github.com/bgentry/go@v0.0.0-20150121062915-6cf5a733d54d/src/crypto/tls/common.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package tls
     6  
     7  import (
     8  	"container/list"
     9  	"crypto"
    10  	"crypto/rand"
    11  	"crypto/x509"
    12  	"fmt"
    13  	"io"
    14  	"math/big"
    15  	"strings"
    16  	"sync"
    17  	"time"
    18  )
    19  
    20  const (
    21  	VersionSSL30 = 0x0300
    22  	VersionTLS10 = 0x0301
    23  	VersionTLS11 = 0x0302
    24  	VersionTLS12 = 0x0303
    25  )
    26  
    27  const (
    28  	maxPlaintext    = 16384        // maximum plaintext payload length
    29  	maxCiphertext   = 16384 + 2048 // maximum ciphertext payload length
    30  	recordHeaderLen = 5            // record header length
    31  	maxHandshake    = 65536        // maximum handshake we support (protocol max is 16 MB)
    32  
    33  	minVersion = VersionTLS10
    34  	maxVersion = VersionTLS12
    35  )
    36  
    37  // TLS record types.
    38  type recordType uint8
    39  
    40  const (
    41  	recordTypeChangeCipherSpec recordType = 20
    42  	recordTypeAlert            recordType = 21
    43  	recordTypeHandshake        recordType = 22
    44  	recordTypeApplicationData  recordType = 23
    45  )
    46  
    47  // TLS handshake message types.
    48  const (
    49  	typeClientHello        uint8 = 1
    50  	typeServerHello        uint8 = 2
    51  	typeNewSessionTicket   uint8 = 4
    52  	typeCertificate        uint8 = 11
    53  	typeServerKeyExchange  uint8 = 12
    54  	typeCertificateRequest uint8 = 13
    55  	typeServerHelloDone    uint8 = 14
    56  	typeCertificateVerify  uint8 = 15
    57  	typeClientKeyExchange  uint8 = 16
    58  	typeFinished           uint8 = 20
    59  	typeCertificateStatus  uint8 = 22
    60  	typeNextProtocol       uint8 = 67 // Not IANA assigned
    61  )
    62  
    63  // TLS compression types.
    64  const (
    65  	compressionNone uint8 = 0
    66  )
    67  
    68  // TLS extension numbers
    69  const (
    70  	extensionServerName          uint16 = 0
    71  	extensionStatusRequest       uint16 = 5
    72  	extensionSupportedCurves     uint16 = 10
    73  	extensionSupportedPoints     uint16 = 11
    74  	extensionSignatureAlgorithms uint16 = 13
    75  	extensionALPN                uint16 = 16
    76  	extensionSessionTicket       uint16 = 35
    77  	extensionNextProtoNeg        uint16 = 13172 // not IANA assigned
    78  	extensionRenegotiationInfo   uint16 = 0xff01
    79  )
    80  
    81  // TLS signaling cipher suite values
    82  const (
    83  	scsvRenegotiation uint16 = 0x00ff
    84  )
    85  
    86  // CurveID is the type of a TLS identifier for an elliptic curve. See
    87  // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-8
    88  type CurveID uint16
    89  
    90  const (
    91  	CurveP256 CurveID = 23
    92  	CurveP384 CurveID = 24
    93  	CurveP521 CurveID = 25
    94  )
    95  
    96  // TLS Elliptic Curve Point Formats
    97  // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-9
    98  const (
    99  	pointFormatUncompressed uint8 = 0
   100  )
   101  
   102  // TLS CertificateStatusType (RFC 3546)
   103  const (
   104  	statusTypeOCSP uint8 = 1
   105  )
   106  
   107  // Certificate types (for certificateRequestMsg)
   108  const (
   109  	certTypeRSASign    = 1 // A certificate containing an RSA key
   110  	certTypeDSSSign    = 2 // A certificate containing a DSA key
   111  	certTypeRSAFixedDH = 3 // A certificate containing a static DH key
   112  	certTypeDSSFixedDH = 4 // A certificate containing a static DH key
   113  
   114  	// See RFC4492 sections 3 and 5.5.
   115  	certTypeECDSASign      = 64 // A certificate containing an ECDSA-capable public key, signed with ECDSA.
