github.com/bgentry/go@v0.0.0-20150121062915-6cf5a733d54d/src/encoding/gob/encode.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  //go:generate go run encgen.go -output enc_helpers.go
     6  
     7  package gob
     8  
     9  import (
    10  	"encoding"
    11  	"math"
    12  	"reflect"
    13  )
    14  
    15  const uint64Size = 8
    16  
    17  type encHelper func(state *encoderState, v reflect.Value) bool
    18  
    19  // encoderState is the global execution state of an instance of the encoder.
    20  // Field numbers are delta encoded and always increase. The field
    21  // number is initialized to -1 so 0 comes out as delta(1). A delta of
    22  // 0 terminates the structure.
    23  type encoderState struct {
    24  	enc      *Encoder
    25  	b        *encBuffer
    26  	sendZero bool                 // encoding an array element or map key/value pair; send zero values
    27  	fieldnum int                  // the last field number written.
    28  	buf      [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation.
    29  	next     *encoderState        // for free list
    30  }
    31  
    32  // encBuffer is an extremely simple, fast implementation of a write-only byte buffer.
    33  // It never returns a non-nil error, but Write returns an error value so it matches io.Writer.
    34  type encBuffer struct {
    35  	data    []byte
    36  	scratch [64]byte
    37  }
    38  
    39  func (e *encBuffer) WriteByte(c byte) {
    40  	e.data = append(e.data, c)
    41  }
    42  
    43  func (e *encBuffer) Write(p []byte) (int, error) {
    44  	e.data = append(e.data, p...)
    45  	return len(p), nil
    46  }
    47  
    48  func (e *encBuffer) WriteString(s string) {
    49  	e.data = append(e.data, s...)
    50  }
    51  
    52  func (e *encBuffer) Len() int {
    53  	return len(e.data)
    54  }
    55  
    56  func (e *encBuffer) Bytes() []byte {
    57  	return e.data
    58  }
    59  
    60  func (e *encBuffer) Reset() {
    61  	e.data = e.data[0:0]
    62  }
    63  
    64  func (enc *Encoder) newEncoderState(b *encBuffer) *encoderState {
    65  	e := enc.freeList
    66  	if e == nil {
    67  		e = new(encoderState)
    68  		e.enc = enc
    69  	} else {
    70  		enc.freeList = e.next
    71  	}
    72  	e.sendZero = false
    73  	e.fieldnum = 0
    74  	e.b = b
    75  	if len(b.data) == 0 {
    76  		b.data = b.scratch[0:0]
    77  	}
    78  	return e
    79  }
    80  
    81  func (enc *Encoder) freeEncoderState(e *encoderState) {
    82  	e.next = enc.freeList
    83  	enc.freeList = e
    84  }
    85  
    86  // Unsigned integers have a two-state encoding.  If the number is less
    87  // than 128 (0 through 0x7F), its value is written directly.
    88  // Otherwise the value is written in big-endian byte order preceded
    89  // by the byte length, negated.
    90  
    91  // encodeUint writes an encoded unsigned integer to state.b.
    92  func (state *encoderState) encodeUint(x uint64) {
    93  	if x <= 0x7F {
    94  		state.b.WriteByte(uint8(x))
    95  		return
    96  	}
    97  	i := uint64Size
    98  	for x > 0 {
    99  		state.buf[i] = uint8(x)
   100  		x >>= 8
   101  		i--
   102  	}
   103  	state.buf[i] = uint8(i - uint64Size) // = loop count, negated
   104  	state.b.Write(state.buf[i : uint64Size+1])
   105  }
   106  
   107  // encodeInt writes an encoded signed integer to state.w.
   108  // The low bit of the encoding says whether to bit complement the (other bits of the)
   109  // uint to recover the int.
   110  func (state *encoderState) encodeInt(i int64) {
   111  	var x uint64
   112  	if i < 0 {
   113  		x = uint64(^i<<1) | 1
   114  	} else {
   115  		x = uint64(i << 1)
   116  	}
   117  	state.encodeUint(uint64(x))
   118  }
   119  
   120  // encOp is the signature of an encoding operator for a given type.
