github.com/bcnmy/go-ethereum@v1.10.27/trie/trie.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // Package trie implements Merkle Patricia Tries.
    18  package trie
    19  
    20  import (
    21  	"bytes"
    22  	"errors"
    23  	"fmt"
    24  
    25  	"github.com/ethereum/go-ethereum/common"
    26  	"github.com/ethereum/go-ethereum/crypto"
    27  	"github.com/ethereum/go-ethereum/log"
    28  )
    29  
    30  var (
    31  	// emptyRoot is the known root hash of an empty trie.
    32  	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")
    33  
    34  	// emptyState is the known hash of an empty state trie entry.
    35  	emptyState = crypto.Keccak256Hash(nil)
    36  )
    37  
    38  // LeafCallback is a callback type invoked when a trie operation reaches a leaf
    39  // node.
    40  //
    41  // The keys is a path tuple identifying a particular trie node either in a single
    42  // trie (account) or a layered trie (account -> storage). Each key in the tuple
    43  // is in the raw format(32 bytes).
    44  //
    45  // The path is a composite hexary path identifying the trie node. All the key
    46  // bytes are converted to the hexary nibbles and composited with the parent path
    47  // if the trie node is in a layered trie.
    48  //
    49  // It's used by state sync and commit to allow handling external references
    50  // between account and storage tries. And also it's used in the state healing
    51  // for extracting the raw states(leaf nodes) with corresponding paths.
    52  type LeafCallback func(keys [][]byte, path []byte, leaf []byte, parent common.Hash, parentPath []byte) error
    53  
    54  // Trie is a Merkle Patricia Trie. Use New to create a trie that sits on
    55  // top of a database. Whenever trie performs a commit operation, the generated
    56  // nodes will be gathered and returned in a set. Once the trie is committed,
    57  // it's not usable anymore. Callers have to re-create the trie with new root
    58  // based on the updated trie database.
    59  //
    60  // Trie is not safe for concurrent use.
    61  type Trie struct {
    62  	root  node
    63  	owner common.Hash
    64  
    65  	// Keep track of the number leaves which have been inserted since the last
    66  	// hashing operation. This number will not directly map to the number of
    67  	// actually unhashed nodes.
    68  	unhashed int
    69  
    70  	// db is the handler trie can retrieve nodes from. It's
    71  	// only for reading purpose and not available for writing.
    72  	db *Database
    73  
    74  	// tracer is the tool to track the trie changes.
    75  	// It will be reset after each commit operation.
    76  	tracer *tracer
    77  }
    78  
    79  // newFlag returns the cache flag value for a newly created node.
    80  func (t *Trie) newFlag() nodeFlag {
    81  	return nodeFlag{dirty: true}
    82  }
    83  
    84  // Copy returns a copy of Trie.
    85  func (t *Trie) Copy() *Trie {
    86  	return &Trie{
    87  		root:     t.root,
    88  		owner:    t.owner,
    89  		unhashed: t.unhashed,
    90  		db:       t.db,
    91  		tracer:   t.tracer.copy(),
    92  	}
    93  }
    94  
    95  // New creates a trie with an existing root node from db and an assigned
    96  // owner for storage proximity.
    97  //
    98  // If root is the zero hash or the sha3 hash of an empty string, the
    99  // trie is initially empty and does not require a database. Otherwise,
   100  // New will panic if db is nil and returns a MissingNodeError if root does
   101  // not exist in the database. Accessing the trie loads nodes from db on demand.
   102  func New(owner common.Hash, root common.Hash, db *Database) (*Trie, error) {
   103  	trie := &Trie{
   104  		owner: owner,
   105  		db:    db,
   106  		//tracer: newTracer(),
   107  	}
   108  	if root != (common.Hash{}) && root != emptyRoot {
   109  		rootnode, err := trie.resolveHash(root[:], nil)
   110  		if err != nil {
   111  			return nil, err
   112  		}
   113  		trie.root = rootnode
   114  	}
   115  	return trie, nil
   116  }
   117  
   118  // NewEmpty is a shortcut to create empty tree. It's mostly used in tests.
