIDGlobal. 107 // 108 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#global-section%E2%91%A0 109 GlobalSection []Global 110 111 // ExportSection contains each export defined in this module. 112 // 113 // Note: In the Binary Format, this is SectionIDExport. 114 // 115 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#exports%E2%91%A0 116 ExportSection []Export 117 // Exports maps a name to Export, and is convenient for fast look up of exported instances at runtime. 118 // Each item of this map points to an element of ExportSection. 119 Exports map[string]*Export 120 121 // StartSection is the index of a function to call before returning from Store.Instantiate. 122 // 123 // Note: The index here is not the position in the FunctionSection, rather in the function index, which 124 // begins with imported functions. 125 // 126 // Note: In the Binary Format, this is SectionIDStart. 127 // 128 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#start-section%E2%91%A0 129 StartSection *Index 130 131 // Note: In the Binary Format, this is SectionIDElement. 132 ElementSection []ElementSegment 133 134 // CodeSection is index-correlated with FunctionSection and contains each 135 // function's locals and body. 136 // 137 // When present, the HostFunctionSection of the same index must be nil. 138 // 139 // Note: In the Binary Format, this is SectionIDCode. 140 // 141 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#code-section%E2%91%A0 142 CodeSection []Code 143 144 // Note: In the Binary Format, this is SectionIDData. 145 DataSection []DataSegment 146 147 // NameSection is set when the SectionIDCustom "name" was successfully decoded from the binary format. 148 // 149 // Note: This is the only SectionIDCustom defined in the WebAssembly 1.0 (20191205) Binary Format. 150 // Others are skipped as they are not used in wazero. 151 // 152 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#name-section%E2%91%A0 153 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#custom-section%E2%91%A0 154 NameSection *NameSection 155 156 // CustomSections are set when the SectionIDCustom other than "name" were successfully decoded from the binary format. 157 // 158 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#custom-section%E2%91%A0 159 CustomSections []*CustomSection 160 161 // DataCountSection is the optional section and holds the number of data segments in the data section. 162 // 163 // Note: This may exist in WebAssembly 2.0 or WebAssembly 1.0 with CoreFeatureBulkMemoryOperations. 164 // See https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/binary/modules.html#data-count-section 165 // See https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/appendix/changes.html#bulk-memory-and-table-instructions 166 DataCountSection *uint32 167 168 // ID is the sha256 value of the source wasm plus the configurations which affect the runtime representation of 169 // Wasm binary. This is only used for caching. 170 ID ModuleID 171 172 // IsHostModule true if this is the host module, false otherwise. 173 IsHostModule bool 174 175 // functionDefinitionSectionInitOnce guards FunctionDefinitionSection so that it is initialized exactly once. 176 functionDefinitionSectionInitOnce sync.Once 177 178 // FunctionDefinitionSection is a wazero-specific section. 179 FunctionDefinitionSection []FunctionDefinition 180 181 // MemoryDefinitionSection is a wazero-specific section. 182 MemoryDefinitionSection []MemoryDefinition 183 184 // DWARFLines is used to emit DWARF based stack trace. This is created from the multiple custom sections 185 // as described in https://yurydelendik.github.io/webassembly-dwarf/, though it is not specified in the Wasm 186 // specification: https://github.com/WebAssembly/debugging/issues/1 187 DWARFLines *wasmdebug.DWARFLines 188 } 189 190 // ModuleID represents sha256 hash value uniquely assigned to Module. 191 type ModuleID = [sha256.Size]byte 192 193 // The wazero specific limitation described at RATIONALE.md. 194 // TL;DR; We multiply by 8 (to get offsets in bytes) and the multiplication result must be less than 32bit max 195 const ( 196 MaximumGlobals = uint32(1 << 27) 197 MaximumFunctionIndex = uint32(1 << 27) 198 MaximumTableIndex = uint32(1 << 27) 199 ) 200 201 // AssignModuleID calculates a sha256 checksum on `wasm` and other args, and set Module.ID to the result. 