   121  type encOp func(i *encInstr, state *encoderState, v reflect.Value)
   122  
   123  // The 'instructions' of the encoding machine
   124  type encInstr struct {
   125  	op    encOp
   126  	field int   // field number in input
   127  	index []int // struct index
   128  	indir int   // how many pointer indirections to reach the value in the struct
   129  }
   130  
   131  // update emits a field number and updates the state to record its value for delta encoding.
   132  // If the instruction pointer is nil, it does nothing
   133  func (state *encoderState) update(instr *encInstr) {
   134  	if instr != nil {
   135  		state.encodeUint(uint64(instr.field - state.fieldnum))
   136  		state.fieldnum = instr.field
   137  	}
   138  }
   139  
   140  // Each encoder for a composite is responsible for handling any
   141  // indirections associated with the elements of the data structure.
   142  // If any pointer so reached is nil, no bytes are written.  If the
   143  // data item is zero, no bytes are written.  Single values - ints,
   144  // strings etc. - are indirected before calling their encoders.
   145  // Otherwise, the output (for a scalar) is the field number, as an
   146  // encoded integer, followed by the field data in its appropriate
   147  // format.
   148  
   149  // encIndirect dereferences pv indir times and returns the result.
   150  func encIndirect(pv reflect.Value, indir int) reflect.Value {
   151  	for ; indir > 0; indir-- {
   152  		if pv.IsNil() {
   153  			break
   154  		}
   155  		pv = pv.Elem()
   156  	}
   157  	return pv
   158  }
   159  
   160  // encBool encodes the bool referenced by v as an unsigned 0 or 1.
   161  func encBool(i *encInstr, state *encoderState, v reflect.Value) {
   162  	b := v.Bool()
   163  	if b || state.sendZero {
   164  		state.update(i)
   165  		if b {
   166  			state.encodeUint(1)
   167  		} else {
   168  			state.encodeUint(0)
   169  		}
   170  	}
   171  }
   172  
   173  // encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v.
   174  func encInt(i *encInstr, state *encoderState, v reflect.Value) {
   175  	value := v.Int()
   176  	if value != 0 || state.sendZero {
   177  		state.update(i)
   178  		state.encodeInt(value)
   179  	}
   180  }
   181  
   182  // encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v.
   183  func encUint(i *encInstr, state *encoderState, v reflect.Value) {
   184  	value := v.Uint()
   185  	if value != 0 || state.sendZero {
   186  		state.update(i)
   187  		state.encodeUint(value)
   188  	}
   189  }
   190  
   191  // floatBits returns a uint64 holding the bits of a floating-point number.
   192  // Floating-point numbers are transmitted as uint64s holding the bits
   193  // of the underlying representation.  They are sent byte-reversed, with
   194  // the exponent end coming out first, so integer floating point numbers
   195  // (for example) transmit more compactly.  This routine does the
   196  // swizzling.
   197  func floatBits(f float64) uint64 {
   198  	u := math.Float64bits(f)
   199  	var v uint64
   200  	for i := 0; i < 8; i++ {
   201  		v <<= 8
   202  		v |= u & 0xFF
   203  		u >>= 8
   204  	}
   205  	return v
   206  }
   207  
   208  // encFloat encodes the floating point value (float32 float64) referenced by v.
   209  func encFloat(i *encInstr, state *encoderState, v reflect.Value) {
   210  	f := v.Float()
   211  	if f != 0 || state.sendZero {
   212  		bits := floatBits(f)
   213  		state.update(i)
   214  		state.encodeUint(bits)
   215  	}
   216  }
   217  
   218  // encComplex encodes the complex value (complex64 complex128) referenced by v.
   219  // Complex numbers are just a pair of floating-point numbers, real part first.
   220  func encComplex(i *encInstr, state *encoderState, v reflect.Value) {
   221  	c := v.Complex()
   222  	if c != 0+0i || state.sendZero {
   223  		rpart := floatBits(real(c))
   224  		ipart := floatBits(imag(c))
   225  		state.update(i)
   226  		state.encodeUint(rpart)
   227  		state.encodeUint(ipart)
   228  	}
   229  }
   230  
   231  // encUint8Array encodes the byte array referenced by v.
   232  // Byte arrays are encoded as an unsigned count followed by the raw bytes.
   233  func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) {
   234  	b := v.Bytes()
   235  	if len(b) > 0 || state.sendZero {
   236  		state.update(i)
   237  		state.encodeUint(uint64(len(b)))
   238  		state.b.Write(b)
   239  	}
   240  }
   241  
   242  // encString encodes the string referenced by v.