   119  func NewEmpty(db *Database) *Trie {
   120  	tr, _ := New(common.Hash{}, common.Hash{}, db)
   121  	return tr
   122  }
   123  
   124  // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at
   125  // the key after the given start key.
   126  func (t *Trie) NodeIterator(start []byte) NodeIterator {
   127  	return newNodeIterator(t, start)
   128  }
   129  
   130  // Get returns the value for key stored in the trie.
   131  // The value bytes must not be modified by the caller.
   132  func (t *Trie) Get(key []byte) []byte {
   133  	res, err := t.TryGet(key)
   134  	if err != nil {
   135  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   136  	}
   137  	return res
   138  }
   139  
   140  // TryGet returns the value for key stored in the trie.
   141  // The value bytes must not be modified by the caller.
   142  // If a node was not found in the database, a MissingNodeError is returned.
   143  func (t *Trie) TryGet(key []byte) ([]byte, error) {
   144  	value, newroot, didResolve, err := t.tryGet(t.root, keybytesToHex(key), 0)
   145  	if err == nil && didResolve {
   146  		t.root = newroot
   147  	}
   148  	return value, err
   149  }
   150  
   151  func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) {
   152  	switch n := (origNode).(type) {
   153  	case nil:
   154  		return nil, nil, false, nil
   155  	case valueNode:
   156  		return n, n, false, nil
   157  	case *shortNode:
   158  		if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) {
   159  			// key not found in trie
   160  			return nil, n, false, nil
   161  		}
   162  		value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key))
   163  		if err == nil && didResolve {
   164  			n = n.copy()
   165  			n.Val = newnode
   166  		}
   167  		return value, n, didResolve, err
   168  	case *fullNode:
   169  		value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1)
   170  		if err == nil && didResolve {
   171  			n = n.copy()
   172  			n.Children[key[pos]] = newnode
   173  		}
   174  		return value, n, didResolve, err
   175  	case hashNode:
   176  		child, err := t.resolveHash(n, key[:pos])
   177  		if err != nil {
   178  			return nil, n, true, err
   179  		}
   180  		value, newnode, _, err := t.tryGet(child, key, pos)
   181  		return value, newnode, true, err
   182  	default:
   183  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   184  	}
   185  }
   186  
   187  // TryGetNode attempts to retrieve a trie node by compact-encoded path. It is not
   188  // possible to use keybyte-encoding as the path might contain odd nibbles.
   189  func (t *Trie) TryGetNode(path []byte) ([]byte, int, error) {
   190  	item, newroot, resolved, err := t.tryGetNode(t.root, compactToHex(path), 0)
   191  	if err != nil {
   192  		return nil, resolved, err
   193  	}
   194  	if resolved > 0 {
   195  		t.root = newroot
   196  	}
   197  	if item == nil {
   198  		return nil, resolved, nil
   199  	}
   200  	return item, resolved, err
   201  }
   202  
   203  func (t *Trie) tryGetNode(origNode node, path []byte, pos int) (item []byte, newnode node, resolved int, err error) {
   204  	// If non-existent path requested, abort
   205  	if origNode == nil {
   206  		return nil, nil, 0, nil
   207  	}
   208  	// If we reached the requested path, return the current node
   209  	if pos >= len(path) {
   210  		// Although we most probably have the original node expanded, encoding
   211  		// that into consensus form can be nasty (needs to cascade down) and
   212  		// time consuming. Instead, just pull the hash up from disk directly.
