github.com/beyonderyue/gochain@v2.2.26+incompatible/accounts/usbwallet/ledger.go (about)

     1  // Copyright 2017 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  // This file contains the implementation for interacting with the Ledger hardware
    18  // wallets. The wire protocol spec can be found in the Ledger Blue GitHub repo:
    19  // https://raw.githubusercontent.com/LedgerHQ/blue-app-eth/master/doc/ethapp.asc
    20  
    21  package usbwallet
    22  
    23  import (
    24  	"context"
    25  	"encoding/binary"
    26  	"encoding/hex"
    27  	"errors"
    28  	"fmt"
    29  	"io"
    30  	"math/big"
    31  
    32  	"github.com/gochain-io/gochain/accounts"
    33  	"github.com/gochain-io/gochain/common"
    34  	"github.com/gochain-io/gochain/common/hexutil"
    35  	"github.com/gochain-io/gochain/core/types"
    36  	"github.com/gochain-io/gochain/log"
    37  	"github.com/gochain-io/gochain/rlp"
    38  )
    39  
    40  // ledgerOpcode is an enumeration encoding the supported Ledger opcodes.
    41  type ledgerOpcode byte
    42  
    43  // ledgerParam1 is an enumeration encoding the supported Ledger parameters for
    44  // specific opcodes. The same parameter values may be reused between opcodes.
    45  type ledgerParam1 byte
    46  
    47  // ledgerParam2 is an enumeration encoding the supported Ledger parameters for
    48  // specific opcodes. The same parameter values may be reused between opcodes.
    49  type ledgerParam2 byte
    50  
    51  const (
    52  	ledgerOpRetrieveAddress  ledgerOpcode = 0x02 // Returns the public key and Ethereum address for a given BIP 32 path
    53  	ledgerOpSignTransaction  ledgerOpcode = 0x04 // Signs an Ethereum transaction after having the user validate the parameters
    54  	ledgerOpGetConfiguration ledgerOpcode = 0x06 // Returns specific wallet application configuration
    55  
    56  	ledgerP1DirectlyFetchAddress    ledgerParam1 = 0x00 // Return address directly from the wallet
    57  	ledgerP1ConfirmFetchAddress     ledgerParam1 = 0x01 // Require a user confirmation before returning the address
    58  	ledgerP1InitTransactionData     ledgerParam1 = 0x00 // First transaction data block for signing
    59  	ledgerP1ContTransactionData     ledgerParam1 = 0x80 // Subsequent transaction data block for signing
    60  	ledgerP2DiscardAddressChainCode ledgerParam2 = 0x00 // Do not return the chain code along with the address
    61  	ledgerP2ReturnAddressChainCode  ledgerParam2 = 0x01 // Require a user confirmation before returning the address
    62  )
    63  
    64  // errLedgerReplyInvalidHeader is the error message returned by a Ledger data exchange
    65  // if the device replies with a mismatching header. This usually means the device
    66  // is in browser mode.
    67  var errLedgerReplyInvalidHeader = errors.New("ledger: invalid reply header")
    68  
    69  // errLedgerInvalidVersionReply is the error message returned by a Ledger version retrieval
    70  // when a response does arrive, but it does not contain the expected data.
    71  var errLedgerInvalidVersionReply = errors.New("ledger: invalid version reply")
    72  
    73  // ledgerDriver implements the communication with a Ledger hardware wallet.
    74  type ledgerDriver struct {
    75  	device  io.ReadWriter // USB device connection to communicate through
    76  	version [3]byte       // Current version of the Ledger firmware (zero if app is offline)
    77  	browser bool          // Flag whether the Ledger is in browser mode (reply channel mismatch)
    78  	failure error         // Any failure that would make the device unusable
    79  	log     log.Logger    // Contextual logger to tag the ledger with its id
    80  }
    81  
    82  // newLedgerDriver creates a new instance of a Ledger USB protocol driver.
    83  func newLedgerDriver(logger log.Logger) driver {
    84  	return &ledgerDriver{
    85  		log: logger,
    86  	}
    87  }
    88  
    89  // Status implements usbwallet.driver, returning various states the Ledger can
    90  // currently be in.