   243  // Strings are encoded as an unsigned count followed by the raw bytes.
   244  func encString(i *encInstr, state *encoderState, v reflect.Value) {
   245  	s := v.String()
   246  	if len(s) > 0 || state.sendZero {
   247  		state.update(i)
   248  		state.encodeUint(uint64(len(s)))
   249  		state.b.WriteString(s)
   250  	}
   251  }
   252  
   253  // encStructTerminator encodes the end of an encoded struct
   254  // as delta field number of 0.
   255  func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) {
   256  	state.encodeUint(0)
   257  }
   258  
   259  // Execution engine
   260  
   261  // encEngine an array of instructions indexed by field number of the encoding
   262  // data, typically a struct.  It is executed top to bottom, walking the struct.
   263  type encEngine struct {
   264  	instr []encInstr
   265  }
   266  
   267  const singletonField = 0
   268  
   269  // valid reports whether the value is valid and a non-nil pointer.
   270  // (Slices, maps, and chans take care of themselves.)
   271  func valid(v reflect.Value) bool {
   272  	switch v.Kind() {
   273  	case reflect.Invalid:
   274  		return false
   275  	case reflect.Ptr:
   276  		return !v.IsNil()
   277  	}
   278  	return true
   279  }
   280  
   281  // encodeSingle encodes a single top-level non-struct value.
   282  func (enc *Encoder) encodeSingle(b *encBuffer, engine *encEngine, value reflect.Value) {
   283  	state := enc.newEncoderState(b)
   284  	defer enc.freeEncoderState(state)
   285  	state.fieldnum = singletonField
   286  	// There is no surrounding struct to frame the transmission, so we must
   287  	// generate data even if the item is zero.  To do this, set sendZero.
   288  	state.sendZero = true
   289  	instr := &engine.instr[singletonField]
   290  	if instr.indir > 0 {
   291  		value = encIndirect(value, instr.indir)
   292  	}
   293  	if valid(value) {
   294  		instr.op(instr, state, value)
   295  	}
   296  }
   297  
   298  // encodeStruct encodes a single struct value.
   299  func (enc *Encoder) encodeStruct(b *encBuffer, engine *encEngine, value reflect.Value) {
   300  	if !valid(value) {
   301  		return
   302  	}
   303  	state := enc.newEncoderState(b)
   304  	defer enc.freeEncoderState(state)
   305  	state.fieldnum = -1
   306  	for i := 0; i < len(engine.instr); i++ {
   307  		instr := &engine.instr[i]
   308  		if i >= value.NumField() {
   309  			// encStructTerminator
   310  			instr.op(instr, state, reflect.Value{})
   311  			break
   312  		}
   313  		field := value.FieldByIndex(instr.index)
   314  		if instr.indir > 0 {
   315  			field = encIndirect(field, instr.indir)
   316  			// TODO: Is field guaranteed valid? If so we could avoid this check.
   317  			if !valid(field) {
   318  				continue
   319  			}
   320  		}
   321  		instr.op(instr, state, field)
   322  	}
   323  }
   324  
   325  // encodeArray encodes an array.
   326  func (enc *Encoder) encodeArray(b *encBuffer, value reflect.Value, op encOp, elemIndir int, length int, helper encHelper) {
   327  	state := enc.newEncoderState(b)
   328  	defer enc.freeEncoderState(state)
   329  	state.fieldnum = -1
   330  	state.sendZero = true
   331  	state.encodeUint(uint64(length))
   332  	if helper != nil && helper(state, value) {
   333  		return
   334  	}
   335  	for i := 0; i < length; i++ {
   336  		elem := value.Index(i)
   337  		if elemIndir > 0 {
   338  			elem = encIndirect(elem, elemIndir)
   339  			// TODO: Is elem guaranteed valid? If so we could avoid this check.
   340  			if !valid(elem) {
   341  				errorf("encodeArray: nil element")
   342  			}
   343  		}
   344  		op(nil, state, elem)
   345  	}
   346  }
   347  
   348  // encodeReflectValue is a helper for maps. It encodes the value v.