   116  	certTypeRSAFixedECDH   = 65 // A certificate containing an ECDH-capable public key, signed with RSA.
   117  	certTypeECDSAFixedECDH = 66 // A certificate containing an ECDH-capable public key, signed with ECDSA.
   118  
   119  	// Rest of these are reserved by the TLS spec
   120  )
   121  
   122  // Hash functions for TLS 1.2 (See RFC 5246, section A.4.1)
   123  const (
   124  	hashSHA1   uint8 = 2
   125  	hashSHA256 uint8 = 4
   126  )
   127  
   128  // Signature algorithms for TLS 1.2 (See RFC 5246, section A.4.1)
   129  const (
   130  	signatureRSA   uint8 = 1
   131  	signatureECDSA uint8 = 3
   132  )
   133  
   134  // signatureAndHash mirrors the TLS 1.2, SignatureAndHashAlgorithm struct. See
   135  // RFC 5246, section A.4.1.
   136  type signatureAndHash struct {
   137  	hash, signature uint8
   138  }
   139  
   140  // supportedSKXSignatureAlgorithms contains the signature and hash algorithms
   141  // that the code advertises as supported in a TLS 1.2 ClientHello.
   142  var supportedSKXSignatureAlgorithms = []signatureAndHash{
   143  	{hashSHA256, signatureRSA},
   144  	{hashSHA256, signatureECDSA},
   145  	{hashSHA1, signatureRSA},
   146  	{hashSHA1, signatureECDSA},
   147  }
   148  
   149  // supportedClientCertSignatureAlgorithms contains the signature and hash
   150  // algorithms that the code advertises as supported in a TLS 1.2
   151  // CertificateRequest.
   152  var supportedClientCertSignatureAlgorithms = []signatureAndHash{
   153  	{hashSHA256, signatureRSA},
   154  	{hashSHA256, signatureECDSA},
   155  }
   156  
   157  // ConnectionState records basic TLS details about the connection.
   158  type ConnectionState struct {
   159  	Version                    uint16                // TLS version used by the connection (e.g. VersionTLS12)
   160  	HandshakeComplete          bool                  // TLS handshake is complete
   161  	DidResume                  bool                  // connection resumes a previous TLS connection
   162  	CipherSuite                uint16                // cipher suite in use (TLS_RSA_WITH_RC4_128_SHA, ...)
   163  	NegotiatedProtocol         string                // negotiated next protocol (from Config.NextProtos)
   164  	NegotiatedProtocolIsMutual bool                  // negotiated protocol was advertised by server
   165  	ServerName                 string                // server name requested by client, if any (server side only)
   166  	PeerCertificates           []*x509.Certificate   // certificate chain presented by remote peer
   167  	VerifiedChains             [][]*x509.Certificate // verified chains built from PeerCertificates
   168  
   169  	// TLSUnique contains the "tls-unique" channel binding value (see RFC
   170  	// 5929, section 3). For resumed sessions this value will be nil
   171  	// because resumption does not include enough context (see
   172  	// https://secure-resumption.com/#channelbindings). This will change in
   173  	// future versions of Go once the TLS master-secret fix has been
   174  	// standardized and implemented.
   175  	TLSUnique []byte
   176  }
   177  
   178  // ClientAuthType declares the policy the server will follow for
   179  // TLS Client Authentication.
   180  type ClientAuthType int
   181  
   182  const (
   183  	NoClientCert ClientAuthType = iota
   184  	RequestClientCert
   185  	RequireAnyClientCert
   186  	VerifyClientCertIfGiven
   187  	RequireAndVerifyClientCert
   188  )
   189  
   190  // ClientSessionState contains the state needed by clients to resume TLS
   191  // sessions.
   192  type ClientSessionState struct {
   193  	sessionTicket      []uint8             // Encrypted ticket used for session resumption with server
   194  	vers               uint16              // SSL/TLS version negotiated for the session
   195  	cipherSuite        uint16              // Ciphersuite negotiated for the session
   196  	masterSecret       []byte              // MasterSecret generated by client on a full handshake
   197  	serverCertificates []*x509.Certificate // Certificate chain presented by the server
   198  }
   199  
   200  // ClientSessionCache is a cache of ClientSessionState objects that can be used
   201  // by a client to resume a TLS session with a given server. ClientSessionCache
   202  // implementations should expect to be called concurrently from different
   203  // goroutines.
