github.com/bcskill/bcschain/v3@v3.4.9-beta2/crypto/secp256k1/curve.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Copyright 2011 ThePiachu. All rights reserved. 3 // Copyright 2015 Jeffrey Wilcke, Felix Lange, Gustav Simonsson. All rights reserved. 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are 7 // met: 8 // 9 // * Redistributions of source code must retain the above copyright 10 // notice, this list of conditions and the following disclaimer. 11 // * Redistributions in binary form must reproduce the above 12 // copyright notice, this list of conditions and the following disclaimer 13 // in the documentation and/or other materials provided with the 14 // distribution. 15 // * Neither the name of Google Inc. nor the names of its 16 // contributors may be used to endorse or promote products derived from 17 // this software without specific prior written permission. 18 // * The name of ThePiachu may not be used to endorse or promote products 19 // derived from this software without specific prior written permission. 20 // 21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 33 package secp256k1 34 35 import ( 36 "crypto/elliptic" 37 "math/big" 38 "unsafe" 39 ) 40 41 /* 42 #include "libsecp256k1/include/secp256k1.h" 43 extern int secp256k1_ext_scalar_mul(const secp256k1_context* ctx, const unsigned char *point, const unsigned char *scalar); 44 */ 45 import "C" 46 47 const ( 48 // number of bits in a big.Word 49 wordBits = 32 << (uint64(^big.Word(0)) >> 63) 50 // number of bytes in a big.Word 51 wordBytes = wordBits / 8 52 ) 53 54 // readBits encodes the absolute value of bigint as big-endian bytes. Callers 55 // must ensure that buf has enough space. If buf is too short the result will 56 // be incomplete. 57 func readBits(bigint *big.Int, buf []byte) { 58 i := len(buf) 59 for _, d := range bigint.Bits() { 60 for j := 0; j < wordBytes && i > 0; j++ { 61 i-- 62 buf[i] = byte(d) 63 d >>= 8 64 } 65 } 66 } 67 68 // This code is from https://github.com/ThePiachu/GoBit and implements 69 // several Koblitz elliptic curves over prime fields. 70 // 71 // The curve methods, internally, on Jacobian coordinates. For a given 72 // (x, y) position on the curve, the Jacobian coordinates are (x1, y1, 73 // z1) where x = x1/z1² and y = y1/z1³. The greatest speedups come 74 // when the whole calculation can be performed within the transform 75 // (as in ScalarMult and ScalarBaseMult). But even for Add and Double, 76 // it's faster to apply and reverse the transform than to operate in 77 // affine coordinates. 78 79 // A BitCurve represents a Koblitz Curve with a=0. 80 // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html 81 type BitCurve struct { 82 P *big.Int // the order of the underlying field 83 N *big.Int // the order of the base point 84 B *big.Int // the constant of the BitCurve equation 85 Gx, Gy *big.Int // (x,y) of the base point 86 BitSize int // the size of the underlying field 87 } 88 89 func (BitCurve *BitCurve) Params() *elliptic.CurveParams { 90 return &elliptic.CurveParams{ 91 P: BitCurve.P, 92 N: BitCurve.N, 93 B: BitCurve.B, 94 Gx: BitCurve.Gx, 95 Gy: BitCurve.Gy, 96 BitSize: BitCurve.BitSize, 97 } 98 } 99 100 // IsOnCurve returns true if the given (x,y) lies on the BitCurve. 