   213  		var hash hashNode
   214  		if node, ok := origNode.(hashNode); ok {
   215  			hash = node
   216  		} else {
   217  			hash, _ = origNode.cache()
   218  		}
   219  		if hash == nil {
   220  			return nil, origNode, 0, errors.New("non-consensus node")
   221  		}
   222  		blob, err := t.db.Node(common.BytesToHash(hash))
   223  		return blob, origNode, 1, err
   224  	}
   225  	// Path still needs to be traversed, descend into children
   226  	switch n := (origNode).(type) {
   227  	case valueNode:
   228  		// Path prematurely ended, abort
   229  		return nil, nil, 0, nil
   230  
   231  	case *shortNode:
   232  		if len(path)-pos < len(n.Key) || !bytes.Equal(n.Key, path[pos:pos+len(n.Key)]) {
   233  			// Path branches off from short node
   234  			return nil, n, 0, nil
   235  		}
   236  		item, newnode, resolved, err = t.tryGetNode(n.Val, path, pos+len(n.Key))
   237  		if err == nil && resolved > 0 {
   238  			n = n.copy()
   239  			n.Val = newnode
   240  		}
   241  		return item, n, resolved, err
   242  
   243  	case *fullNode:
   244  		item, newnode, resolved, err = t.tryGetNode(n.Children[path[pos]], path, pos+1)
   245  		if err == nil && resolved > 0 {
   246  			n = n.copy()
   247  			n.Children[path[pos]] = newnode
   248  		}
   249  		return item, n, resolved, err
   250  
   251  	case hashNode:
   252  		child, err := t.resolveHash(n, path[:pos])
   253  		if err != nil {
   254  			return nil, n, 1, err
   255  		}
   256  		item, newnode, resolved, err := t.tryGetNode(child, path, pos)
   257  		return item, newnode, resolved + 1, err
   258  
   259  	default:
   260  		panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode))
   261  	}
   262  }
   263  
   264  // Update associates key with value in the trie. Subsequent calls to
   265  // Get will return value. If value has length zero, any existing value
   266  // is deleted from the trie and calls to Get will return nil.
   267  //
   268  // The value bytes must not be modified by the caller while they are
   269  // stored in the trie.
   270  func (t *Trie) Update(key, value []byte) {
   271  	if err := t.TryUpdate(key, value); err != nil {
   272  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   273  	}
   274  }
   275  
   276  // TryUpdate associates key with value in the trie. Subsequent calls to
   277  // Get will return value. If value has length zero, any existing value
   278  // is deleted from the trie and calls to Get will return nil.
   279  //
   280  // The value bytes must not be modified by the caller while they are
   281  // stored in the trie.
   282  //
   283  // If a node was not found in the database, a MissingNodeError is returned.
   284  func (t *Trie) TryUpdate(key, value []byte) error {
   285  	return t.tryUpdate(key, value)
   286  }
   287  
   288  // tryUpdate expects an RLP-encoded value and performs the core function
   289  // for TryUpdate and TryUpdateAccount.
   290  func (t *Trie) tryUpdate(key, value []byte) error {
   291  	t.unhashed++
   292  	k := keybytesToHex(key)
   293  	if len(value) != 0 {
   294  		_, n, err := t.insert(t.root, nil, k, valueNode(value))
   295  		if err != nil {
   296  			return err
   297  		}
   298  		t.root = n
   299  	} else {
   300  		_, n, err := t.delete(t.root, nil, k)
   301  		if err != nil {
   302  			return err
   303  		}
   304  		t.root = n
   305  	}
   306  	return nil
   307  }
   308  
   309  func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) {
   310  	if len(key) == 0 {
   311  		if v, ok := n.(valueNode); ok {
   312  			return !bytes.Equal(v, value.(valueNode)), value, nil
   313  		}
   314  		return true, value, nil
   315  	}
   316  	switch n := n.(type) {
   317  	case *shortNode:
   318  		matchlen := prefixLen(key, n.Key)
   319  		// If the whole key matches, keep this short node as is
   320  		// and only update the value.
   321  		if matchlen == len(n.Key) {
   322  			dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value)
   323  			if !dirty || err != nil {
   324  				return false, n, err
   325  			}
   326  			return true, &shortNode{n.Key, nn, t.newFlag()}, nil
   327  		}
   328  		// Otherwise branch out at the index where they differ.
