github.com/benorgera/go-ethereum@v1.10.18-0.20220401011646-b3f57b1a73ba/accounts/abi/argument.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package abi 18 19 import ( 20 "encoding/json" 21 "fmt" 22 "reflect" 23 "strings" 24 ) 25 26 // Argument holds the name of the argument and the corresponding type. 27 // Types are used when packing and testing arguments. 28 type Argument struct { 29 Name string 30 Type Type 31 Indexed bool // indexed is only used by events 32 } 33 34 type Arguments []Argument 35 36 type ArgumentMarshaling struct { 37 Name string 38 Type string 39 InternalType string 40 Components []ArgumentMarshaling 41 Indexed bool 42 } 43 44 // UnmarshalJSON implements json.Unmarshaler interface. 45 func (argument *Argument) UnmarshalJSON(data []byte) error { 46 var arg ArgumentMarshaling 47 err := json.Unmarshal(data, &arg) 48 if err != nil { 49 return fmt.Errorf("argument json err: %v", err) 50 } 51 52 argument.Type, err = NewType(arg.Type, arg.InternalType, arg.Components) 53 if err != nil { 54 return err 55 } 56 argument.Name = arg.Name 57 argument.Indexed = arg.Indexed 58 59 return nil 60 } 61 62 // NonIndexed returns the arguments with indexed arguments filtered out. 63 func (arguments Arguments) NonIndexed() Arguments { 64 var ret []Argument 65 for _, arg := range arguments { 66 if !arg.Indexed { 67 ret = append(ret, arg) 68 } 69 } 70 return ret 71 } 72 73 // isTuple returns true for non-atomic constructs, like (uint,uint) or uint[]. 74 func (arguments Arguments) isTuple() bool { 75 return len(arguments) > 1 76 } 77 78 // Unpack performs the operation hexdata -> Go format. 79 func (arguments Arguments) Unpack(data []byte) ([]interface{}, error) { 80 if len(data) == 0 { 81 if len(arguments) != 0 { 82 return nil, fmt.Errorf("abi: attempting to unmarshall an empty string while arguments are expected") 83 } 84 return make([]interface{}, 0), nil 85 } 86 return arguments.UnpackValues(data) 87 } 88 89 // UnpackIntoMap performs the operation hexdata -> mapping of argument name to argument value. 90 func (arguments Arguments) UnpackIntoMap(v map[string]interface{}, data []byte) error { 91 // Make sure map is not nil 92 if v == nil { 93 return fmt.Errorf("abi: cannot unpack into a nil map") 94 } 95 if len(data) == 0 { 96 if len(arguments) != 0 { 97 return fmt.Errorf("abi: attempting to unmarshall an empty string while arguments are expected") 98 } 99 return nil // Nothing to unmarshal, return 100 } 101 marshalledValues, err := arguments.UnpackValues(data) 102 if err != nil { 103 return err 104 } 105 for i, arg := range arguments.NonIndexed() { 106 v[arg.Name] = marshalledValues[i] 107 } 108 return nil 109 } 110 111 // Copy performs the operation go format -> provided struct. 112 func (arguments Arguments) Copy(v interface{}, values []interface{}) error { 113 // make sure the passed value is arguments pointer 114 if reflect.Ptr != reflect.ValueOf(v).Kind() { 115 return fmt.Errorf("abi: Unpack(non-pointer %T)", v) 116 } 117 if len(values) == 0 { 118 if len(arguments) != 0 { 119 return fmt.Errorf("abi: attempting to copy no values while %d arguments are expected", len(arguments)) 120 } 121 return nil // Nothing to copy, return 122 } 123 if arguments.isTuple() { 124 return arguments.copyTuple(v, values) 125 } 126 return arguments.copyAtomic(v, values[0]) 127 } 128 129 // unpackAtomic unpacks ( hexdata -> go ) a single value 130 func (arguments Arguments) copyAtomic(v interface{}, marshalledValues interface{}) error { 131 dst := reflect.ValueOf(v).Elem() 132 src := reflect.ValueOf(marshalledValues) 133 134 if dst.Kind() == reflect.Struct { 135 return set(dst.Field(0), src) 136 } 137 return set(dst, src) 138 } 139 140 // copyTuple copies a batch of values from marshalledValues to v. 141 func (arguments Arguments) copyTuple(v interface{}, marshalledValues []interface{}) error { 142 value := reflect.ValueOf(v).Elem() 143 nonIndexedArgs := arguments.NonIndexed() 144 145 switch value.Kind() { 146 case reflect.Struct: 147 argNames := make([]string, len(nonIndexedArgs)) 148 for i, arg := range nonIndexedArgs { 149 argNames[i] = arg.Name 150 } 151 var err error 152 abi2struct, err := mapArgNamesToStructFields(argNames, value) 153 if err != nil { 154 return err 155 } 156 for i, arg := range nonIndexedArgs { 157 field := value.FieldByName(abi2struct[arg.Name]) 158 if !field.IsValid() { 159 return fmt.Errorf("abi: field %s can't be found in the given value", arg.Name) 160 } 161 if err := set(field, reflect.ValueOf(marshalledValues[i])); err != nil { 162 return err 163 } 164 } 165 case reflect.Slice, reflect.Array: 166 if value.Len() < len(marshalledValues) { 167 return fmt.Errorf("abi: insufficient number of arguments for unpack, want %d, got %d", len(arguments), value.Len()) 168 } 169 for i := range nonIndexedArgs { 170 if err := set(value.Index(i), reflect.ValueOf(marshalledValues[i])); err != nil { 171 return err 172 } 173 } 174 default: 175 return fmt.Errorf("abi:[2] cannot unmarshal tuple in to %v", value.Type()) 176 } 177 return nil 178 } 179 180 // UnpackValues can be used to unpack ABI-encoded hexdata according to the ABI-specification, 181 // without supplying a struct to unpack into. Instead, this method returns a list containing the 182 // values. An atomic argument will be a list with one element. 183 func (arguments Arguments) UnpackValues(data []byte) ([]interface{}, error) { 184 nonIndexedArgs := arguments.NonIndexed() 185 retval := make([]interface{}, 0, len(nonIndexedArgs)) 186 virtualArgs := 0 187 for index, arg := range nonIndexedArgs { 188 marshalledValue, err := toGoType((index+virtualArgs)*32, arg.Type, data) 189 if arg.Type.T == ArrayTy && !isDynamicType(arg.Type) { 190 // If we have a static array, like [3]uint256, these are coded as 191 // just like uint256,uint256,uint256. 192 // This means that we need to add two 'virtual' arguments when 193 // we count the index from now on. 194 // 195 // Array values nested multiple levels deep are also encoded inline: 196 // [2][3]uint256: uint256,uint256,uint256,uint256,uint256,uint256 197 // 198 // Calculate the full array size to get the correct offset for the next argument. 199 // Decrement it by 1, as the normal index increment is still applied. 200 virtualArgs += getTypeSize(arg.Type)/32 - 1 201 } else if arg.Type.T == TupleTy && !isDynamicType(arg.Type) { 202 // If we have a static tuple, like (uint256, bool, uint256), these are 203 // coded as just like uint256,bool,uint256 204 virtualArgs += getTypeSize(arg.Type)/32 - 1 205 } 206 if err != nil { 207 return nil, err 208 } 209 retval = append(retval, marshalledValue) 210 } 211 return retval, nil 212 } 213 214 // PackValues performs the operation Go format -> Hexdata. 215 // It is the semantic opposite of UnpackValues. 216 func (arguments Arguments) PackValues(args []interface{}) ([]byte, error) { 217 return arguments.Pack(args...) 218 } 219 220 // Pack performs the operation Go format -> Hexdata. 221 func (arguments Arguments) Pack(args ...interface{}) ([]byte, error) { 222 // Make sure arguments match up and pack them 223 abiArgs := arguments 224 if len(args) != len(abiArgs) { 225 return nil, fmt.Errorf("argument count mismatch: got %d for %d", len(args), len(abiArgs)) 226 } 227 // variable input is the output appended at the end of packed 228 // output. This is used for strings and bytes types input. 229 var variableInput []byte 230 231 // input offset is the bytes offset for packed output 232 inputOffset := 0 233 for _, abiArg := range abiArgs { 234 inputOffset += getTypeSize(abiArg.Type) 235 } 236 var ret []byte 237 for i, a := range args { 238 input := abiArgs[i] 239 // pack the input 240 packed, err := input.Type.pack(reflect.ValueOf(a)) 241 if err != nil { 242 return nil, err 243 } 244 // check for dynamic types 245 if isDynamicType(input.Type) { 246 // set the offset 247 ret = append(ret, packNum(reflect.ValueOf(inputOffset))...) 248 // calculate next offset 249 inputOffset += len(packed) 250 // append to variable input 251 variableInput = append(variableInput, packed...) 252 } else { 253 // append the packed value to the input 254 ret = append(ret, packed...) 255 } 256 } 257 // append the variable input at the end of the packed input 258 ret = append(ret, variableInput...) 259 260 return ret, nil 261 } 262 263 // ToCamelCase converts an under-score string to a camel-case string 264 func ToCamelCase(input string) string { 265 parts := strings.Split(input, "_") 266 for i, s := range parts { 267 if len(s) > 0 { 268 parts[i] = strings.ToUpper(s[:1]) + s[1:] 269 } 270 } 271 return strings.Join(parts, "") 272 }