    91  func (w *ledgerDriver) Status() (string, error) {
    92  	if w.failure != nil {
    93  		return fmt.Sprintf("Failed: %v", w.failure), w.failure
    94  	}
    95  	if w.browser {
    96  		return "Ethereum app in browser mode", w.failure
    97  	}
    98  	if w.offline() {
    99  		return "Ethereum app offline", w.failure
   100  	}
   101  	return fmt.Sprintf("Ethereum app v%d.%d.%d online", w.version[0], w.version[1], w.version[2]), w.failure
   102  }
   103  
   104  // offline returns whether the wallet and the Ethereum app is offline or not.
   105  //
   106  // The method assumes that the state lock is held!
   107  func (w *ledgerDriver) offline() bool {
   108  	return w.version == [3]byte{0, 0, 0}
   109  }
   110  
   111  // Open implements usbwallet.driver, attempting to initialize the connection to the
   112  // Ledger hardware wallet. The Ledger does not require a user passphrase, so that
   113  // parameter is silently discarded.
   114  func (w *ledgerDriver) Open(device io.ReadWriter, passphrase string) error {
   115  	w.device, w.failure = device, nil
   116  
   117  	_, err := w.ledgerDerive(accounts.DefaultBaseDerivationPath)
   118  	if err != nil {
   119  		// Ethereum app is not running or in browser mode, nothing more to do, return
   120  		if err == errLedgerReplyInvalidHeader {
   121  			w.browser = true
   122  		}
   123  		return nil
   124  	}
   125  	// Try to resolve the Ethereum app's version, will fail prior to v1.0.2
   126  	if w.version, err = w.ledgerVersion(); err != nil {
   127  		w.version = [3]byte{1, 0, 0} // Assume worst case, can't verify if v1.0.0 or v1.0.1
   128  	}
   129  	return nil
   130  }
   131  
   132  // Close implements usbwallet.driver, cleaning up and metadata maintained within
   133  // the Ledger driver.
   134  func (w *ledgerDriver) Close() error {
   135  	w.browser, w.version = false, [3]byte{}
   136  	return nil
   137  }
   138  
   139  // Heartbeat implements usbwallet.driver, performing a sanity check against the
   140  // Ledger to see if it's still online.
   141  func (w *ledgerDriver) Heartbeat() error {
   142  	if _, err := w.ledgerVersion(); err != nil && err != errLedgerInvalidVersionReply {
   143  		w.failure = err
   144  		return err
   145  	}
   146  	return nil
   147  }
   148  
   149  // Derive implements usbwallet.driver, sending a derivation request to the Ledger
   150  // and returning the Ethereum address located on that derivation path.
   151  func (w *ledgerDriver) Derive(path accounts.DerivationPath) (common.Address, error) {
   152  	return w.ledgerDerive(path)
   153  }
   154  
   155  // SignTx implements usbwallet.driver, sending the transaction to the Ledger and
   156  // waiting for the user to confirm or deny the transaction.
   157  //
   158  // Note, if the version of the Ethereum application running on the Ledger wallet is
   159  // too old to sign EIP-155 transactions, but such is requested nonetheless, an error
   160  // will be returned opposed to silently signing in Homestead mode.
   161  func (w *ledgerDriver) SignTx(ctx context.Context, path accounts.DerivationPath, tx *types.Transaction, chainID *big.Int) (common.Address, *types.Transaction, error) {
   162  	// If the Ethereum app doesn't run, abort
   163  	if w.offline() {
   164  		return common.Address{}, nil, accounts.ErrWalletClosed
   165  	}
   166  	// Ensure the wallet is capable of signing the given transaction
   167  	if chainID != nil && w.version[0] <= 1 && w.version[1] <= 0 && w.version[2] <= 2 {
   168  		return common.Address{}, nil, fmt.Errorf("Ledger v%d.%d.%d doesn't support signing this transaction, please update to v1.0.3 at least", w.version[0], w.version[1], w.version[2])
   169  	}
   170  	// All infos gathered and metadata checks out, request signing
   171  	return w.ledgerSign(ctx, path, tx, chainID)
   172  }
   173  
   174  // ledgerVersion retrieves the current version of the Ethereum wallet app running
   175  // on the Ledger wallet.