   204  type ClientSessionCache interface {
   205  	// Get searches for a ClientSessionState associated with the given key.
   206  	// On return, ok is true if one was found.
   207  	Get(sessionKey string) (session *ClientSessionState, ok bool)
   208  
   209  	// Put adds the ClientSessionState to the cache with the given key.
   210  	Put(sessionKey string, cs *ClientSessionState)
   211  }
   212  
   213  // ClientHelloInfo contains information from a ClientHello message in order to
   214  // guide certificate selection in the GetCertificate callback.
   215  type ClientHelloInfo struct {
   216  	// CipherSuites lists the CipherSuites supported by the client (e.g.
   217  	// TLS_RSA_WITH_RC4_128_SHA).
   218  	CipherSuites []uint16
   219  
   220  	// ServerName indicates the name of the server requested by the client
   221  	// in order to support virtual hosting. ServerName is only set if the
   222  	// client is using SNI (see
   223  	// http://tools.ietf.org/html/rfc4366#section-3.1).
   224  	ServerName string
   225  
   226  	// SupportedCurves lists the elliptic curves supported by the client.
   227  	// SupportedCurves is set only if the Supported Elliptic Curves
   228  	// Extension is being used (see
   229  	// http://tools.ietf.org/html/rfc4492#section-5.1.1).
   230  	SupportedCurves []CurveID
   231  
   232  	// SupportedPoints lists the point formats supported by the client.
   233  	// SupportedPoints is set only if the Supported Point Formats Extension
   234  	// is being used (see
   235  	// http://tools.ietf.org/html/rfc4492#section-5.1.2).
   236  	SupportedPoints []uint8
   237  }
   238  
   239  // A Config structure is used to configure a TLS client or server.
   240  // After one has been passed to a TLS function it must not be
   241  // modified. A Config may be reused; the tls package will also not
   242  // modify it.
   243  type Config struct {
   244  	// Rand provides the source of entropy for nonces and RSA blinding.
   245  	// If Rand is nil, TLS uses the cryptographic random reader in package
   246  	// crypto/rand.
   247  	// The Reader must be safe for use by multiple goroutines.
   248  	Rand io.Reader
   249  
   250  	// Time returns the current time as the number of seconds since the epoch.
   251  	// If Time is nil, TLS uses time.Now.
   252  	Time func() time.Time
   253  
   254  	// Certificates contains one or more certificate chains
   255  	// to present to the other side of the connection.
   256  	// Server configurations must include at least one certificate.
   257  	Certificates []Certificate
   258  
   259  	// NameToCertificate maps from a certificate name to an element of
   260  	// Certificates. Note that a certificate name can be of the form
   261  	// '*.example.com' and so doesn't have to be a domain name as such.
   262  	// See Config.BuildNameToCertificate
   263  	// The nil value causes the first element of Certificates to be used
   264  	// for all connections.
   265  	NameToCertificate map[string]*Certificate
   266  
   267  	// GetCertificate returns a Certificate based on the given
   268  	// ClientHelloInfo. If GetCertificate is nil or returns nil, then the
   269  	// certificate is retrieved from NameToCertificate. If
   270  	// NameToCertificate is nil, the first element of Certificates will be
   271  	// used.
   272  	GetCertificate func(clientHello *ClientHelloInfo) (*Certificate, error)
   273  
   274  	// RootCAs defines the set of root certificate authorities
   275  	// that clients use when verifying server certificates.
   276  	// If RootCAs is nil, TLS uses the host's root CA set.
   277  	RootCAs *x509.CertPool
   278  
   279  	// NextProtos is a list of supported, application level protocols.
   280  	NextProtos []string
   281  
   282  	// ServerName is used to verify the hostname on the returned
   283  	// certificates unless InsecureSkipVerify is given. It is also included
   284  	// in the client's handshake to support virtual hosting.
   285  	ServerName string
   286  
   287  	// ClientAuth determines the server's policy for
   288  	// TLS Client Authentication. The default is NoClientCert.