202 // See the doc on Module.ID on what it's used for. 203 func (m *Module) AssignModuleID(wasm []byte, listeners []experimental.FunctionListener, withEnsureTermination bool) { 204 h := sha256.New() 205 h.Write(wasm) 206 // Use the pre-allocated space backed by m.ID below. 207 208 // Write the existence of listeners to the checksum per function. 209 for i, l := range listeners { 210 binary.LittleEndian.PutUint32(m.ID[:], uint32(i)) 211 m.ID[4] = boolToByte(l != nil) 212 h.Write(m.ID[:5]) 213 } 214 // Write the flag of ensureTermination to the checksum. 215 m.ID[0] = boolToByte(withEnsureTermination) 216 h.Write(m.ID[:1]) 217 // Get checksum by passing the slice underlying m.ID. 218 h.Sum(m.ID[:0]) 219 } 220 221 func boolToByte(b bool) (ret byte) { 222 if b { 223 ret = 1 224 } 225 return 226 } 227 228 // typeOfFunction returns the wasm.FunctionType for the given function space index or nil. 229 func (m *Module) typeOfFunction(funcIdx Index) *FunctionType { 230 typeSectionLength, importedFunctionCount := uint32(len(m.TypeSection)), m.ImportFunctionCount 231 if funcIdx < importedFunctionCount { 232 // Imports are not exclusively functions. This is the current function index in the loop. 233 cur := Index(0) 234 for i := range m.ImportSection { 235 imp := &m.ImportSection[i] 236 if imp.Type != ExternTypeFunc { 237 continue 238 } 239 if funcIdx == cur { 240 if imp.DescFunc >= typeSectionLength { 241 return nil 242 } 243 return &m.TypeSection[imp.DescFunc] 244 } 245 cur++ 246 } 247 } 248 249 funcSectionIdx := funcIdx - m.ImportFunctionCount 250 if funcSectionIdx >= uint32(len(m.FunctionSection)) { 251 return nil 252 } 253 typeIdx := m.FunctionSection[funcSectionIdx] 254 if typeIdx >= typeSectionLength { 255 return nil 256 } 257 return &m.TypeSection[typeIdx] 258 } 259 260 func (m *Module) Validate(enabledFeatures api.CoreFeatures) error { 261 for i := range m.TypeSection { 262 tp := &m.TypeSection[i] 263 tp.CacheNumInUint64() 264 } 265 266 if err := m.validateStartSection(); err != nil { 267 return err 268 } 269 270 functions, globals, memory, tables, err := m.AllDeclarations() 271 if err != nil { 272 return err 273 } 274 275 if err = m.validateImports(enabledFeatures); err != nil { 276 return err 277 } 278 279 if err = m.validateGlobals(globals, uint32(len(functions)), MaximumGlobals); err != nil { 280 return err 281 } 282 283 if err = m.validateMemory(memory, globals, enabledFeatures); err != nil { 284 return err 285 } 286 287 if err = m.validateExports(enabledFeatures, functions, globals, memory, tables); err != nil { 288 return err 289 } 290 291 if m.CodeSection != nil { 292 if err = m.validateFunctions(enabledFeatures, functions, globals, memory, tables, MaximumFunctionIndex); err != nil { 293 return err 294 } 295 } // No need to validate host functions as NewHostModule validates 296 297 if err = m.validateTable(enabledFeatures, tables, MaximumTableIndex); err != nil { 298 return err 299 } 300 301 if err = m.validateDataCountSection(); err != nil { 302 return err 303 } 304 return nil 305 } 306 307 func (m *Module) validateStartSection() error { 308 // Check the start function is valid. 309 // TODO: this should be verified during decode so that errors have the correct source positions 310 if m.StartSection != nil { 311 startIndex := *m.StartSection 312 ft := m.typeOfFunction(startIndex) 313 if ft == nil { // TODO: move this check to decoder so that a module can never be decoded invalidly 314 return fmt.Errorf("invalid start function: func[%d] has an invalid type", startIndex) 315 } 316 if len(ft.Params) > 0 || len(ft.Results) > 0 { 317 return fmt.Errorf("invalid start function: func[%d] must have an empty (nullary) signature: %s", startIndex, ft) 318 } 319 } 320 return nil 321 } 322 323 func (m *Module) validateGlobals(globals []GlobalType, numFuncts, maxGlobals uint32) error { 324 if uint32(len(globals)) > maxGlobals { 325 return fmt.Errorf("too many globals in a module") 326 } 327 328 // Global initialization constant expression can only reference the imported globals. 