   349  func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) {
   350  	for i := 0; i < indir && v.IsValid(); i++ {
   351  		v = reflect.Indirect(v)
   352  	}
   353  	if !v.IsValid() {
   354  		errorf("encodeReflectValue: nil element")
   355  	}
   356  	op(nil, state, v)
   357  }
   358  
   359  // encodeMap encodes a map as unsigned count followed by key:value pairs.
   360  func (enc *Encoder) encodeMap(b *encBuffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) {
   361  	state := enc.newEncoderState(b)
   362  	state.fieldnum = -1
   363  	state.sendZero = true
   364  	keys := mv.MapKeys()
   365  	state.encodeUint(uint64(len(keys)))
   366  	for _, key := range keys {
   367  		encodeReflectValue(state, key, keyOp, keyIndir)
   368  		encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir)
   369  	}
   370  	enc.freeEncoderState(state)
   371  }
   372  
   373  // encodeInterface encodes the interface value iv.
   374  // To send an interface, we send a string identifying the concrete type, followed
   375  // by the type identifier (which might require defining that type right now), followed
   376  // by the concrete value.  A nil value gets sent as the empty string for the name,
   377  // followed by no value.
   378  func (enc *Encoder) encodeInterface(b *encBuffer, iv reflect.Value) {
   379  	// Gobs can encode nil interface values but not typed interface
   380  	// values holding nil pointers, since nil pointers point to no value.
   381  	elem := iv.Elem()
   382  	if elem.Kind() == reflect.Ptr && elem.IsNil() {
   383  		errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type())
   384  	}
   385  	state := enc.newEncoderState(b)
   386  	state.fieldnum = -1
   387  	state.sendZero = true
   388  	if iv.IsNil() {
   389  		state.encodeUint(0)
   390  		return
   391  	}
   392  
   393  	ut := userType(iv.Elem().Type())
   394  	registerLock.RLock()
   395  	name, ok := concreteTypeToName[ut.base]
   396  	registerLock.RUnlock()
   397  	if !ok {
   398  		errorf("type not registered for interface: %s", ut.base)
   399  	}
   400  	// Send the name.
   401  	state.encodeUint(uint64(len(name)))
   402  	state.b.WriteString(name)
   403  	// Define the type id if necessary.
   404  	enc.sendTypeDescriptor(enc.writer(), state, ut)
   405  	// Send the type id.
   406  	enc.sendTypeId(state, ut)
   407  	// Encode the value into a new buffer.  Any nested type definitions
   408  	// should be written to b, before the encoded value.
   409  	enc.pushWriter(b)
   410  	data := new(encBuffer)
   411  	data.Write(spaceForLength)
   412  	enc.encode(data, elem, ut)
   413  	if enc.err != nil {
   414  		error_(enc.err)
   415  	}
   416  	enc.popWriter()
   417  	enc.writeMessage(b, data)
   418  	if enc.err != nil {
   419  		error_(enc.err)
   420  	}
   421  	enc.freeEncoderState(state)
   422  }
   423  
   424  // isZero reports whether the value is the zero of its type.
   425  func isZero(val reflect.Value) bool {
   426  	switch val.Kind() {
   427  	case reflect.Array:
   428  		for i := 0; i < val.Len(); i++ {
   429  			if !isZero(val.Index(i)) {
   430  				return false
   431  			}
   432  		}
   433  		return true
   434  	case reflect.Map, reflect.Slice, reflect.String:
   435  		return val.Len() == 0
   436  	case reflect.Bool:
   437  		return !val.Bool()
   438  	case reflect.Complex64, reflect.Complex128:
   439  		return val.Complex() == 0
   440  	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr:
   441  		return val.IsNil()
   442  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   443  		return val.Int() == 0
   444  	case reflect.Float32, reflect.Float64:
   445  		return val.Float() == 0
   446  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   447  		return val.Uint() == 0
   448  	case reflect.Struct:
   449  		for i := 0; i < val.NumField(); i++ {
   450  			if !isZero(val.Field(i)) {
   451  				return false
   452  			}
   453  		}
   454  		return true
   455  	}
   456  	panic("unknown type in isZero " + val.Type().String())
   457  }
   458  
   459  // encGobEncoder encodes a value that implements the GobEncoder interface.
   460  // The data is sent as a byte array.
   461  func (enc *Encoder) encodeGobEncoder(b *encBuffer, ut *userTypeInfo, v reflect.Value) {
   462  	// TODO: should we catch panics from the called method?