   329  		branch := &fullNode{flags: t.newFlag()}
   330  		var err error
   331  		_, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val)
   332  		if err != nil {
   333  			return false, nil, err
   334  		}
   335  		_, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value)
   336  		if err != nil {
   337  			return false, nil, err
   338  		}
   339  		// Replace this shortNode with the branch if it occurs at index 0.
   340  		if matchlen == 0 {
   341  			return true, branch, nil
   342  		}
   343  		// New branch node is created as a child of the original short node.
   344  		// Track the newly inserted node in the tracer. The node identifier
   345  		// passed is the path from the root node.
   346  		t.tracer.onInsert(append(prefix, key[:matchlen]...))
   347  
   348  		// Replace it with a short node leading up to the branch.
   349  		return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil
   350  
   351  	case *fullNode:
   352  		dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value)
   353  		if !dirty || err != nil {
   354  			return false, n, err
   355  		}
   356  		n = n.copy()
   357  		n.flags = t.newFlag()
   358  		n.Children[key[0]] = nn
   359  		return true, n, nil
   360  
   361  	case nil:
   362  		// New short node is created and track it in the tracer. The node identifier
   363  		// passed is the path from the root node. Note the valueNode won't be tracked
   364  		// since it's always embedded in its parent.
   365  		t.tracer.onInsert(prefix)
   366  
   367  		return true, &shortNode{key, value, t.newFlag()}, nil
   368  
   369  	case hashNode:
   370  		// We've hit a part of the trie that isn't loaded yet. Load
   371  		// the node and insert into it. This leaves all child nodes on
   372  		// the path to the value in the trie.
   373  		rn, err := t.resolveHash(n, prefix)
   374  		if err != nil {
   375  			return false, nil, err
   376  		}
   377  		dirty, nn, err := t.insert(rn, prefix, key, value)
   378  		if !dirty || err != nil {
   379  			return false, rn, err
   380  		}
   381  		return true, nn, nil
   382  
   383  	default:
   384  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   385  	}
   386  }
   387  
   388  // Delete removes any existing value for key from the trie.
   389  func (t *Trie) Delete(key []byte) {
   390  	if err := t.TryDelete(key); err != nil {
   391  		log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
   392  	}
   393  }
   394  
   395  // TryDelete removes any existing value for key from the trie.
   396  // If a node was not found in the database, a MissingNodeError is returned.
   397  func (t *Trie) TryDelete(key []byte) error {
   398  	t.unhashed++
   399  	k := keybytesToHex(key)
   400  	_, n, err := t.delete(t.root, nil, k)
   401  	if err != nil {
   402  		return err
   403  	}
   404  	t.root = n
   405  	return nil
   406  }
   407  
   408  // delete returns the new root of the trie with key deleted.
   409  // It reduces the trie to minimal form by simplifying
   410  // nodes on the way up after deleting recursively.
   411  func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) {
   412  	switch n := n.(type) {
   413  	case *shortNode:
   414  		matchlen := prefixLen(key, n.Key)
   415  		if matchlen < len(n.Key) {
   416  			return false, n, nil // don't replace n on mismatch
   417  		}
   418  		if matchlen == len(key) {
   419  			// The matched short node is deleted entirely and track
   420  			// it in the deletion set. The same the valueNode doesn't
   421  			// need to be tracked at all since it's always embedded.
   422  			t.tracer.onDelete(prefix)
   423  
   424  			return true, nil, nil // remove n entirely for whole matches
   425  		}
   426  		// The key is longer than n.Key. Remove the remaining suffix
   427  		// from the subtrie. Child can never be nil here since the
   428  		// subtrie must contain at least two other values with keys
   429  		// longer than n.Key.
   430  		dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):])
   431  		if !dirty || err != nil {
   432  			return false, n, err
   433  		}
   434  		switch child := child.(type) {
   435  		case *shortNode:
   436  			// The child shortNode is merged into its parent, track
   437  			// is deleted as well.
   438  			t.tracer.onDelete(append(prefix, n.Key...))