329 // See the note on https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#constant-expressions%E2%91%A0 330 importedGlobals := globals[:m.ImportGlobalCount] 331 for i := range m.GlobalSection { 332 g := &m.GlobalSection[i] 333 if err := validateConstExpression(importedGlobals, numFuncts, &g.Init, g.Type.ValType); err != nil { 334 return err 335 } 336 } 337 return nil 338 } 339 340 func (m *Module) validateFunctions(enabledFeatures api.CoreFeatures, functions []Index, globals []GlobalType, memory *Memory, tables []Table, maximumFunctionIndex uint32) error { 341 if uint32(len(functions)) > maximumFunctionIndex { 342 return fmt.Errorf("too many functions (%d) in a module", len(functions)) 343 } 344 345 functionCount := m.SectionElementCount(SectionIDFunction) 346 codeCount := m.SectionElementCount(SectionIDCode) 347 if functionCount == 0 && codeCount == 0 { 348 return nil 349 } 350 351 typeCount := m.SectionElementCount(SectionIDType) 352 if codeCount != functionCount { 353 return fmt.Errorf("code count (%d) != function count (%d)", codeCount, functionCount) 354 } 355 356 declaredFuncIndexes, err := m.declaredFunctionIndexes() 357 if err != nil { 358 return err 359 } 360 361 // Create bytes.Reader once as it causes allocation, and 362 // we frequently need it (e.g. on every If instruction). 363 br := bytes.NewReader(nil) 364 // Also, we reuse the stacks across multiple function validations to reduce allocations. 365 vs := &stacks{} 366 for idx, typeIndex := range m.FunctionSection { 367 if typeIndex >= typeCount { 368 return fmt.Errorf("invalid %s: type section index %d out of range", m.funcDesc(SectionIDFunction, Index(idx)), typeIndex) 369 } 370 c := &m.CodeSection[idx] 371 if c.GoFunc != nil { 372 continue 373 } 374 if err = m.validateFunction(vs, enabledFeatures, Index(idx), functions, globals, memory, tables, declaredFuncIndexes, br); err != nil { 375 return fmt.Errorf("invalid %s: %w", m.funcDesc(SectionIDFunction, Index(idx)), err) 376 } 377 } 378 return nil 379 } 380 381 // declaredFunctionIndexes returns a set of function indexes that can be used as an immediate for OpcodeRefFunc instruction. 382 // 383 // The criteria for which function indexes can be available for that instruction is vague in the spec: 384 // 385 // - "References: the list of function indices that occur in the module outside functions and can hence be used to form references inside them." 386 // - https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/valid/conventions.html#contexts 387 // - "Ref is the set funcidx(module with functions=ε, start=ε) , i.e., the set of function indices occurring in the module, except in its functions or start function." 388 // - https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/valid/modules.html#valid-module 389 // 390 // To clarify, we reverse-engineer logic required to pass the WebAssembly Core specification 2.0 test suite: 391 // https://github.com/WebAssembly/spec/blob/d39195773112a22b245ffbe864bab6d1182ccb06/test/core/ref_func.wast#L78-L115 392 // 393 // To summarize, the function indexes OpcodeRefFunc can refer include: 394 // - existing in an element section regardless of its mode (active, passive, declarative). 395 // - defined as globals whose value type is ValueRefFunc. 396 // - used as an exported function. 397 // 398 // See https://github.com/WebAssembly/reference-types/issues/31 399 // See https://github.com/WebAssembly/reference-types/issues/76 400 func (m *Module) declaredFunctionIndexes() (ret map[Index]struct{}, err error) { 401 ret = map[uint32]struct{}{} 402 403 for i := range m.ExportSection { 404 exp := &m.ExportSection[i] 405 if exp.Type == ExternTypeFunc { 406 ret[exp.Index] = struct{}{} 407 } 408 } 409 410 for i := range m.GlobalSection { 411 g := &m.GlobalSection[i] 412 if g.Init.Opcode == OpcodeRefFunc { 413 var index uint32 414 index, _, err = leb128.LoadUint32(g.Init.Data) 415 if err != nil { 416 err = fmt.Errorf("%s[%d] failed to initialize: %w", SectionIDName(SectionIDGlobal), i, err) 417 return 418 } 419 ret[index] = struct{}{} 420 } 421 } 422 423 for i := range m.ElementSection { 424 elem := &m.ElementSection[i] 425 for _, index := range elem.Init { 426 if index != ElementInitNullReference { 427 ret[index] = struct{}{} 428 } 429 } 430 } 431 return 432 } 433 434 func (m *Module) funcDesc(sectionID SectionID, sectionIndex Index) string { 435 // Try to improve the error message by collecting any exports: 436 var exportNames []string 437 funcIdx := sectionIndex + m.ImportFunctionCount 438 for i := range m.ExportSection { 439 exp := &m.ExportSection[i] 440 if exp.Index == funcIdx && exp.Type == ExternTypeFunc { 441 exportNames = append(exportNames, fmt.Sprintf("%q", exp.Name)) 442 } 443 } 444 sectionIDName := SectionIDName(sectionID) 445 if exportNames == nil { 446 return fmt.Sprintf("%s[%d]", sectionIDName, sectionIndex) 447 } 448 sort.Strings(exportNames) // go map keys do not iterate consistently 449 return fmt.Sprintf("%s[%d] export[%s]", sectionIDName, sectionIndex, strings.Join(exportNames, ",")) 450 } 451 452 func (m *Module) validateMemory(memory *Memory, globals []GlobalType, _ api.CoreFeatures) error { 453 var activeElementCount int 454 for i := range m.DataSection { 455 d := &m.DataSection[i] 456 if !d.IsPassive() { 457 activeElementCount++ 458 } 459 } 460 if activeElementCount > 0 && memory == nil { 461 return fmt.Errorf("unknown memory") 462 } 463 464 // Constant expression can only reference imported globals. 