   463  
   464  	var data []byte
   465  	var err error
   466  	// We know it's one of these.
   467  	switch ut.externalEnc {
   468  	case xGob:
   469  		data, err = v.Interface().(GobEncoder).GobEncode()
   470  	case xBinary:
   471  		data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary()
   472  	case xText:
   473  		data, err = v.Interface().(encoding.TextMarshaler).MarshalText()
   474  	}
   475  	if err != nil {
   476  		error_(err)
   477  	}
   478  	state := enc.newEncoderState(b)
   479  	state.fieldnum = -1
   480  	state.encodeUint(uint64(len(data)))
   481  	state.b.Write(data)
   482  	enc.freeEncoderState(state)
   483  }
   484  
   485  var encOpTable = [...]encOp{
   486  	reflect.Bool:       encBool,
   487  	reflect.Int:        encInt,
   488  	reflect.Int8:       encInt,
   489  	reflect.Int16:      encInt,
   490  	reflect.Int32:      encInt,
   491  	reflect.Int64:      encInt,
   492  	reflect.Uint:       encUint,
   493  	reflect.Uint8:      encUint,
   494  	reflect.Uint16:     encUint,
   495  	reflect.Uint32:     encUint,
   496  	reflect.Uint64:     encUint,
   497  	reflect.Uintptr:    encUint,
   498  	reflect.Float32:    encFloat,
   499  	reflect.Float64:    encFloat,
   500  	reflect.Complex64:  encComplex,
   501  	reflect.Complex128: encComplex,
   502  	reflect.String:     encString,
   503  }
   504  
   505  // encOpFor returns (a pointer to) the encoding op for the base type under rt and
   506  // the indirection count to reach it.
   507  func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp, building map[*typeInfo]bool) (*encOp, int) {
   508  	ut := userType(rt)
   509  	// If the type implements GobEncoder, we handle it without further processing.
   510  	if ut.externalEnc != 0 {
   511  		return gobEncodeOpFor(ut)
   512  	}
   513  	// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
   514  	// Return the pointer to the op we're already building.
   515  	if opPtr := inProgress[rt]; opPtr != nil {
   516  		return opPtr, ut.indir
   517  	}
   518  	typ := ut.base
   519  	indir := ut.indir
   520  	k := typ.Kind()
   521  	var op encOp
   522  	if int(k) < len(encOpTable) {
   523  		op = encOpTable[k]
   524  	}
   525  	if op == nil {
   526  		inProgress[rt] = &op
   527  		// Special cases
   528  		switch t := typ; t.Kind() {
   529  		case reflect.Slice:
   530  			if t.Elem().Kind() == reflect.Uint8 {
   531  				op = encUint8Array
   532  				break
   533  			}
   534  			// Slices have a header; we decode it to find the underlying array.
   535  			elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
   536  			helper := encSliceHelper[t.Elem().Kind()]
   537  			op = func(i *encInstr, state *encoderState, slice reflect.Value) {
   538  				if !state.sendZero && slice.Len() == 0 {
   539  					return
   540  				}
   541  				state.update(i)
   542  				state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len(), helper)
   543  			}
   544  		case reflect.Array:
   545  			// True arrays have size in the type.
   546  			elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
   547  			helper := encArrayHelper[t.Elem().Kind()]
   548  			op = func(i *encInstr, state *encoderState, array reflect.Value) {
   549  				state.update(i)
   550  				state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len(), helper)
   551  			}
   552  		case reflect.Map:
   553  			keyOp, keyIndir := encOpFor(t.Key(), inProgress, building)
   554  			elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building)
   555  			op = func(i *encInstr, state *encoderState, mv reflect.Value) {
   556  				// We send zero-length (but non-nil) maps because the
   557  				// receiver might want to use the map.  (Maps don't use append.)
   558  				if !state.sendZero && mv.IsNil() {
   559  					return
   560  				}
   561  				state.update(i)
   562  				state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir)
   563  			}
   564  		case reflect.Struct:
   565  			// Generate a closure that calls out to the engine for the nested type.