   176  //
   177  // The version retrieval protocol is defined as follows:
   178  //
   179  //   CLA | INS | P1 | P2 | Lc | Le
   180  //   ----+-----+----+----+----+---
   181  //    E0 | 06  | 00 | 00 | 00 | 04
   182  //
   183  // With no input data, and the output data being:
   184  //
   185  //   Description                                        | Length
   186  //   ---------------------------------------------------+--------
   187  //   Flags 01: arbitrary data signature enabled by user | 1 byte
   188  //   Application major version                          | 1 byte
   189  //   Application minor version                          | 1 byte
   190  //   Application patch version                          | 1 byte
   191  func (w *ledgerDriver) ledgerVersion() ([3]byte, error) {
   192  	// Send the request and wait for the response
   193  	reply, err := w.ledgerExchange(ledgerOpGetConfiguration, 0, 0, nil)
   194  	if err != nil {
   195  		return [3]byte{}, err
   196  	}
   197  	if len(reply) != 4 {
   198  		return [3]byte{}, errLedgerInvalidVersionReply
   199  	}
   200  	// Cache the version for future reference
   201  	var version [3]byte
   202  	copy(version[:], reply[1:])
   203  	return version, nil
   204  }
   205  
   206  // ledgerDerive retrieves the currently active Ethereum address from a Ledger
   207  // wallet at the specified derivation path.
   208  //
   209  // The address derivation protocol is defined as follows:
   210  //
   211  //   CLA | INS | P1 | P2 | Lc  | Le
   212  //   ----+-----+----+----+-----+---
   213  //    E0 | 02  | 00 return address
   214  //               01 display address and confirm before returning
   215  //                  | 00: do not return the chain code
   216  //                  | 01: return the chain code
   217  //                       | var | 00
   218  //
   219  // Where the input data is:
   220  //
   221  //   Description                                      | Length
   222  //   -------------------------------------------------+--------
   223  //   Number of BIP 32 derivations to perform (max 10) | 1 byte
   224  //   First derivation index (big endian)              | 4 bytes
   225  //   ...                                              | 4 bytes
   226  //   Last derivation index (big endian)               | 4 bytes
   227  //
   228  // And the output data is:
   229  //
   230  //   Description             | Length
   231  //   ------------------------+-------------------
   232  //   Public Key length       | 1 byte
   233  //   Uncompressed Public Key | arbitrary
   234  //   Ethereum address length | 1 byte
   235  //   Ethereum address        | 40 bytes hex ascii
   236  //   Chain code if requested | 32 bytes
   237  func (w *ledgerDriver) ledgerDerive(derivationPath []uint32) (common.Address, error) {
   238  	// Flatten the derivation path into the Ledger request
   239  	path := make([]byte, 1+4*len(derivationPath))
   240  	path[0] = byte(len(derivationPath))
   241  	for i, component := range derivationPath {
   242  		binary.BigEndian.PutUint32(path[1+4*i:], component)
   243  	}
   244  	// Send the request and wait for the response
   245  	reply, err := w.ledgerExchange(ledgerOpRetrieveAddress, ledgerP1DirectlyFetchAddress, ledgerP2DiscardAddressChainCode, path)
   246  	if err != nil {
   247  		return common.Address{}, err
   248  	}
   249  	// Discard the public key, we don't need that for now
   250  	if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
   251  		return common.Address{}, errors.New("reply lacks public key entry")
   252  	}
   253  	reply = reply[1+int(reply[0]):]
   254  
   255  	// Extract the Ethereum hex address string
   256  	if len(reply) < 1 || len(reply) < 1+int(reply[0]) {
   257  		return common.Address{}, errors.New("reply lacks address entry")
   258  	}
   259  	hexstr := reply[1 : 1+int(reply[0])]
   260  
   261  	// Decode the hex sting into an Ethereum address and return
   262  	var address common.Address
   263  	hex.Decode(address[:], hexstr)
   264  	return address, nil
   265  }
   266  
   267  // ledgerSign sends the transaction to the Ledger wallet, and waits for the user
   268  // to confirm or deny the transaction.