465 // https://github.com/WebAssembly/spec/blob/5900d839f38641989a9d8df2df4aee0513365d39/test/core/data.wast#L84-L91 466 importedGlobals := globals[:m.ImportGlobalCount] 467 for i := range m.DataSection { 468 d := &m.DataSection[i] 469 if !d.IsPassive() { 470 if err := validateConstExpression(importedGlobals, 0, &d.OffsetExpression, ValueTypeI32); err != nil { 471 return fmt.Errorf("calculate offset: %w", err) 472 } 473 } 474 } 475 return nil 476 } 477 478 func (m *Module) validateImports(enabledFeatures api.CoreFeatures) error { 479 for i := range m.ImportSection { 480 imp := &m.ImportSection[i] 481 if imp.Module == "" { 482 return fmt.Errorf("import[%d] has an empty module name", i) 483 } 484 switch imp.Type { 485 case ExternTypeFunc: 486 if int(imp.DescFunc) >= len(m.TypeSection) { 487 return fmt.Errorf("invalid import[%q.%q] function: type index out of range", imp.Module, imp.Name) 488 } 489 case ExternTypeGlobal: 490 if !imp.DescGlobal.Mutable { 491 continue 492 } 493 if err := enabledFeatures.RequireEnabled(api.CoreFeatureMutableGlobal); err != nil { 494 return fmt.Errorf("invalid import[%q.%q] global: %w", imp.Module, imp.Name, err) 495 } 496 } 497 } 498 return nil 499 } 500 501 func (m *Module) validateExports(enabledFeatures api.CoreFeatures, functions []Index, globals []GlobalType, memory *Memory, tables []Table) error { 502 for i := range m.ExportSection { 503 exp := &m.ExportSection[i] 504 index := exp.Index 505 switch exp.Type { 506 case ExternTypeFunc: 507 if index >= uint32(len(functions)) { 508 return fmt.Errorf("unknown function for export[%q]", exp.Name) 509 } 510 case ExternTypeGlobal: 511 if index >= uint32(len(globals)) { 512 return fmt.Errorf("unknown global for export[%q]", exp.Name) 513 } 514 if !globals[index].Mutable { 515 continue 516 } 517 if err := enabledFeatures.RequireEnabled(api.CoreFeatureMutableGlobal); err != nil { 518 return fmt.Errorf("invalid export[%q] global[%d]: %w", exp.Name, index, err) 519 } 520 case ExternTypeMemory: 521 if index > 0 || memory == nil { 522 return fmt.Errorf("memory for export[%q] out of range", exp.Name) 523 } 524 case ExternTypeTable: 525 if index >= uint32(len(tables)) { 526 return fmt.Errorf("table for export[%q] out of range", exp.Name) 527 } 528 } 529 } 530 return nil 531 } 532 533 func validateConstExpression(globals []GlobalType, numFuncs uint32, expr *ConstantExpression, expectedType ValueType) (err error) { 534 var actualType ValueType 535 switch expr.Opcode { 536 case OpcodeI32Const: 537 // Treat constants as signed as their interpretation is not yet known per /RATIONALE.md 538 _, _, err = leb128.LoadInt32(expr.Data) 539 if err != nil { 540 return fmt.Errorf("read i32: %w", err) 541 } 542 actualType = ValueTypeI32 543 case OpcodeI64Const: 544 // Treat constants as signed as their interpretation is not yet known per /RATIONALE.md 545 _, _, err = leb128.LoadInt64(expr.Data) 546 if err != nil { 547 return fmt.Errorf("read i64: %w", err) 548 } 549 actualType = ValueTypeI64 550 case OpcodeF32Const: 551 _, err = ieee754.DecodeFloat32(expr.Data) 552 if err != nil { 553 return fmt.Errorf("read f32: %w", err) 554 } 555 actualType = ValueTypeF32 556 case OpcodeF64Const: 557 _, err = ieee754.DecodeFloat64(expr.Data) 558 if err != nil { 559 return fmt.Errorf("read f64: %w", err) 560 } 561 actualType = ValueTypeF64 562 case OpcodeGlobalGet: 563 id, _, err := leb128.LoadUint32(expr.Data) 564 if err != nil { 565 return fmt.Errorf("read index of global: %w", err) 566 } 567 if uint32(len(globals)) <= id { 568 return fmt.Errorf("global index out of range") 569 } 570 actualType = globals[id].ValType 571 case OpcodeRefNull: 572 if len(expr.Data) == 0 { 573 return fmt.Errorf("read reference type for ref.null: %w", io.ErrShortBuffer) 574 } 575 reftype := expr.Data[0] 576 if reftype != RefTypeFuncref && reftype != RefTypeExternref { 577 return fmt.Errorf("invalid type for ref.null: 0x%x", reftype) 578 } 579 actualType = reftype 580 case OpcodeRefFunc: 581 index, _, err := leb128.LoadUint32(expr.Data) 582 if err != nil { 583 return