   289  	ClientAuth ClientAuthType
   290  
   291  	// ClientCAs defines the set of root certificate authorities
   292  	// that servers use if required to verify a client certificate
   293  	// by the policy in ClientAuth.
   294  	ClientCAs *x509.CertPool
   295  
   296  	// InsecureSkipVerify controls whether a client verifies the
   297  	// server's certificate chain and host name.
   298  	// If InsecureSkipVerify is true, TLS accepts any certificate
   299  	// presented by the server and any host name in that certificate.
   300  	// In this mode, TLS is susceptible to man-in-the-middle attacks.
   301  	// This should be used only for testing.
   302  	InsecureSkipVerify bool
   303  
   304  	// CipherSuites is a list of supported cipher suites. If CipherSuites
   305  	// is nil, TLS uses a list of suites supported by the implementation.
   306  	CipherSuites []uint16
   307  
   308  	// PreferServerCipherSuites controls whether the server selects the
   309  	// client's most preferred ciphersuite, or the server's most preferred
   310  	// ciphersuite. If true then the server's preference, as expressed in
   311  	// the order of elements in CipherSuites, is used.
   312  	PreferServerCipherSuites bool
   313  
   314  	// SessionTicketsDisabled may be set to true to disable session ticket
   315  	// (resumption) support.
   316  	SessionTicketsDisabled bool
   317  
   318  	// SessionTicketKey is used by TLS servers to provide session
   319  	// resumption. See RFC 5077. If zero, it will be filled with
   320  	// random data before the first server handshake.
   321  	//
   322  	// If multiple servers are terminating connections for the same host
   323  	// they should all have the same SessionTicketKey. If the
   324  	// SessionTicketKey leaks, previously recorded and future TLS
   325  	// connections using that key are compromised.
   326  	SessionTicketKey [32]byte
   327  
   328  	// SessionCache is a cache of ClientSessionState entries for TLS session
   329  	// resumption.
   330  	ClientSessionCache ClientSessionCache
   331  
   332  	// MinVersion contains the minimum SSL/TLS version that is acceptable.
   333  	// If zero, then SSLv3 is taken as the minimum.
   334  	MinVersion uint16
   335  
   336  	// MaxVersion contains the maximum SSL/TLS version that is acceptable.
   337  	// If zero, then the maximum version supported by this package is used,
   338  	// which is currently TLS 1.2.
   339  	MaxVersion uint16
   340  
   341  	// CurvePreferences contains the elliptic curves that will be used in
   342  	// an ECDHE handshake, in preference order. If empty, the default will
   343  	// be used.
   344  	CurvePreferences []CurveID
   345  
   346  	serverInitOnce sync.Once // guards calling (*Config).serverInit
   347  }
   348  
   349  func (c *Config) serverInit() {
   350  	if c.SessionTicketsDisabled {
   351  		return
   352  	}
   353  
   354  	// If the key has already been set then we have nothing to do.
   355  	for _, b := range c.SessionTicketKey {
   356  		if b != 0 {
   357  			return
   358  		}
   359  	}
   360  
   361  	if _, err := io.ReadFull(c.rand(), c.SessionTicketKey[:]); err != nil {
   362  		c.SessionTicketsDisabled = true
   363  	}
   364  }
   365  
   366  func (c *Config) rand() io.Reader {
   367  	r := c.Rand
   368  	if r == nil {
   369  		return rand.Reader
   370  	}
   371  	return r
   372  }
   373  
   374  func (c *Config) time() time.Time {
   375  	t := c.Time
   376  	if t == nil {
   377  		t = time.Now
   378  	}
   379  	return t()
   380  }
   381  
   382  func (c *Config) cipherSuites() []uint16 {
   383  	s := c.CipherSuites
   384  	if s == nil {
   385  		s = defaultCipherSuites()
   386  	}
   387  	return s
   388  }
   389  
   390  func (c *Config) minVersion() uint16 {
   391  	if c == nil || c.MinVersion == 0 {
   392  		return minVersion
   393  	}
   394  	return c.MinVersion
   395  }
   396  
   397  func (c *Config) maxVersion() uint16 {
   398  	if c == nil || c.MaxVersion == 0 {
   399  		return maxVersion
   400  	}
   401  	return c.MaxVersion
   402  }
   403  
   404  var defaultCurvePreferences = []CurveID{CurveP256, CurveP384, CurveP521}
   405  
   406  func (c *Config) curvePreferences() []CurveID {
   407  	if c == nil || len(c.CurvePreferences) == 0 {
   408  		return defaultCurvePreferences
   409  	}
   410  	return c.CurvePreferences
   411  }
   412  
   413  // mutualVersion returns the protocol version to use given the advertised
   414  // version of the peer.
