github.com/bcskill/bcschain/v3@v3.4.9-beta2/core/vm/contracts.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package vm
    18  
    19  import (
    20  	"crypto/sha256"
    21  	"errors"
    22  	"math/big"
    23  
    24  	"github.com/bcskill/bcschain/v3/common"
    25  	"github.com/bcskill/bcschain/v3/common/math"
    26  	"github.com/bcskill/bcschain/v3/crypto"
    27  	"github.com/bcskill/bcschain/v3/crypto/bn256"
    28  	"github.com/bcskill/bcschain/v3/params"
    29  	"golang.org/x/crypto/ripemd160"
    30  )
    31  
    32  // PrecompiledContract is the basic interface for native Go contracts. The implementation
    33  // requires a deterministic gas count based on the input size of the Run method of the
    34  // contract.
    35  type PrecompiledContract interface {
    36  	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
    37  	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
    38  }
    39  
    40  // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
    41  // contracts used in the Frontier and Homestead releases.
    42  var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
    43  	common.BytesToAddress([]byte{1}): &ecrecover{},
    44  	common.BytesToAddress([]byte{2}): &sha256hash{},
    45  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    46  	common.BytesToAddress([]byte{4}): &dataCopy{},
    47  }
    48  
    49  // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
    50  // contracts used in the Byzantium release.
    51  var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
    52  	common.BytesToAddress([]byte{1}): &ecrecover{},
    53  	common.BytesToAddress([]byte{2}): &sha256hash{},
    54  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    55  	common.BytesToAddress([]byte{4}): &dataCopy{},
    56  	common.BytesToAddress([]byte{5}): &bigModExp{},
    57  	common.BytesToAddress([]byte{6}): &bn256Add{},
    58  	common.BytesToAddress([]byte{7}): &bn256ScalarMul{},
    59  	common.BytesToAddress([]byte{8}): &bn256Pairing{},
    60  }
    61  
    62  // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
    63  func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) {
    64  	gas := p.RequiredGas(input)
    65  	if contract.UseGas(gas) {
    66  		return p.Run(input)
    67  	}
    68  	return nil, ErrOutOfGas
    69  }
    70  
    71  // ECRECOVER implemented as a native contract.
    72  type ecrecover struct{}
    73  
    74  func (c *ecrecover) RequiredGas(input []byte) uint64 {
    75  	return params.EcrecoverGas
    76  }
    77  
    78  func (c *ecrecover) Run(input []byte) ([]byte, error) {
    79  	const ecRecoverInputLength = 128
    80  
    81  	input = common.RightPadBytes(input, ecRecoverInputLength)
    82  	// "input" is (hash, v, r, s), each 32 bytes
    83  	// but for ecrecover we want (r, s, v)
    84  
    85  	r := new(big.Int).SetBytes(input[64:96])
    86  	s := new(big.Int).SetBytes(input[96:128])
    87  	v := input[63] - 27
    88  
    89  	// tighter sig s values input homestead only apply to tx sigs
    90  	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
    91  		return nil, nil
    92  	}
    93  	// v needs to be at the end for libsecp256k1
    94  	pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v))
    95  	// make sure the public key is a valid one
    96  	if err != nil {
    97  		return nil, nil
    98  	}
    99  
   100  	// the first byte of pubkey is bitcoin heritage
   101  	h := crypto.Keccak256Hash(pubKey[1:])
   102  	for i := 0; i < 12; i++ {
   103  		h[i] = 0
   104  	}
   105  	return h[:], nil
   106  }
   107  
   108  // SHA256 implemented as a native contract.
   109  type sha256hash struct{}
   110  
   111  // RequiredGas returns the gas required to execute the pre-compiled contract.
   112  //
   113  // This method does not require any overflow checking as the input size gas costs
   114  // required for anything significant is so high it's impossible to pay for.
   115  func (c *sha256hash) RequiredGas(input []byte) uint64 {
   116  	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
   117  }
   118  func (c *sha256hash) Run(input []byte) ([]byte, error) {
   119  	h := sha256.Sum256(input)
   120  	return h[:], nil
   121  }
   122  
   123  // RIPEMD160 implemented as a native contract.