   439  
   440  			// Deleting from the subtrie reduced it to another
   441  			// short node. Merge the nodes to avoid creating a
   442  			// shortNode{..., shortNode{...}}. Use concat (which
   443  			// always creates a new slice) instead of append to
   444  			// avoid modifying n.Key since it might be shared with
   445  			// other nodes.
   446  			return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil
   447  		default:
   448  			return true, &shortNode{n.Key, child, t.newFlag()}, nil
   449  		}
   450  
   451  	case *fullNode:
   452  		dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:])
   453  		if !dirty || err != nil {
   454  			return false, n, err
   455  		}
   456  		n = n.copy()
   457  		n.flags = t.newFlag()
   458  		n.Children[key[0]] = nn
   459  
   460  		// Because n is a full node, it must've contained at least two children
   461  		// before the delete operation. If the new child value is non-nil, n still
   462  		// has at least two children after the deletion, and cannot be reduced to
   463  		// a short node.
   464  		if nn != nil {
   465  			return true, n, nil
   466  		}
   467  		// Reduction:
   468  		// Check how many non-nil entries are left after deleting and
   469  		// reduce the full node to a short node if only one entry is
   470  		// left. Since n must've contained at least two children
   471  		// before deletion (otherwise it would not be a full node) n
   472  		// can never be reduced to nil.
   473  		//
   474  		// When the loop is done, pos contains the index of the single
   475  		// value that is left in n or -2 if n contains at least two
   476  		// values.
   477  		pos := -1
   478  		for i, cld := range &n.Children {
   479  			if cld != nil {
   480  				if pos == -1 {
   481  					pos = i
   482  				} else {
   483  					pos = -2
   484  					break
   485  				}
   486  			}
   487  		}
   488  		if pos >= 0 {
   489  			if pos != 16 {
   490  				// If the remaining entry is a short node, it replaces
   491  				// n and its key gets the missing nibble tacked to the
   492  				// front. This avoids creating an invalid
   493  				// shortNode{..., shortNode{...}}.  Since the entry
   494  				// might not be loaded yet, resolve it just for this
   495  				// check.
   496  				cnode, err := t.resolve(n.Children[pos], append(prefix, byte(pos)))
   497  				if err != nil {
   498  					return false, nil, err
   499  				}
   500  				if cnode, ok := cnode.(*shortNode); ok {
   501  					// Replace the entire full node with the short node.
   502  					// Mark the original short node as deleted since the
   503  					// value is embedded into the parent now.
   504  					t.tracer.onDelete(append(prefix, byte(pos)))
   505  
   506  					k := append([]byte{byte(pos)}, cnode.Key...)
   507  					return true, &shortNode{k, cnode.Val, t.newFlag()}, nil
   508  				}
   509  			}
   510  			// Otherwise, n is replaced by a one-nibble short node
   511  			// containing the child.
   512  			return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil
   513  		}
   514  		// n still contains at least two values and cannot be reduced.
   515  		return true, n, nil
   516  
   517  	case valueNode:
   518  		return true, nil, nil
   519  
   520  	case nil:
   521  		return false, nil, nil
   522  
   523  	case hashNode:
   524  		// We've hit a part of the trie that isn't loaded yet. Load
   525  		// the node and delete from it. This leaves all child nodes on
   526  		// the path to the value in the trie.
   527  		rn, err := t.resolveHash(n, prefix)
   528  		if err != nil {
   529  			return false, nil, err
   530  		}
   531  		dirty, nn, err := t.delete(rn, prefix, key)
   532  		if !dirty || err != nil {
   533  			return false, rn, err
   534  		}
   535  		return true, nn, nil
   536  
   537  	default:
   538  		panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key))
   539  	}
   540  }
   541  
   542  func concat(s1 []byte, s2 ...byte) []byte {
   543  	r := make([]byte, len(s1)+len(s2))
   544  	copy(r, s1)
   545  	copy(r[len(s1):], s2)
   546  	return r
   547  }
   548  
   549  func (t *Trie) resolve(n node, prefix []byte) (node, error) {
   550  	if n, ok := n.(hashNode); ok {
   551  		return t.resolveHash(n, prefix)
   552  	}
   553  	return n, nil
   554  }
   555  
   556  // resolveHash loads node from the underlying database with the provided
   557  // node hash and path prefix.