fmt.Errorf("read i32: %w", err) 584 } else if index >= numFuncs { 585 return fmt.Errorf("ref.func index out of range [%d] with length %d", index, numFuncs-1) 586 } 587 actualType = ValueTypeFuncref 588 case OpcodeVecV128Const: 589 if len(expr.Data) != 16 { 590 return fmt.Errorf("%s needs 16 bytes but was %d bytes", OpcodeVecV128ConstName, len(expr.Data)) 591 } 592 actualType = ValueTypeV128 593 default: 594 return fmt.Errorf("invalid opcode for const expression: 0x%x", expr.Opcode) 595 } 596 597 if actualType != expectedType { 598 return fmt.Errorf("const expression type mismatch expected %s but got %s", 599 ValueTypeName(expectedType), ValueTypeName(actualType)) 600 } 601 return nil 602 } 603 604 func (m *Module) validateDataCountSection() (err error) { 605 if m.DataCountSection != nil && int(*m.DataCountSection) != len(m.DataSection) { 606 err = fmt.Errorf("data count section (%d) doesn't match the length of data section (%d)", 607 *m.DataCountSection, len(m.DataSection)) 608 } 609 return 610 } 611 612 func (m *ModuleInstance) buildGlobals(module *Module, funcRefResolver func(funcIndex Index) Reference) { 613 importedGlobals := m.Globals[:module.ImportGlobalCount] 614 615 me := m.Engine 616 engineOwnGlobal := me.OwnsGlobals() 617 for i := Index(0); i < Index(len(module.GlobalSection)); i++ { 618 gs := &module.GlobalSection[i] 619 g := &GlobalInstance{} 620 if engineOwnGlobal { 621 g.Me = me 622 g.Index = i + module.ImportGlobalCount 623 } 624 m.Globals[i+module.ImportGlobalCount] = g 625 g.Type = gs.Type 626 g.initialize(importedGlobals, &gs.Init, funcRefResolver) 627 } 628 } 629 630 func paramNames(localNames IndirectNameMap, funcIdx uint32, paramLen int) []string { 631 for i := range localNames { 632 nm := &localNames[i] 633 // Only build parameter names if we have one for each. 634 if nm.Index != funcIdx || len(nm.NameMap) < paramLen { 635 continue 636 } 637 638 ret := make([]string, paramLen) 639 for j := range nm.NameMap { 640 p := &nm.NameMap[j] 641 if int(p.Index) < paramLen { 642 ret[p.Index] = p.Name 643 } 644 } 645 return ret 646 } 647 return nil 648 } 649 650 func (m *ModuleInstance) buildMemory(module *Module) { 651 memSec := module.MemorySection 652 if memSec != nil { 653 m.MemoryInstance = NewMemoryInstance(memSec) 654 m.MemoryInstance.definition = &module.MemoryDefinitionSection[0] 655 } 656 } 657 658 // Index is the offset in an index, not necessarily an absolute position in a Module section. This is because 659 // indexs are often preceded by a corresponding type in the Module.ImportSection. 660 // 661 // For example, the function index starts with any ExternTypeFunc in the Module.ImportSection followed by 662 // the Module.FunctionSection 663 // 664 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-index 665 type Index = uint32 666 667 // FunctionType is a possibly empty function signature. 668 // 669 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#function-types%E2%91%A0 670 type FunctionType struct { 671 // Params are the possibly empty sequence of value types accepted by a function with this signature. 672 Params []ValueType 673 674 // Results are the possibly empty sequence of value types returned by a function with this signature. 675 // 676 // Note: In WebAssembly 1.0 (20191205), there can be at most one result. 677 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#result-types%E2%91%A0 678 Results []ValueType 679 680 // string is cached as it is used both for String and key 681 string string 682 683 // ParamNumInUint64 is the number of uint64 values requires to represent the Wasm param type. 684 ParamNumInUint64 int 685 686 // ResultsNumInUint64 is the number of uint64 values requires to represent the Wasm result type. 687 ResultNumInUint64 int 688 } 689 690 func (f *FunctionType) CacheNumInUint64() { 691 if f.ParamNumInUint64 == 0 { 692 for _, tp := range f.Params { 693 f.ParamNumInUint64++ 694 if tp == ValueTypeV128 { 695 f.ParamNumInUint64++ 696 } 697 } 698 } 699 700 if f.ResultNumInUint64 == 0 { 701 for _, tp := range f.Results { 702 f.ResultNumInUint64++ 703 if tp == ValueTypeV128 { 704 f.ResultNumInUint64++ 705 } 706 } 707 } 708 } 709 710 // EqualsSignature returns true if the function type has the same parameters and results. 711 func (f *FunctionType) EqualsSignature(params []ValueType, results []ValueType) bool { 712 return bytes.Equal(f.Params, params) && bytes.Equal(f.Results, results) 713 } 714 715 // key gets or generates the key for Store.typeIDs. e.g. "i32_v" for one i32 parameter and no (void) result. 