github.com/bcnmy/go-ethereum@v1.10.27/ethdb/memorydb/memorydb.go (about)

     1  // Copyright 2018 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package memorydb implements the key-value database layer based on memory maps.
    18  package memorydb
    19  
    20  import (
    21  	"errors"
    22  	"sort"
    23  	"strings"
    24  	"sync"
    25  
    26  	"github.com/ethereum/go-ethereum/common"
    27  	"github.com/ethereum/go-ethereum/ethdb"
    28  )
    29  
    30  var (
    31  	// errMemorydbClosed is returned if a memory database was already closed at the
    32  	// invocation of a data access operation.
    33  	errMemorydbClosed = errors.New("database closed")
    34  
    35  	// errMemorydbNotFound is returned if a key is requested that is not found in
    36  	// the provided memory database.
    37  	errMemorydbNotFound = errors.New("not found")
    38  
    39  	// errSnapshotReleased is returned if callers want to retrieve data from a
    40  	// released snapshot.
    41  	errSnapshotReleased = errors.New("snapshot released")
    42  )
    43  
    44  // Database is an ephemeral key-value store. Apart from basic data storage
    45  // functionality it also supports batch writes and iterating over the keyspace in
    46  // binary-alphabetical order.
    47  type Database struct {
    48  	db   map[string][]byte
    49  	lock sync.RWMutex
    50  }
    51  
    52  // New returns a wrapped map with all the required database interface methods
    53  // implemented.
    54  func New() *Database {
    55  	return &Database{
    56  		db: make(map[string][]byte),
    57  	}
    58  }
    59  
    60  // NewWithCap returns a wrapped map pre-allocated to the provided capacity with
    61  // all the required database interface methods implemented.
    62  func NewWithCap(size int) *Database {
    63  	return &Database{
    64  		db: make(map[string][]byte, size),
    65  	}
    66  }
    67  
    68  // Close deallocates the internal map and ensures any consecutive data access op
    69  // fails with an error.
    70  func (db *Database) Close() error {
    71  	db.lock.Lock()
    72  	defer db.lock.Unlock()
    73  
    74  	db.db = nil
    75  	return nil
    76  }
    77  
    78  // Has retrieves if a key is present in the key-value store.
    79  func (db *Database) Has(key []byte) (bool, error) {
    80  	db.lock.RLock()
    81  	defer db.lock.RUnlock()
    82  
    83  	if db.db == nil {
    84  		return false, errMemorydbClosed
    85  	}
    86  	_, ok := db.db[string(key)]
    87  	return ok, nil
    88  }
    89  
    90  // Get retrieves the given key if it's present in the key-value store.
    91  func (db *Database) Get(key []byte) ([]byte, error) {
    92  	db.lock.RLock()
    93  	defer db.lock.RUnlock()
    94  
    95  	if db.db == nil {
    96  		return nil, errMemorydbClosed
    97  	}
    98  	if entry, ok := db.db[string(key)]; ok {
    99  		return common.CopyBytes(entry), nil
   100  	}
   101  	return nil, errMemorydbNotFound
   102  }
   103  
   104  // Put inserts the given value into the key-value store.
   105  func (db *Database) Put(key []byte, value []byte) error {
   106  	db.lock.Lock()
   107  	defer db.lock.Unlock()
   108  
   109  	if db.db == nil {
   110  		return errMemorydbClosed
   111  	}
   112  	db.db[string(key)] = common.CopyBytes(value)
   113  	return nil
   114  }
   115  
   116  // Delete removes the key from the key-value store.
   117  func (db *Database) Delete(key []byte) error {
   118  	db.lock.Lock()
   119  	defer db.lock.Unlock()
   120  
   121  	if db.db == nil {
   122  		return errMemorydbClosed
   123  	}
   124  	delete(db.db, string(key))
   125  	return nil
   126  }
   127  
   128  // NewBatch creates a write-only key-value store that buffers changes to its host
   129  // database until a final write is called.
   130  func (db *Database) NewBatch() ethdb.Batch {
   131  	return &batch{
   132  		db: db,
   133  	}
   134  }
   135  
   136  // NewBatchWithSize creates a write-only database batch with pre-allocated buffer.
   137  func (db *Database) NewBatchWithSize(size int) ethdb.Batch {
   138  	return &batch{
   139  		db: db,
   140  	}
   141  }
   142  
   143  // NewIterator creates a binary-alphabetical iterator over a subset
   144  // of database content with a particular key prefix, starting at a particular
   145  // initial key (or after, if it does not exist).