   558  func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) {
   559  	hash := common.BytesToHash(n)
   560  	if node := t.db.node(hash); node != nil {
   561  		return node, nil
   562  	}
   563  	return nil, &MissingNodeError{Owner: t.owner, NodeHash: hash, Path: prefix}
   564  }
   565  
   566  // resolveHash loads rlp-encoded node blob from the underlying database
   567  // with the provided node hash and path prefix.
   568  func (t *Trie) resolveBlob(n hashNode, prefix []byte) ([]byte, error) {
   569  	hash := common.BytesToHash(n)
   570  	blob, _ := t.db.Node(hash)
   571  	if len(blob) != 0 {
   572  		return blob, nil
   573  	}
   574  	return nil, &MissingNodeError{Owner: t.owner, NodeHash: hash, Path: prefix}
   575  }
   576  
   577  // Hash returns the root hash of the trie. It does not write to the
   578  // database and can be used even if the trie doesn't have one.
   579  func (t *Trie) Hash() common.Hash {
   580  	hash, cached, _ := t.hashRoot()
   581  	t.root = cached
   582  	return common.BytesToHash(hash.(hashNode))
   583  }
   584  
   585  // Commit collects all dirty nodes in the trie and replace them with the
   586  // corresponding node hash. All collected nodes(including dirty leaves if
   587  // collectLeaf is true) will be encapsulated into a nodeset for return.
   588  // The returned nodeset can be nil if the trie is clean(nothing to commit).
   589  // Once the trie is committed, it's not usable anymore. A new trie must
   590  // be created with new root and updated trie database for following usage
   591  func (t *Trie) Commit(collectLeaf bool) (common.Hash, *NodeSet, error) {
   592  	defer t.tracer.reset()
   593  
   594  	if t.root == nil {
   595  		return emptyRoot, nil, nil
   596  	}
   597  	// Derive the hash for all dirty nodes first. We hold the assumption
   598  	// in the following procedure that all nodes are hashed.
   599  	rootHash := t.Hash()
   600  
   601  	// Do a quick check if we really need to commit. This can happen e.g.
   602  	// if we load a trie for reading storage values, but don't write to it.
   603  	if hashedNode, dirty := t.root.cache(); !dirty {
   604  		// Replace the root node with the origin hash in order to
   605  		// ensure all resolved nodes are dropped after the commit.
   606  		t.root = hashedNode
   607  		return rootHash, nil, nil
   608  	}
   609  	h := newCommitter(t.owner, collectLeaf)
   610  	newRoot, nodes, err := h.Commit(t.root)
   611  	if err != nil {
   612  		return common.Hash{}, nil, err
   613  	}
   614  	t.root = newRoot
   615  	return rootHash, nodes, nil
   616  }
   617  
   618  // hashRoot calculates the root hash of the given trie
   619  func (t *Trie) hashRoot() (node, node, error) {
   620  	if t.root == nil {
   621  		return hashNode(emptyRoot.Bytes()), nil, nil
   622  	}
   623  	// If the number of changes is below 100, we let one thread handle it
   624  	h := newHasher(t.unhashed >= 100)
   625  	defer returnHasherToPool(h)
   626  	hashed, cached := h.hash(t.root, true)
   627  	t.unhashed = 0
   628  	return hashed, cached, nil
   629  }
   630  
   631  // Reset drops the referenced root node and cleans all internal state.
   632  func (t *Trie) Reset() {
   633  	t.root = nil
   634  	t.owner = common.Hash{}
   635  	t.unhashed = 0
   636  	//t.db = nil
   637  	t.tracer.reset()
   638  }