101 func (BitCurve *BitCurve) IsOnCurve(x, y *big.Int) bool { 102 // y² = x³ + b 103 y2 := new(big.Int).Mul(y, y) //y² 104 y2.Mod(y2, BitCurve.P) //y²%P 105 106 x3 := new(big.Int).Mul(x, x) //x² 107 x3.Mul(x3, x) //x³ 108 109 x3.Add(x3, BitCurve.B) //x³+B 110 x3.Mod(x3, BitCurve.P) //(x³+B)%P 111 112 return x3.Cmp(y2) == 0 113 } 114 115 //TODO: double check if the function is okay 116 // affineFromJacobian reverses the Jacobian transform. See the comment at the 117 // top of the file. 118 func (BitCurve *BitCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { 119 zinv := new(big.Int).ModInverse(z, BitCurve.P) 120 zinvsq := new(big.Int).Mul(zinv, zinv) 121 122 xOut = new(big.Int).Mul(x, zinvsq) 123 xOut.Mod(xOut, BitCurve.P) 124 zinvsq.Mul(zinvsq, zinv) 125 yOut = new(big.Int).Mul(y, zinvsq) 126 yOut.Mod(yOut, BitCurve.P) 127 return 128 } 129 130 // Add returns the sum of (x1,y1) and (x2,y2) 131 func (BitCurve *BitCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { 132 z := new(big.Int).SetInt64(1) 133 return BitCurve.affineFromJacobian(BitCurve.addJacobian(x1, y1, z, x2, y2, z)) 134 } 135 136 // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and 137 // (x2, y2, z2) and returns their sum, also in Jacobian form. 138 func (BitCurve *BitCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { 139 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl 140 z1z1 := new(big.Int).Mul(z1, z1) 141 z1z1.Mod(z1z1, BitCurve.P) 142 z2z2 := new(big.Int).Mul(z2, z2) 143 z2z2.Mod(z2z2, BitCurve.P) 144 145 u1 := new(big.Int).Mul(x1, z2z2) 146 u1.Mod(u1, BitCurve.P) 147 u2 := new(big.Int).Mul(x2, z1z1) 148 u2.Mod(u2, BitCurve.P) 149 h := new(big.Int).Sub(u2, u1) 150 if h.Sign() == -1 { 151 h.Add(h, BitCurve.P) 152 } 153 i := new(big.Int).Lsh(h, 1) 154 i.Mul(i, i) 155 j := new(big.Int).Mul(h, i) 156 157 s1 := new(big.Int).Mul(y1, z2) 158 s1.Mul(s1, z2z2) 159 s1.Mod(s1, BitCurve.P) 160 s2 := new(big.Int).Mul(y2, z1) 161 s2.Mul(s2, z1z1) 162 s2.Mod(s2, BitCurve.P) 163 r := new(big.Int).Sub(s2, s1) 164 if r.Sign() == -1 { 165 r.Add(r, BitCurve.P) 166 } 167 r.Lsh(r, 1) 168 v := new(big.Int).Mul(u1, i) 169 170 x3 := new(big.Int).Set(r) 171 x3.Mul(x3, x3) 172 x3.Sub(x3, j) 173 x3.Sub(x3, v) 174 x3.Sub(x3, v) 175 x3.Mod(x3, BitCurve.P) 176 177 y3 := new(big.Int).Set(r) 178 v.Sub(v, x3) 179 y3.Mul(y3, v) 180 s1.Mul(s1, j) 181 s1.Lsh(s1, 1) 182 y3.Sub(y3, s1) 183 y3.Mod(y3, BitCurve.P) 184 185 z3 := new(big.Int).Add(z1, z2) 186 z3.Mul(z3, z3) 187 z3.Sub(z3, z1z1) 188 if z3.Sign() == -1 { 189 z3.Add(z3, BitCurve.P) 190 } 191 z3.Sub(z3, z2z2) 192 if z3.Sign() == -1 { 193 z3.Add(z3, BitCurve.P) 194 } 195 z3.Mul(z3, h) 196 z3.Mod(z3, BitCurve.P) 197 198 return x3, y3, z3 199 } 200 201 // Double returns 2*(x,y) 202 func (BitCurve *BitCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { 203 z1 := new(big.Int).SetInt64(1) 204 return BitCurve.affineFromJacobian(BitCurve.doubleJacobian(x1, y1, z1)) 205 } 206 207 // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and 208 // returns its double, also in Jacobian form. 209 func (BitCurve *BitCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { 210 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l 211 212 a := new(big.Int).Mul(x, x) //X1² 213 b := new(big.Int).Mul(y, y) //Y1² 214 c := new(big.Int).Mul(b, b) //B² 215 216 d := new(big.Int).Add(x, b) //X1+B 217 d.Mul(d, d) //(X1+B)² 218 d.Sub(d, a) //(X1+B)²-A 219 d.Sub(d, c) //(X1+B)²-A-C 220 d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) 221 222 e := new(big.Int).Mul(big.NewInt(3), a) //3*A 223 f := new(big.Int).Mul(e, e) //E² 