   146  func (db *Database) NewIterator(prefix []byte, start []byte) ethdb.Iterator {
   147  	db.lock.RLock()
   148  	defer db.lock.RUnlock()
   149  
   150  	var (
   151  		pr     = string(prefix)
   152  		st     = string(append(prefix, start...))
   153  		keys   = make([]string, 0, len(db.db))
   154  		values = make([][]byte, 0, len(db.db))
   155  	)
   156  	// Collect the keys from the memory database corresponding to the given prefix
   157  	// and start
   158  	for key := range db.db {
   159  		if !strings.HasPrefix(key, pr) {
   160  			continue
   161  		}
   162  		if key >= st {
   163  			keys = append(keys, key)
   164  		}
   165  	}
   166  	// Sort the items and retrieve the associated values
   167  	sort.Strings(keys)
   168  	for _, key := range keys {
   169  		values = append(values, db.db[key])
   170  	}
   171  	return &iterator{
   172  		index:  -1,
   173  		keys:   keys,
   174  		values: values,
   175  	}
   176  }
   177  
   178  // NewSnapshot creates a database snapshot based on the current state.
   179  // The created snapshot will not be affected by all following mutations
   180  // happened on the database.
   181  func (db *Database) NewSnapshot() (ethdb.Snapshot, error) {
   182  	return newSnapshot(db), nil
   183  }
   184  
   185  // Stat returns a particular internal stat of the database.
   186  func (db *Database) Stat(property string) (string, error) {
   187  	return "", errors.New("unknown property")
   188  }
   189  
   190  // Compact is not supported on a memory database, but there's no need either as
   191  // a memory database doesn't waste space anyway.
   192  func (db *Database) Compact(start []byte, limit []byte) error {
   193  	return nil
   194  }
   195  
   196  // Len returns the number of entries currently present in the memory database.
   197  //
   198  // Note, this method is only used for testing (i.e. not public in general) and
   199  // does not have explicit checks for closed-ness to allow simpler testing code.
   200  func (db *Database) Len() int {
   201  	db.lock.RLock()
   202  	defer db.lock.RUnlock()
   203  
   204  	return len(db.db)
   205  }
   206  
   207  // keyvalue is a key-value tuple tagged with a deletion field to allow creating
   208  // memory-database write batches.
   209  type keyvalue struct {
   210  	key    []byte
   211  	value  []byte
   212  	delete bool
   213  }
   214  
   215  // batch is a write-only memory batch that commits changes to its host
   216  // database when Write is called. A batch cannot be used concurrently.
   217  type batch struct {
   218  	db     *Database
   219  	writes []keyvalue
   220  	size   int
   221  }
   222  
   223  // Put inserts the given value into the batch for later committing.
   224  func (b *batch) Put(key, value []byte) error {
   225  	b.writes = append(b.writes, keyvalue{common.CopyBytes(key), common.CopyBytes(value), false})
   226  	b.size += len(key) + len(value)
   227  	return nil
   228  }
   229  
   230  // Delete inserts the a key removal into the batch for later committing.
   231  func (b *batch) Delete(key []byte) error {
   232  	b.writes = append(b.writes, keyvalue{common.CopyBytes(key), nil, true})
   233  	b.size += len(key)
   234  	return nil
   235  }
   236  
   237  // ValueSize retrieves the amount of data queued up for writing.
   238  func (b *batch) ValueSize() int {
   239  	return b.size
   240  }
   241  
   242  // Write flushes any accumulated data to the memory database.
   243  func (b *batch) Write() error {
   244  	b.db.lock.Lock()
   245  	defer b.db.lock.Unlock()
   246  
   247  	for _, keyvalue := range b.writes {
   248  		if keyvalue.delete {
   249  			delete(b.db.db, string(keyvalue.key))
   250  			continue
   251  		}
   252  		b.db.db[string(keyvalue.key)] = keyvalue.value
   253  	}
   254  	return nil
   255  }
   256  
   257  // Reset resets the batch for reuse.
   258  func (b *batch) Reset() {
   259  	b.writes = b.writes[:0]
   260  	b.size = 0
   261  }
   262  
   263  // Replay replays the batch contents.