   415  func (c *Config) mutualVersion(vers uint16) (uint16, bool) {
   416  	minVersion := c.minVersion()
   417  	maxVersion := c.maxVersion()
   418  
   419  	if vers < minVersion {
   420  		return 0, false
   421  	}
   422  	if vers > maxVersion {
   423  		vers = maxVersion
   424  	}
   425  	return vers, true
   426  }
   427  
   428  // getCertificate returns the best certificate for the given ClientHelloInfo,
   429  // defaulting to the first element of c.Certificates.
   430  func (c *Config) getCertificate(clientHello *ClientHelloInfo) (*Certificate, error) {
   431  	if c.GetCertificate != nil {
   432  		cert, err := c.GetCertificate(clientHello)
   433  		if cert != nil || err != nil {
   434  			return cert, err
   435  		}
   436  	}
   437  
   438  	if len(c.Certificates) == 1 || c.NameToCertificate == nil {
   439  		// There's only one choice, so no point doing any work.
   440  		return &c.Certificates[0], nil
   441  	}
   442  
   443  	name := strings.ToLower(clientHello.ServerName)
   444  	for len(name) > 0 && name[len(name)-1] == '.' {
   445  		name = name[:len(name)-1]
   446  	}
   447  
   448  	if cert, ok := c.NameToCertificate[name]; ok {
   449  		return cert, nil
   450  	}
   451  
   452  	// try replacing labels in the name with wildcards until we get a
   453  	// match.
   454  	labels := strings.Split(name, ".")
   455  	for i := range labels {
   456  		labels[i] = "*"
   457  		candidate := strings.Join(labels, ".")
   458  		if cert, ok := c.NameToCertificate[candidate]; ok {
   459  			return cert, nil
   460  		}
   461  	}
   462  
   463  	// If nothing matches, return the first certificate.
   464  	return &c.Certificates[0], nil
   465  }
   466  
   467  // BuildNameToCertificate parses c.Certificates and builds c.NameToCertificate
   468  // from the CommonName and SubjectAlternateName fields of each of the leaf
   469  // certificates.
   470  func (c *Config) BuildNameToCertificate() {
   471  	c.NameToCertificate = make(map[string]*Certificate)
   472  	for i := range c.Certificates {
   473  		cert := &c.Certificates[i]
   474  		x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
   475  		if err != nil {
   476  			continue
   477  		}
   478  		if len(x509Cert.Subject.CommonName) > 0 {
   479  			c.NameToCertificate[x509Cert.Subject.CommonName] = cert
   480  		}
   481  		for _, san := range x509Cert.DNSNames {
   482  			c.NameToCertificate[san] = cert
   483  		}
   484  	}
   485  }
   486  
   487  // A Certificate is a chain of one or more certificates, leaf first.
   488  type Certificate struct {
   489  	Certificate [][]byte
   490  	// PrivateKey contains the private key corresponding to the public key
   491  	// in Leaf. For a server, this must be a *rsa.PrivateKey or
   492  	// *ecdsa.PrivateKey. For a client doing client authentication, this
   493  	// can be any type that implements crypto.Signer (which includes RSA
   494  	// and ECDSA private keys).
   495  	PrivateKey crypto.PrivateKey
   496  	// OCSPStaple contains an optional OCSP response which will be served
   497  	// to clients that request it.
   498  	OCSPStaple []byte
   499  	// Leaf is the parsed form of the leaf certificate, which may be
   500  	// initialized using x509.ParseCertificate to reduce per-handshake
   501  	// processing for TLS clients doing client authentication. If nil, the
   502  	// leaf certificate will be parsed as needed.