224 225 x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D 226 x3.Sub(f, x3) //F-2*D 227 x3.Mod(x3, BitCurve.P) 228 229 y3 := new(big.Int).Sub(d, x3) //D-X3 230 y3.Mul(e, y3) //E*(D-X3) 231 y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C 232 y3.Mod(y3, BitCurve.P) 233 234 z3 := new(big.Int).Mul(y, z) //Y1*Z1 235 z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 236 z3.Mod(z3, BitCurve.P) 237 238 return x3, y3, z3 239 } 240 241 func (BitCurve *BitCurve) ScalarMult(Bx, By *big.Int, scalar []byte) (*big.Int, *big.Int) { 242 // Ensure scalar is exactly 32 bytes. We pad always, even if 243 // scalar is 32 bytes long, to avoid a timing side channel. 244 if len(scalar) > 32 { 245 panic("can't handle scalars > 256 bits") 246 } 247 // NOTE: potential timing issue 248 padded := make([]byte, 32) 249 copy(padded[32-len(scalar):], scalar) 250 scalar = padded 251 252 // Do the multiplication in C, updating point. 253 point := make([]byte, 64) 254 readBits(Bx, point[:32]) 255 readBits(By, point[32:]) 256 257 pointPtr := (*C.uchar)(unsafe.Pointer(&point[0])) 258 scalarPtr := (*C.uchar)(unsafe.Pointer(&scalar[0])) 259 res := C.secp256k1_ext_scalar_mul(context, pointPtr, scalarPtr) 260 261 // Unpack the result and clear temporaries. 262 x := new(big.Int).SetBytes(point[:32]) 263 y := new(big.Int).SetBytes(point[32:]) 264 for i := range point { 265 point[i] = 0 266 } 267 for i := range padded { 268 scalar[i] = 0 269 } 270 if res != 1 { 271 return nil, nil 272 } 273 return x, y 274 } 275 276 // ScalarBaseMult returns k*G, where G is the base point of the group and k is 277 // an integer in big-endian form. 278 func (BitCurve *BitCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { 279 return BitCurve.ScalarMult(BitCurve.Gx, BitCurve.Gy, k) 280 } 281 282 // Marshal converts a point into the form specified in section 4.3.6 of ANSI 283 // X9.62. 284 func (BitCurve *BitCurve) Marshal(x, y *big.Int) []byte { 285 byteLen := (BitCurve.BitSize + 7) >> 3 286 ret := make([]byte, 1+2*byteLen) 287 ret[0] = 4 // uncompressed point flag 288 readBits(x, ret[1:1+byteLen]) 289 readBits(y, ret[1+byteLen:]) 290 return ret 291 } 292 293 // Unmarshal converts a point, serialised by Marshal, into an x, y pair. On 294 // error, x = nil. 295 func (BitCurve *BitCurve) Unmarshal(data []byte) (x, y *big.Int) { 296 byteLen := (BitCurve.BitSize + 7) >> 3 297 if len(data) != 1+2*byteLen { 298 return 299 } 300 if data[0] != 4 { // uncompressed form 301 return 302 } 303 x = new(big.Int).SetBytes(data[1 : 1+byteLen]) 304 y = new(big.Int).SetBytes(data[1+byteLen:]) 305 return 306 } 307 308 var theCurve = new(BitCurve) 309 310 func init() { 311 // See SEC 2 section 2.7.1 312 // curve parameters taken from: 313 // http://www.secg.org/sec2-v2.pdf 314 theCurve.P, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 0) 315 theCurve.N, _ = new(big.Int).SetString("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 0) 316 theCurve.B, _ = new(big.Int).SetString("0x0000000000000000000000000000000000000000000000000000000000000007", 0) 317 theCurve.Gx, _ = new(big.Int).SetString("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 0) 318 theCurve.Gy, _ = new(big.Int).SetString("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 0) 319 theCurve.BitSize = 256 320 } 321 322 // S256 returns a BitCurve which implements secp256k1. 323 func S256() *BitCurve { 324 return theCurve 325 }