716 func (f *FunctionType) key() string { 717 if f.string != "" { 718 return f.string 719 } 720 var ret string 721 for _, b := range f.Params { 722 ret += ValueTypeName(b) 723 } 724 if len(f.Params) == 0 { 725 ret += "v_" 726 } else { 727 ret += "_" 728 } 729 for _, b := range f.Results { 730 ret += ValueTypeName(b) 731 } 732 if len(f.Results) == 0 { 733 ret += "v" 734 } 735 f.string = ret 736 return ret 737 } 738 739 // String implements fmt.Stringer. 740 func (f *FunctionType) String() string { 741 return f.key() 742 } 743 744 // Import is the binary representation of an import indicated by Type 745 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-import 746 type Import struct { 747 Type ExternType 748 // Module is the possibly empty primary namespace of this import 749 Module string 750 // Module is the possibly empty secondary namespace of this import 751 Name string 752 // DescFunc is the index in Module.TypeSection when Type equals ExternTypeFunc 753 DescFunc Index 754 // DescTable is the inlined Table when Type equals ExternTypeTable 755 DescTable Table 756 // DescMem is the inlined Memory when Type equals ExternTypeMemory 757 DescMem *Memory 758 // DescGlobal is the inlined GlobalType when Type equals ExternTypeGlobal 759 DescGlobal GlobalType 760 // IndexPerType has the index of this import per ExternType. 761 IndexPerType Index 762 } 763 764 // Memory describes the limits of pages (64KB) in a memory. 765 type Memory struct { 766 Min, Cap, Max uint32 767 // IsMaxEncoded true if the Max is encoded in the original binary. 768 IsMaxEncoded bool 769 } 770 771 // Validate ensures values assigned to Min, Cap and Max are within valid thresholds. 772 func (m *Memory) Validate(memoryLimitPages uint32) error { 773 min, capacity, max := m.Min, m.Cap, m.Max 774 775 if max > memoryLimitPages { 776 return fmt.Errorf("max %d pages (%s) over limit of %d pages (%s)", 777 max, PagesToUnitOfBytes(max), memoryLimitPages, PagesToUnitOfBytes(memoryLimitPages)) 778 } else if min > memoryLimitPages { 779 return fmt.Errorf("min %d pages (%s) over limit of %d pages (%s)", 780 min, PagesToUnitOfBytes(min), memoryLimitPages, PagesToUnitOfBytes(memoryLimitPages)) 781 } else if min > max { 782 return fmt.Errorf("min %d pages (%s) > max %d pages (%s)", 783 min, PagesToUnitOfBytes(min), max, PagesToUnitOfBytes(max)) 784 } else if capacity < min { 785 return fmt.Errorf("capacity %d pages (%s) less than minimum %d pages (%s)", 786 capacity, PagesToUnitOfBytes(capacity), min, PagesToUnitOfBytes(min)) 787 } else if capacity > memoryLimitPages { 788 return fmt.Errorf("capacity %d pages (%s) over limit of %d pages (%s)", 789 capacity, PagesToUnitOfBytes(capacity), memoryLimitPages, PagesToUnitOfBytes(memoryLimitPages)) 790 } 791 return nil 792 } 793 794 type GlobalType struct { 795 ValType ValueType 796 Mutable bool 797 } 798 799 type Global struct { 800 Type GlobalType 801 Init ConstantExpression 802 } 803 804 type ConstantExpression struct { 805 Opcode Opcode 806 Data []byte 807 } 808 809 // Export is the binary representation of an export indicated by Type 810 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-export 811 type Export struct { 812 Type ExternType 813 814 // Name is what the host refers to this definition as. 815 Name string 816 817 // Index is the index of the definition to export, the index is by Type 818 // e.g. If ExternTypeFunc, this is a position in the function index. 819 Index Index 820 } 821 822 // Code is an entry in the Module.CodeSection containing the locals and body of the function. 823 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-code 824 type Code struct { 825 // LocalTypes are any function-scoped variables in insertion order. 826 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-local 827 LocalTypes []ValueType 828 829 // Body is a sequence of expressions ending in OpcodeEnd 830 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-expr 831 Body []byte 832 833 // GoFunc is non-nil when IsHostFunction and defined in go, either 834 // api.GoFunction or api.GoModuleFunction. When present, LocalTypes and Body must 835 // be nil. 836 // 837 // Note: This has no serialization format, so is not encodable. 838 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#host-functions%E2%91%A2 839 GoFunc interface{} 840 841 // BodyOffsetInCodeSection is the offset of the beginning of the body in the code section. 