   503  	Leaf *x509.Certificate
   504  }
   505  
   506  // A TLS record.
   507  type record struct {
   508  	contentType  recordType
   509  	major, minor uint8
   510  	payload      []byte
   511  }
   512  
   513  type handshakeMessage interface {
   514  	marshal() []byte
   515  	unmarshal([]byte) bool
   516  }
   517  
   518  // lruSessionCache is a ClientSessionCache implementation that uses an LRU
   519  // caching strategy.
   520  type lruSessionCache struct {
   521  	sync.Mutex
   522  
   523  	m        map[string]*list.Element
   524  	q        *list.List
   525  	capacity int
   526  }
   527  
   528  type lruSessionCacheEntry struct {
   529  	sessionKey string
   530  	state      *ClientSessionState
   531  }
   532  
   533  // NewLRUClientSessionCache returns a ClientSessionCache with the given
   534  // capacity that uses an LRU strategy. If capacity is < 1, a default capacity
   535  // is used instead.
   536  func NewLRUClientSessionCache(capacity int) ClientSessionCache {
   537  	const defaultSessionCacheCapacity = 64
   538  
   539  	if capacity < 1 {
   540  		capacity = defaultSessionCacheCapacity
   541  	}
   542  	return &lruSessionCache{
   543  		m:        make(map[string]*list.Element),
   544  		q:        list.New(),
   545  		capacity: capacity,
   546  	}
   547  }
   548  
   549  // Put adds the provided (sessionKey, cs) pair to the cache.
   550  func (c *lruSessionCache) Put(sessionKey string, cs *ClientSessionState) {
   551  	c.Lock()
   552  	defer c.Unlock()
   553  
   554  	if elem, ok := c.m[sessionKey]; ok {
   555  		entry := elem.Value.(*lruSessionCacheEntry)
   556  		entry.state = cs
   557  		c.q.MoveToFront(elem)
   558  		return
   559  	}
   560  
   561  	if c.q.Len() < c.capacity {
   562  		entry := &lruSessionCacheEntry{sessionKey, cs}
   563  		c.m[sessionKey] = c.q.PushFront(entry)
   564  		return
   565  	}
   566  
   567  	elem := c.q.Back()
   568  	entry := elem.Value.(*lruSessionCacheEntry)
   569  	delete(c.m, entry.sessionKey)
   570  	entry.sessionKey = sessionKey
   571  	entry.state = cs
   572  	c.q.MoveToFront(elem)
   573  	c.m[sessionKey] = elem
   574  }
   575  
   576  // Get returns the ClientSessionState value associated with a given key. It
   577  // returns (nil, false) if no value is found.
   578  func (c *lruSessionCache) Get(sessionKey string) (*ClientSessionState, bool) {
   579  	c.Lock()
   580  	defer c.Unlock()
   581  
   582  	if elem, ok := c.m[sessionKey]; ok {
   583  		c.q.MoveToFront(elem)
   584  		return elem.Value.(*lruSessionCacheEntry).state, true
   585  	}
   586  	return nil, false
   587  }
   588  
   589  // TODO(jsing): Make these available to both crypto/x509 and crypto/tls.
   590  type dsaSignature struct {
   591  	R, S *big.Int
   592  }
   593  
   594  type ecdsaSignature dsaSignature
   595  
   596  var emptyConfig Config
   597  
   598  func defaultConfig() *Config {
   599  	return &emptyConfig
   600  }
   601  
   602  var (
   603  	once                   sync.Once
   604  	varDefaultCipherSuites []uint16
   605  )
   606  
   607  func defaultCipherSuites() []uint16 {
   608  	once.Do(initDefaultCipherSuites)
   609  	return varDefaultCipherSuites
   610  }
   611  
   612  func initDefaultCipherSuites() {
   613  	varDefaultCipherSuites = make([]uint16, len(cipherSuites))
   614  	for i, suite := range cipherSuites {
   615  		varDefaultCipherSuites[i] = suite.id
   616  	}
   617  }
   618  
   619  func unexpectedMessageError(wanted, got interface{}) error {
   620  	return fmt.Errorf("tls: received unexpected handshake message of type %T when waiting for %T", got, wanted)
   621  }