   269  //
   270  // The transaction signing protocol is defined as follows:
   271  //
   272  //   CLA | INS | P1 | P2 | Lc  | Le
   273  //   ----+-----+----+----+-----+---
   274  //    E0 | 04  | 00: first transaction data block
   275  //               80: subsequent transaction data block
   276  //                  | 00 | variable | variable
   277  //
   278  // Where the input for the first transaction block (first 255 bytes) is:
   279  //
   280  //   Description                                      | Length
   281  //   -------------------------------------------------+----------
   282  //   Number of BIP 32 derivations to perform (max 10) | 1 byte
   283  //   First derivation index (big endian)              | 4 bytes
   284  //   ...                                              | 4 bytes
   285  //   Last derivation index (big endian)               | 4 bytes
   286  //   RLP transaction chunk                            | arbitrary
   287  //
   288  // And the input for subsequent transaction blocks (first 255 bytes) are:
   289  //
   290  //   Description           | Length
   291  //   ----------------------+----------
   292  //   RLP transaction chunk | arbitrary
   293  //
   294  // And the output data is:
   295  //
   296  //   Description | Length
   297  //   ------------+---------
   298  //   signature V | 1 byte
   299  //   signature R | 32 bytes
   300  //   signature S | 32 bytes
   301  func (w *ledgerDriver) ledgerSign(ctx context.Context, derivationPath []uint32, tx *types.Transaction, chainID *big.Int) (common.Address, *types.Transaction, error) {
   302  	// Flatten the derivation path into the Ledger request
   303  	path := make([]byte, 1+4*len(derivationPath))
   304  	path[0] = byte(len(derivationPath))
   305  	for i, component := range derivationPath {
   306  		binary.BigEndian.PutUint32(path[1+4*i:], component)
   307  	}
   308  	// Create the transaction RLP based on whether legacy or EIP155 signing was requeste
   309  	var (
   310  		txrlp []byte
   311  		err   error
   312  	)
   313  	if chainID == nil {
   314  		if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data()}); err != nil {
   315  			return common.Address{}, nil, err
   316  		}
   317  	} else {
   318  		if txrlp, err = rlp.EncodeToBytes([]interface{}{tx.Nonce(), tx.GasPrice(), tx.Gas(), tx.To(), tx.Value(), tx.Data(), chainID, big.NewInt(0), big.NewInt(0)}); err != nil {
   319  			return common.Address{}, nil, err
   320  		}
   321  	}
   322  	payload := append(path, txrlp...)
   323  
   324  	// Send the request and wait for the response
   325  	var (
   326  		op    = ledgerP1InitTransactionData
   327  		reply []byte
   328  	)
   329  	for len(payload) > 0 {
   330  		// Calculate the size of the next data chunk
   331  		chunk := 255
   332  		if chunk > len(payload) {
   333  			chunk = len(payload)
   334  		}
   335  		// Send the chunk over, ensuring it's processed correctly
   336  		reply, err = w.ledgerExchange(ledgerOpSignTransaction, op, 0, payload[:chunk])
   337  		if err != nil {
   338  			return common.Address{}, nil, err
   339  		}
   340  		// Shift the payload and ensure subsequent chunks are marked as such
   341  		payload = payload[chunk:]
   342  		op = ledgerP1ContTransactionData
   343  	}
   344  	// Extract the Ethereum signature and do a sanity validation
   345  	if len(reply) != 65 {
   346  		return common.Address{}, nil, errors.New("reply lacks signature")
   347  	}
   348  	signature := append(reply[1:], reply[0])
   349  
   350  	// Create the correct signer and signature transform based on the chain ID
   351  	var signer types.Signer
   352  	if chainID == nil {
   353  		signer = new(types.HomesteadSigner)
   354  	} else {
   355  		signer = types.NewEIP155Signer(chainID)
   356  		signature[64] = signature[64] - byte(chainID.Uint64()*2+35)
   357  	}
   358  	signed, err := tx.WithSignature(signer, signature)
   359  	if err != nil {
   360  		return common.Address{}, nil, err
   361  	}
   362  	sender, err := types.Sender(signer, signed)
   363  	if err != nil {
   364  		return common.Address{}, nil, err
   365  	}
   366  	return sender, signed, nil
   367  }
   368  
   369  // ledgerExchange performs a data exchange with the Ledger wallet, sending it a
   370  // message and retrieving the response.