842 // This is used for DWARF based stack trace where a program counter represents an offset in code section. 843 BodyOffsetInCodeSection uint64 844 } 845 846 type DataSegment struct { 847 OffsetExpression ConstantExpression 848 Init []byte 849 Passive bool 850 } 851 852 // IsPassive returns true if this data segment is "passive" in the sense that memory offset and 853 // index is determined at runtime and used by OpcodeMemoryInitName instruction in the bulk memory 854 // operations proposal. 855 // 856 // See https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/appendix/changes.html#bulk-memory-and-table-instructions 857 func (d *DataSegment) IsPassive() bool { 858 return d.Passive 859 } 860 861 // NameSection represent the known custom name subsections defined in the WebAssembly Binary Format 862 // 863 // Note: This can be nil if no names were decoded for any reason including configuration. 864 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#name-section%E2%91%A0 865 type NameSection struct { 866 // ModuleName is the symbolic identifier for a module. e.g. math 867 // 868 // Note: This can be empty for any reason including configuration. 869 ModuleName string 870 871 // FunctionNames is an association of a function index to its symbolic identifier. e.g. add 872 // 873 // * the key (idx) is in the function index, where module defined functions are preceded by imported ones. 874 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#functions%E2%91%A7 875 // 876 // For example, assuming the below text format is the second import, you would expect FunctionNames[1] = "mul" 877 // (import "Math" "Mul" (func $mul (param $x f32) (param $y f32) (result f32))) 878 // 879 // Note: FunctionNames are only used for debugging. At runtime, functions are called based on raw numeric index. 880 // Note: This can be nil for any reason including configuration. 881 FunctionNames NameMap 882 883 // LocalNames contains symbolic names for function parameters or locals that have one. 884 // 885 // Note: In the Text Format, function local names can inherit parameter 886 // names from their type. Here are some examples: 887 // * (module (import (func (param $x i32) (param i32))) (func (type 0))) = [{0, {x,0}}] 888 // * (module (import (func (param i32) (param $y i32))) (func (type 0) (local $z i32))) = [0, [{y,1},{z,2}]] 889 // * (module (func (param $x i32) (local $y i32) (local $z i32))) = [{x,0},{y,1},{z,2}] 890 // 891 // Note: LocalNames are only used for debugging. At runtime, locals are called based on raw numeric index. 892 // Note: This can be nil for any reason including configuration. 893 LocalNames IndirectNameMap 894 895 // ResultNames is a wazero-specific mechanism to store result names. 896 ResultNames IndirectNameMap 897 } 898 899 // CustomSection contains the name and raw data of a custom section. 900 type CustomSection struct { 901 Name string 902 Data []byte 903 } 904 905 // NameMap associates an index with any associated names. 906 // 907 // Note: Often the index bridges multiple sections. For example, the function index starts with any 908 // ExternTypeFunc in the Module.ImportSection followed by the Module.FunctionSection 909 // 910 // Note: NameMap is unique by NameAssoc.Index, but NameAssoc.Name needn't be unique. 911 // Note: When encoding in the Binary format, this must be ordered by NameAssoc.Index 912 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-namemap 913 type NameMap []NameAssoc 914 915 type NameAssoc struct { 916 Index Index 917 Name string 918 } 919 920 // IndirectNameMap associates an index with an association of names. 921 // 922 // Note: IndirectNameMap is unique by NameMapAssoc.Index, but NameMapAssoc.NameMap needn't be unique. 923 // Note: When encoding in the Binary format, this must be ordered by NameMapAssoc.Index 924 // https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-indirectnamemap 925 type IndirectNameMap []NameMapAssoc 926 927 type NameMapAssoc struct { 928 Index Index 929 NameMap NameMap 930 } 931 932 // AllDeclarations returns all declarations for functions, globals, memories and tables in a module including imported ones. 933 func (m *Module) AllDeclarations() (functions []Index, globals []GlobalType, memory *Memory, tables []Table, err error) { 934 for i := range m.ImportSection { 935 imp := &m.ImportSection[i] 936 switch imp.Type { 937 case ExternTypeFunc: 938 functions = append(functions, imp.DescFunc) 939 case ExternTypeGlobal: 940 globals = append(globals, imp.DescGlobal) 941 case ExternTypeMemory: 942 memory = imp.DescMem 943 case ExternTypeTable: 944 tables = append(tables, imp.DescTable) 945 } 946 } 947 948 functions = append(functions, m.FunctionSection...) 