   124  type ripemd160hash struct{}
   125  
   126  // RequiredGas returns the gas required to execute the pre-compiled contract.
   127  //
   128  // This method does not require any overflow checking as the input size gas costs
   129  // required for anything significant is so high it's impossible to pay for.
   130  func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
   131  	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
   132  }
   133  func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
   134  	ripemd := ripemd160.New()
   135  	ripemd.Write(input)
   136  	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
   137  }
   138  
   139  // data copy implemented as a native contract.
   140  type dataCopy struct{}
   141  
   142  // RequiredGas returns the gas required to execute the pre-compiled contract.
   143  //
   144  // This method does not require any overflow checking as the input size gas costs
   145  // required for anything significant is so high it's impossible to pay for.
   146  func (c *dataCopy) RequiredGas(input []byte) uint64 {
   147  	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
   148  }
   149  func (c *dataCopy) Run(in []byte) ([]byte, error) {
   150  	return in, nil
   151  }
   152  
   153  // bigModExp implements a native big integer exponential modular operation.
   154  type bigModExp struct{}
   155  
   156  var (
   157  	big1      = big.NewInt(1)
   158  	big4      = big.NewInt(4)
   159  	big8      = big.NewInt(8)
   160  	big16     = big.NewInt(16)
   161  	big32     = big.NewInt(32)
   162  	big64     = big.NewInt(64)
   163  	big96     = big.NewInt(96)
   164  	big480    = big.NewInt(480)
   165  	big1024   = big.NewInt(1024)
   166  	big3072   = big.NewInt(3072)
   167  	big199680 = big.NewInt(199680)
   168  )
   169  
   170  // RequiredGas returns the gas required to execute the pre-compiled contract.
   171  func (c *bigModExp) RequiredGas(input []byte) uint64 {
   172  	var (
   173  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
   174  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
   175  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
   176  	)
   177  	if len(input) > 96 {
   178  		input = input[96:]
   179  	} else {
   180  		input = input[:0]
   181  	}
   182  	// Retrieve the head 32 bytes of exp for the adjusted exponent length
   183  	var expHead *big.Int
   184  	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
   185  		expHead = new(big.Int)
   186  	} else {
   187  		if expLen.Cmp(big32) > 0 {
   188  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
   189  		} else {
   190  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
   191  		}
   192  	}
   193  	// Calculate the adjusted exponent length
   194  	var msb int
   195  	if bitlen := expHead.BitLen(); bitlen > 0 {
   196  		msb = bitlen - 1
   197  	}
   198  	adjExpLen := new(big.Int)
   199  	if expLen.Cmp(big32) > 0 {
   200  		adjExpLen.Sub(expLen, big32)
   201  		adjExpLen.Mul(big8, adjExpLen)
   202  	}
   203  	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
   204  
   205  	// Calculate the gas cost of the operation
   206  	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
   207  	switch {
   208  	case gas.Cmp(big64) <= 0:
   209  		gas.Mul(gas, gas)
   210  	case gas.Cmp(big1024) <= 0:
   211  		gas = new(big.Int).Add(
   212  			new(big.Int).Div(new(big.Int).Mul(gas, gas), big4),
   213  			new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072),
   214  		)
   215  	default:
   216  		gas = new(big.Int).Add(
   217  			new(big.Int).Div(new(big.Int).Mul(gas, gas), big16),
   218  			new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680),
   219  		)
   220  	}
   221  	gas.Mul(gas, math.BigMax(adjExpLen, big1))
   222  	gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv))
   223  
   224  	if gas.BitLen() > 64 {
   225  		return math.MaxUint64
   226  	}
   227  	return gas.Uint64()
   228  }
   229  
   230  func (c *bigModExp) Run(input []byte) ([]byte, error) {
   231  	var (
   232  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
   233  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
   234  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
   235  	)
   236  	if len(input) > 96 {
   237  		input = input[96:]
   238  	} else {
   239  		input = input[:0]
   240  	}
   241  	// Handle a special case when both the base and mod length is zero
   242  	if baseLen == 0 && modLen == 0 {
   243  		return []byte{}, nil
   244  	}
   245  	// Retrieve the operands and execute the exponentiation
   246  	var (
   247  		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
   248  		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
   249  		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
   250  	)
   251  	if mod.BitLen() == 0 {
   252  		// Modulo 0 is undefined, return zero
   253  		return common.LeftPadBytes([]byte{}, int(modLen)), nil
   254  	}
   255  	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
   256  }
   257  
   258  // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
   259  // returning it, or an error if the point is invalid.
