github.com/bcskill/bcschain/v3@v3.4.9-beta2/crypto/ecies/ecies.go (about) 1 // Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is> 2 // Copyright (c) 2012 The Go Authors. All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30 package ecies 31 32 import ( 33 "crypto/cipher" 34 "crypto/ecdsa" 35 "crypto/elliptic" 36 "crypto/hmac" 37 "crypto/subtle" 38 "encoding/binary" 39 "fmt" 40 "hash" 41 "io" 42 "math/big" 43 ) 44 45 var ( 46 ErrImport = fmt.Errorf("ecies: failed to import key") 47 ErrInvalidCurve = fmt.Errorf("ecies: invalid elliptic curve") 48 ErrInvalidPublicKey = fmt.Errorf("ecies: invalid public key") 49 ErrSharedKeyIsPointAtInfinity = fmt.Errorf("ecies: shared key is point at infinity") 50 ErrSharedKeyTooBig = fmt.Errorf("ecies: shared key params are too big") 51 ) 52 53 // PublicKey is a representation of an elliptic curve public key. 54 type PublicKey struct { 55 X *big.Int 56 Y *big.Int 57 elliptic.Curve 58 Params *ECIESParams 59 } 60 61 // Export an ECIES public key as an ECDSA public key. 62 func (pub *PublicKey) ExportECDSA() *ecdsa.PublicKey { 63 return &ecdsa.PublicKey{Curve: pub.Curve, X: pub.X, Y: pub.Y} 64 } 65 66 // Import an ECDSA public key as an ECIES public key. 67 func ImportECDSAPublic(pub *ecdsa.PublicKey) *PublicKey { 68 return &PublicKey{ 69 X: pub.X, 70 Y: pub.Y, 71 Curve: pub.Curve, 72 Params: ParamsFromCurve(pub.Curve), 73 } 74 } 75 76 // PrivateKey is a representation of an elliptic curve private key. 77 type PrivateKey struct { 78 PublicKey 79 D *big.Int 80 } 81 82 // Export an ECIES private key as an ECDSA private key. 83 func (prv *PrivateKey) ExportECDSA() *ecdsa.PrivateKey { 84 pub := &prv.PublicKey 85 pubECDSA := pub.ExportECDSA() 86 return &ecdsa.PrivateKey{PublicKey: *pubECDSA, D: prv.D} 87 } 88 89 // Import an ECDSA private key as an ECIES private key. 90 func ImportECDSA(prv *ecdsa.PrivateKey) *PrivateKey { 91 pub := ImportECDSAPublic(&prv.PublicKey) 92 return &PrivateKey{*pub, prv.D} 93 } 94 95 // Generate an elliptic curve public / private keypair. If params is nil, 96 // the recommended default parameters for the key will be chosen. 97 func GenerateKey(rand io.Reader, curve elliptic.Curve, params *ECIESParams) (prv *PrivateKey, err error) { 98 pb, x, y, err := elliptic.GenerateKey(curve, rand) 99 if err != nil { 100 return 101 } 102 prv = new(PrivateKey) 103 prv.PublicKey.X = x 104 prv.PublicKey.Y = y 105 prv.PublicKey.Curve = curve 106 prv.D = new(big.Int).SetBytes(pb) 107 if params == nil { 108 params = ParamsFromCurve(curve) 109 } 110 prv.PublicKey.Params = params 111 return 112 } 113 114 // MaxSharedKeyLength returns the maximum length of the shared key the 115 // public key can produce. 116 func MaxSharedKeyLength(pub *PublicKey) int { 117 return (pub.Curve.Params().BitSize + 7) / 8 118 } 119 120 // ECDH key agreement method used to establish secret keys for encryption. 121 func (prv *PrivateKey) GenerateShared(pub *PublicKey, skLen, macLen int) (sk []byte, err error) { 122 if prv.PublicKey.Curve != pub.Curve { 123 return nil, ErrInvalidCurve 124 } 125 if skLen+macLen > MaxSharedKeyLength(pub) { 126 return nil, ErrSharedKeyTooBig 127 } 128 129 x, _ := pub.Curve.ScalarMult(pub.X, pub.Y, prv.D.Bytes()) 130 if x == nil { 131 return nil, ErrSharedKeyIsPointAtInfinity 132 } 133 134 sk = make([]byte, skLen+macLen) 135 skBytes := x.Bytes() 136 copy(sk[len(sk)-len(skBytes):], skBytes) 137 return sk, nil 138 } 139 140 var ( 141 ErrSharedTooLong = fmt.Errorf("ecies: shared secret is too long") 142 ErrInvalidMessage = fmt.Errorf("ecies: invalid message") 143 ) 144 145 // NIST SP 800-56 Concatenation Key Derivation Function (see section 5.8.1). 146 func concatKDF(hash hash.Hash, z, s1 []byte, kdLen int) []byte { 147 counterBytes := make([]byte, 4) 148 k := make([]byte, 0, roundup(kdLen, hash.Size())) 149 for counter := uint32(1); len(k) < kdLen; counter++ { 150 binary.BigEndian.PutUint32(counterBytes, counter) 151 hash.Reset() 152 hash.Write(counterBytes) 153 hash.Write(z) 154 hash.Write(s1) 155 k = hash.Sum(k) 156 } 157 return k[:kdLen] 158 } 159 160 // roundup rounds size up to the next multiple of blocksize. 