949 for i := range m.GlobalSection { 950 g := &m.GlobalSection[i] 951 globals = append(globals, g.Type) 952 } 953 if m.MemorySection != nil { 954 if memory != nil { // shouldn't be possible due to Validate 955 err = errors.New("at most one table allowed in module") 956 return 957 } 958 memory = m.MemorySection 959 } 960 if m.TableSection != nil { 961 tables = append(tables, m.TableSection...) 962 } 963 return 964 } 965 966 // SectionID identifies the sections of a Module in the WebAssembly 1.0 (20191205) Binary Format. 967 // 968 // Note: these are defined in the wasm package, instead of the binary package, as a key per section is needed regardless 969 // of format, and deferring to the binary type avoids confusion. 970 // 971 // See https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#sections%E2%91%A0 972 type SectionID = byte 973 974 const ( 975 // SectionIDCustom includes the standard defined NameSection and possibly others not defined in the standard. 976 SectionIDCustom SectionID = iota // don't add anything not in https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#sections%E2%91%A0 977 SectionIDType 978 SectionIDImport 979 SectionIDFunction 980 SectionIDTable 981 SectionIDMemory 982 SectionIDGlobal 983 SectionIDExport 984 SectionIDStart 985 SectionIDElement 986 SectionIDCode 987 SectionIDData 988 989 // SectionIDDataCount may exist in WebAssembly 2.0 or WebAssembly 1.0 with CoreFeatureBulkMemoryOperations enabled. 990 // 991 // See https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/binary/modules.html#data-count-section 992 // See https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/appendix/changes.html#bulk-memory-and-table-instructions 993 SectionIDDataCount 994 ) 995 996 // SectionIDName returns the canonical name of a module section. 997 // https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#sections%E2%91%A0 998 func SectionIDName(sectionID SectionID) string { 999 switch sectionID { 1000 case SectionIDCustom: 1001 return "custom" 1002 case SectionIDType: 1003 return "type" 1004 case SectionIDImport: 1005 return "import" 1006 case SectionIDFunction: 1007 return "function" 1008 case SectionIDTable: 1009 return "table" 1010 case SectionIDMemory: 1011 return "memory" 1012 case SectionIDGlobal: 1013 return "global" 1014 case SectionIDExport: 1015 return "export" 1016 case SectionIDStart: 1017 return "start" 1018 case SectionIDElement: 1019 return "element" 1020 case SectionIDCode: 1021 return "code" 1022 case SectionIDData: 1023 return "data" 1024 case SectionIDDataCount: 1025 return "data_count" 1026 } 1027 return "unknown" 1028 } 1029 1030 // ValueType is an alias of api.ValueType defined to simplify imports. 1031 type ValueType = api.ValueType 1032 1033 const ( 1034 ValueTypeI32 = api.ValueTypeI32 1035 ValueTypeI64 = api.ValueTypeI64 1036 ValueTypeF32 = api.ValueTypeF32 1037 ValueTypeF64 = api.ValueTypeF64 1038 // TODO: ValueTypeV128 is not exposed in the api pkg yet. 1039 ValueTypeV128 ValueType = 0x7b 1040 // TODO: ValueTypeFuncref is not exposed in the api pkg yet. 1041 ValueTypeFuncref ValueType = 0x70 1042 ValueTypeExternref = api.ValueTypeExternref 1043 ) 1044 1045 // ValueTypeName is an alias of api.ValueTypeName defined to simplify imports. 1046 func ValueTypeName(t ValueType) string { 1047 if t == ValueTypeFuncref { 1048 return "funcref" 1049 } else if t == ValueTypeV128 { 1050 return "v128" 1051 } 1052 return api.ValueTypeName(t) 1053 } 1054 1055 func isReferenceValueType(vt ValueType) bool { 1056 return vt == ValueTypeExternref || vt == ValueTypeFuncref 1057 } 1058 1059 // ExternType is an alias of api.ExternType defined to simplify imports. 1060 type ExternType = api.ExternType 1061 1062 const ( 1063 ExternTypeFunc = api.ExternTypeFunc 1064 ExternTypeFuncName = api.ExternTypeFuncName 1065 ExternTypeTable = api.ExternTypeTable 1066 ExternTypeTableName = api.ExternTypeTableName 1067 ExternTypeMemory = api.ExternTypeMemory 1068 ExternTypeMemoryName = api.ExternTypeMemoryName 1069 ExternTypeGlobal = api.ExternTypeGlobal 1070 ExternTypeGlobalName = api.ExternTypeGlobalName 1071 ) 1072 1073 // ExternTypeName is an alias of api.ExternTypeName defined to simplify imports. 1074 func ExternTypeName(t ValueType) string { 1075 return api.ExternTypeName(t) 1076 }