   260  func newCurvePoint(blob []byte) (*bn256.G1, error) {
   261  	p := new(bn256.G1)
   262  	if _, err := p.Unmarshal(blob); err != nil {
   263  		return nil, err
   264  	}
   265  	return p, nil
   266  }
   267  
   268  // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
   269  // returning it, or an error if the point is invalid.
   270  func newTwistPoint(blob []byte) (*bn256.G2, error) {
   271  	p := new(bn256.G2)
   272  	if _, err := p.Unmarshal(blob); err != nil {
   273  		return nil, err
   274  	}
   275  	return p, nil
   276  }
   277  
   278  // bn256Add implements a native elliptic curve point addition.
   279  type bn256Add struct{}
   280  
   281  // RequiredGas returns the gas required to execute the pre-compiled contract.
   282  func (c *bn256Add) RequiredGas(input []byte) uint64 {
   283  	return params.Bn256AddGas
   284  }
   285  
   286  func (c *bn256Add) Run(input []byte) ([]byte, error) {
   287  	x, err := newCurvePoint(getData(input, 0, 64))
   288  	if err != nil {
   289  		return nil, err
   290  	}
   291  	y, err := newCurvePoint(getData(input, 64, 64))
   292  	if err != nil {
   293  		return nil, err
   294  	}
   295  	res := new(bn256.G1)
   296  	res.Add(x, y)
   297  	return res.Marshal(), nil
   298  }
   299  
   300  // bn256ScalarMul implements a native elliptic curve scalar multiplication.
   301  type bn256ScalarMul struct{}
   302  
   303  // RequiredGas returns the gas required to execute the pre-compiled contract.
   304  func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 {
   305  	return params.Bn256ScalarMulGas
   306  }
   307  
   308  func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) {
   309  	p, err := newCurvePoint(getData(input, 0, 64))
   310  	if err != nil {
   311  		return nil, err
   312  	}
   313  	res := new(bn256.G1)
   314  	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
   315  	return res.Marshal(), nil
   316  }
   317  
   318  var (
   319  	// true32Byte is returned if the bn256 pairing check succeeds.
   320  	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   321  
   322  	// false32Byte is returned if the bn256 pairing check fails.
   323  	false32Byte = make([]byte, 32)
   324  
   325  	// errBadPairingInput is returned if the bn256 pairing input is invalid.
   326  	errBadPairingInput = errors.New("bad elliptic curve pairing size")
   327  )
   328  
   329  // bn256Pairing implements a pairing pre-compile for the bn256 curve
   330  type bn256Pairing struct{}
   331  
   332  // RequiredGas returns the gas required to execute the pre-compiled contract.
   333  func (c *bn256Pairing) RequiredGas(input []byte) uint64 {
   334  	return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas
   335  }
   336  
   337  func (c *bn256Pairing) Run(input []byte) ([]byte, error) {
   338  	// Handle some corner cases cheaply
   339  	if len(input)%192 > 0 {
   340  		return nil, errBadPairingInput
   341  	}
   342  	// Convert the input into a set of coordinates
   343  	var (
   344  		cs []*bn256.G1
   345  		ts []*bn256.G2
   346  	)
   347  	for i := 0; i < len(input); i += 192 {
   348  		c, err := newCurvePoint(input[i : i+64])
   349  		if err != nil {
   350  			return nil, err
   351  		}
   352  		t, err := newTwistPoint(input[i+64 : i+192])
   353  		if err != nil {
   354  			return nil, err
   355  		}
   356  		cs = append(cs, c)
   357  		ts = append(ts, t)
   358  	}
   359  	// Execute the pairing checks and return the results
   360  	if bn256.PairingCheck(cs, ts) {
   361  		return true32Byte, nil
   362  	}
   363  	return false32Byte, nil
   364  }