161 func roundup(size, blocksize int) int { 162 return size + blocksize - (size % blocksize) 163 } 164 165 // deriveKeys creates the encryption and MAC keys using concatKDF. 166 func deriveKeys(hash hash.Hash, z, s1 []byte, keyLen int) (Ke, Km []byte) { 167 K := concatKDF(hash, z, s1, 2*keyLen) 168 Ke = K[:keyLen] 169 Km = K[keyLen:] 170 hash.Reset() 171 hash.Write(Km) 172 Km = hash.Sum(Km[:0]) 173 return Ke, Km 174 } 175 176 // messageTag computes the MAC of a message (called the tag) as per 177 // SEC 1, 3.5. 178 func messageTag(hash func() hash.Hash, km, msg, shared []byte) []byte { 179 mac := hmac.New(hash, km) 180 mac.Write(msg) 181 mac.Write(shared) 182 tag := mac.Sum(nil) 183 return tag 184 } 185 186 // Generate an initialisation vector for CTR mode. 187 func generateIV(params *ECIESParams, rand io.Reader) (iv []byte, err error) { 188 iv = make([]byte, params.BlockSize) 189 _, err = io.ReadFull(rand, iv) 190 return 191 } 192 193 // symEncrypt carries out CTR encryption using the block cipher specified in the 194 func symEncrypt(rand io.Reader, params *ECIESParams, key, m []byte) (ct []byte, err error) { 195 c, err := params.Cipher(key) 196 if err != nil { 197 return 198 } 199 200 iv, err := generateIV(params, rand) 201 if err != nil { 202 return 203 } 204 ctr := cipher.NewCTR(c, iv) 205 206 ct = make([]byte, len(m)+params.BlockSize) 207 copy(ct, iv) 208 ctr.XORKeyStream(ct[params.BlockSize:], m) 209 return 210 } 211 212 // symDecrypt carries out CTR decryption using the block cipher specified in 213 // the parameters 214 func symDecrypt(params *ECIESParams, key, ct []byte) (m []byte, err error) { 215 c, err := params.Cipher(key) 216 if err != nil { 217 return 218 } 219 220 ctr := cipher.NewCTR(c, ct[:params.BlockSize]) 221 222 m = make([]byte, len(ct)-params.BlockSize) 223 ctr.XORKeyStream(m, ct[params.BlockSize:]) 224 return 225 } 226 227 // Encrypt encrypts a message using ECIES as specified in SEC 1, 5.1. 228 // 229 // s1 and s2 contain shared information that is not part of the resulting 230 // ciphertext. s1 is fed into key derivation, s2 is fed into the MAC. If the 231 // shared information parameters aren't being used, they should be nil. 232 func Encrypt(rand io.Reader, pub *PublicKey, m, s1, s2 []byte) (ct []byte, err error) { 233 params, err := pubkeyParams(pub) 234 if err != nil { 235 return nil, err 236 } 237 238 R, err := GenerateKey(rand, pub.Curve, params) 239 if err != nil { 240 return nil, err 241 } 242 243 z, err := R.GenerateShared(pub, params.KeyLen, params.KeyLen) 244 if err != nil { 245 return nil, err 246 } 247 248 hash := params.Hash() 249 Ke, Km := deriveKeys(hash, z, s1, params.KeyLen) 250 251 em, err := symEncrypt(rand, params, Ke, m) 252 if err != nil || len(em) <= params.BlockSize { 253 return nil, err 254 } 255 256 d := messageTag(params.Hash, Km, em, s2) 257 258 Rb := elliptic.Marshal(pub.Curve, R.PublicKey.X, R.PublicKey.Y) 259 ct = make([]byte, len(Rb)+len(em)+len(d)) 260 copy(ct, Rb) 261 copy(ct[len(Rb):], em) 262 copy(ct[len(Rb)+len(em):], d) 263 return ct, nil 264 } 265 266 // Decrypt decrypts an ECIES ciphertext. 267 func (prv *PrivateKey) Decrypt(c, s1, s2 []byte) (m []byte, err error) { 268 if len(c) == 0 { 269 return nil, ErrInvalidMessage 270 } 271 params, err := pubkeyParams(&prv.PublicKey) 272 if err != nil { 273 return nil, err 274 } 275 276 hash := params.Hash() 277 278 var ( 279 rLen int 280 hLen int = hash.Size() 281 mStart int 282 mEnd int 283 ) 284 285 switch c[0] { 286 case 2, 3, 4: 287 rLen = (prv.PublicKey.Curve.Params().BitSize + 7) / 4 288 if len(c) < (rLen + hLen + 1) { 289 return nil, ErrInvalidMessage 290 } 291 default: 292 return nil, ErrInvalidPublicKey 293 } 294 295 mStart = rLen 296 mEnd = len(c) - hLen 297 298 R := new(PublicKey) 299 R.Curve = prv.PublicKey.Curve 300 R.X, R.Y = elliptic.Unmarshal(R.Curve, c[:rLen]) 301 if R.X == nil { 302 return nil, ErrInvalidPublicKey 303 } 304 305 z, err := prv.GenerateShared(R, params.KeyLen, params.KeyLen) 306 if err != nil { 307 return nil, err 308 } 309 Ke, Km := deriveKeys(hash, z, s1, params.KeyLen) 310 311 d := messageTag(params.Hash, Km, c[mStart:mEnd], s2) 312 if subtle.ConstantTimeCompare(c[mEnd:], d) != 1 { 313 return nil, ErrInvalidMessage 314 } 315 316 return symDecrypt(params, Ke, c[mStart:mEnd]) 317 }