   371  //
   372  // The common transport header is defined as follows:
   373  //
   374  //  Description                           | Length
   375  //  --------------------------------------+----------
   376  //  Communication channel ID (big endian) | 2 bytes
   377  //  Command tag                           | 1 byte
   378  //  Packet sequence index (big endian)    | 2 bytes
   379  //  Payload                               | arbitrary
   380  //
   381  // The Communication channel ID allows commands multiplexing over the same
   382  // physical link. It is not used for the time being, and should be set to 0101
   383  // to avoid compatibility issues with implementations ignoring a leading 00 byte.
   384  //
   385  // The Command tag describes the message content. Use TAG_APDU (0x05) for standard
   386  // APDU payloads, or TAG_PING (0x02) for a simple link test.
   387  //
   388  // The Packet sequence index describes the current sequence for fragmented payloads.
   389  // The first fragment index is 0x00.
   390  //
   391  // APDU Command payloads are encoded as follows:
   392  //
   393  //  Description              | Length
   394  //  -----------------------------------
   395  //  APDU length (big endian) | 2 bytes
   396  //  APDU CLA                 | 1 byte
   397  //  APDU INS                 | 1 byte
   398  //  APDU P1                  | 1 byte
   399  //  APDU P2                  | 1 byte
   400  //  APDU length              | 1 byte
   401  //  Optional APDU data       | arbitrary
   402  func (w *ledgerDriver) ledgerExchange(opcode ledgerOpcode, p1 ledgerParam1, p2 ledgerParam2, data []byte) ([]byte, error) {
   403  	// Construct the message payload, possibly split into multiple chunks
   404  	apdu := make([]byte, 2, 7+len(data))
   405  
   406  	binary.BigEndian.PutUint16(apdu, uint16(5+len(data)))
   407  	apdu = append(apdu, []byte{0xe0, byte(opcode), byte(p1), byte(p2), byte(len(data))}...)
   408  	apdu = append(apdu, data...)
   409  
   410  	// Stream all the chunks to the device
   411  	header := []byte{0x01, 0x01, 0x05, 0x00, 0x00} // Channel ID and command tag appended
   412  	chunk := make([]byte, 64)
   413  	space := len(chunk) - len(header)
   414  
   415  	for i := 0; len(apdu) > 0; i++ {
   416  		// Construct the new message to stream
   417  		chunk = append(chunk[:0], header...)
   418  		binary.BigEndian.PutUint16(chunk[3:], uint16(i))
   419  
   420  		if len(apdu) > space {
   421  			chunk = append(chunk, apdu[:space]...)
   422  			apdu = apdu[space:]
   423  		} else {
   424  			chunk = append(chunk, apdu...)
   425  			apdu = nil
   426  		}
   427  		// Send over to the device
   428  		w.log.Trace("Data chunk sent to the Ledger", "chunk", hexutil.Bytes(chunk))
   429  		if _, err := w.device.Write(chunk); err != nil {
   430  			return nil, err
   431  		}
   432  	}
   433  	// Stream the reply back from the wallet in 64 byte chunks
   434  	var reply []byte
   435  	chunk = chunk[:64] // Yeah, we surely have enough space
   436  	for {
   437  		// Read the next chunk from the Ledger wallet
   438  		if _, err := io.ReadFull(w.device, chunk); err != nil {
   439  			return nil, err
   440  		}
   441  		w.log.Trace("Data chunk received from the Ledger", "chunk", hexutil.Bytes(chunk))
   442  
   443  		// Make sure the transport header matches
   444  		if chunk[0] != 0x01 || chunk[1] != 0x01 || chunk[2] != 0x05 {
   445  			return nil, errLedgerReplyInvalidHeader
   446  		}
   447  		// If it's the first chunk, retrieve the total message length
   448  		var payload []byte
   449  
   450  		if chunk[3] == 0x00 && chunk[4] == 0x00 {
   451  			reply = make([]byte, 0, int(binary.BigEndian.Uint16(chunk[5:7])))
   452  			payload = chunk[7:]
   453  		} else {
   454  			payload = chunk[5:]
   455  		}
   456  		// Append to the reply and stop when filled up
   457  		if left := cap(reply) - len(reply); left > len(payload) {
   458  			reply = append(reply, payload...)
   459  		} else {
   460  			reply = append(reply, payload[:left]...)
   461  			break
   462  		}
   463  	}
   464  	return reply[:len(reply)-2], nil
   465  }