   264  func (b *batch) Replay(w ethdb.KeyValueWriter) error {
   265  	for _, keyvalue := range b.writes {
   266  		if keyvalue.delete {
   267  			if err := w.Delete(keyvalue.key); err != nil {
   268  				return err
   269  			}
   270  			continue
   271  		}
   272  		if err := w.Put(keyvalue.key, keyvalue.value); err != nil {
   273  			return err
   274  		}
   275  	}
   276  	return nil
   277  }
   278  
   279  // iterator can walk over the (potentially partial) keyspace of a memory key
   280  // value store. Internally it is a deep copy of the entire iterated state,
   281  // sorted by keys.
   282  type iterator struct {
   283  	index  int
   284  	keys   []string
   285  	values [][]byte
   286  }
   287  
   288  // Next moves the iterator to the next key/value pair. It returns whether the
   289  // iterator is exhausted.
   290  func (it *iterator) Next() bool {
   291  	// Short circuit if iterator is already exhausted in the forward direction.
   292  	if it.index >= len(it.keys) {
   293  		return false
   294  	}
   295  	it.index += 1
   296  	return it.index < len(it.keys)
   297  }
   298  
   299  // Error returns any accumulated error. Exhausting all the key/value pairs
   300  // is not considered to be an error. A memory iterator cannot encounter errors.
   301  func (it *iterator) Error() error {
   302  	return nil
   303  }
   304  
   305  // Key returns the key of the current key/value pair, or nil if done. The caller
   306  // should not modify the contents of the returned slice, and its contents may
   307  // change on the next call to Next.
   308  func (it *iterator) Key() []byte {
   309  	// Short circuit if iterator is not in a valid position
   310  	if it.index < 0 || it.index >= len(it.keys) {
   311  		return nil
   312  	}
   313  	return []byte(it.keys[it.index])
   314  }
   315  
   316  // Value returns the value of the current key/value pair, or nil if done. The
   317  // caller should not modify the contents of the returned slice, and its contents
   318  // may change on the next call to Next.
   319  func (it *iterator) Value() []byte {
   320  	// Short circuit if iterator is not in a valid position
   321  	if it.index < 0 || it.index >= len(it.keys) {
   322  		return nil
   323  	}
   324  	return it.values[it.index]
   325  }
   326  
   327  // Release releases associated resources. Release should always succeed and can
   328  // be called multiple times without causing error.
   329  func (it *iterator) Release() {
   330  	it.index, it.keys, it.values = -1, nil, nil
   331  }
   332  
   333  // snapshot wraps a batch of key-value entries deep copied from the in-memory
   334  // database for implementing the Snapshot interface.
   335  type snapshot struct {
   336  	db   map[string][]byte
   337  	lock sync.RWMutex
   338  }
   339  
   340  // newSnapshot initializes the snapshot with the given database instance.
   341  func newSnapshot(db *Database) *snapshot {
   342  	db.lock.RLock()
   343  	defer db.lock.RUnlock()
   344  
   345  	copied := make(map[string][]byte)
   346  	for key, val := range db.db {
   347  		copied[key] = common.CopyBytes(val)
   348  	}
   349  	return &snapshot{db: copied}
   350  }
   351  
   352  // Has retrieves if a key is present in the snapshot backing by a key-value
   353  // data store.
   354  func (snap *snapshot) Has(key []byte) (bool, error) {
   355  	snap.lock.RLock()
   356  	defer snap.lock.RUnlock()
   357  
   358  	if snap.db == nil {
   359  		return false, errSnapshotReleased
   360  	}
   361  	_, ok := snap.db[string(key)]
   362  	return ok, nil
   363  }
   364  
   365  // Get retrieves the given key if it's present in the snapshot backing by
   366  // key-value data store.
   367  func (snap *snapshot) Get(key []byte) ([]byte, error) {
   368  	snap.lock.RLock()
   369  	defer snap.lock.RUnlock()
   370  
   371  	if snap.db == nil {
   372  		return nil, errSnapshotReleased
   373  	}
   374  	if entry, ok := snap.db[string(key)]; ok {
   375  		return common.CopyBytes(entry), nil
   376  	}
   377  	return nil, errMemorydbNotFound
   378  }
   379  
   380  // Release releases associated resources. Release should always succeed and can
   381  // be called multiple times without causing error.
   382  func (snap *snapshot) Release() {
   383  	snap.lock.Lock()
   384  	defer snap.lock.Unlock()
   385  
   386  	snap.db = nil
   387  }