   566  			getEncEngine(userType(typ), building)
   567  			info := mustGetTypeInfo(typ)
   568  			op = func(i *encInstr, state *encoderState, sv reflect.Value) {
   569  				state.update(i)
   570  				// indirect through info to delay evaluation for recursive structs
   571  				enc := info.encoder.Load().(*encEngine)
   572  				state.enc.encodeStruct(state.b, enc, sv)
   573  			}
   574  		case reflect.Interface:
   575  			op = func(i *encInstr, state *encoderState, iv reflect.Value) {
   576  				if !state.sendZero && (!iv.IsValid() || iv.IsNil()) {
   577  					return
   578  				}
   579  				state.update(i)
   580  				state.enc.encodeInterface(state.b, iv)
   581  			}
   582  		}
   583  	}
   584  	if op == nil {
   585  		errorf("can't happen: encode type %s", rt)
   586  	}
   587  	return &op, indir
   588  }
   589  
   590  // gobEncodeOpFor returns the op for a type that is known to implement GobEncoder.
   591  func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) {
   592  	rt := ut.user
   593  	if ut.encIndir == -1 {
   594  		rt = reflect.PtrTo(rt)
   595  	} else if ut.encIndir > 0 {
   596  		for i := int8(0); i < ut.encIndir; i++ {
   597  			rt = rt.Elem()
   598  		}
   599  	}
   600  	var op encOp
   601  	op = func(i *encInstr, state *encoderState, v reflect.Value) {
   602  		if ut.encIndir == -1 {
   603  			// Need to climb up one level to turn value into pointer.
   604  			if !v.CanAddr() {
   605  				errorf("unaddressable value of type %s", rt)
   606  			}
   607  			v = v.Addr()
   608  		}
   609  		if !state.sendZero && isZero(v) {
   610  			return
   611  		}
   612  		state.update(i)
   613  		state.enc.encodeGobEncoder(state.b, ut, v)
   614  	}
   615  	return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver.
   616  }
   617  
   618  // compileEnc returns the engine to compile the type.
   619  func compileEnc(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
   620  	srt := ut.base
   621  	engine := new(encEngine)
   622  	seen := make(map[reflect.Type]*encOp)
   623  	rt := ut.base
   624  	if ut.externalEnc != 0 {
   625  		rt = ut.user
   626  	}
   627  	if ut.externalEnc == 0 && srt.Kind() == reflect.Struct {
   628  		for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ {
   629  			f := srt.Field(fieldNum)
   630  			if !isSent(&f) {
   631  				continue
   632  			}
   633  			op, indir := encOpFor(f.Type, seen, building)
   634  			engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir})
   635  			wireFieldNum++
   636  		}
   637  		if srt.NumField() > 0 && len(engine.instr) == 0 {
   638  			errorf("type %s has no exported fields", rt)
   639  		}
   640  		engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0})
   641  	} else {
   642  		engine.instr = make([]encInstr, 1)
   643  		op, indir := encOpFor(rt, seen, building)
   644  		engine.instr[0] = encInstr{*op, singletonField, nil, indir}
   645  	}
   646  	return engine
   647  }
   648  
   649  // getEncEngine returns the engine to compile the type.
   650  func getEncEngine(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
   651  	info, err := getTypeInfo(ut)
   652  	if err != nil {
   653  		error_(err)
   654  	}
   655  	enc, ok := info.encoder.Load().(*encEngine)
   656  	if !ok {
   657  		enc = buildEncEngine(info, ut, building)
   658  	}
   659  	return enc
   660  }
   661  
   662  func buildEncEngine(info *typeInfo, ut *userTypeInfo, building map[*typeInfo]bool) *encEngine {
   663  	// Check for recursive types.
   664  	if building != nil && building[info] {
   665  		return nil
   666  	}
   667  	info.encInit.Lock()
   668  	defer info.encInit.Unlock()
   669  	enc, ok := info.encoder.Load().(*encEngine)
   670  	if !ok {
   671  		if building == nil {
   672  			building = make(map[*typeInfo]bool)
   673  		}
   674  		building[info] = true
   675  		enc = compileEnc(ut, building)
   676  		info.encoder.Store(enc)
   677  	}
   678  	return enc
   679  }
   680  
   681  func (enc *Encoder) encode(b *encBuffer, value reflect.Value, ut *userTypeInfo) {
   682  	defer catchError(&enc.err)
   683  	engine := getEncEngine(ut, nil)
   684  	indir := ut.indir
   685  	if ut.externalEnc != 0 {
   686  		indir = int(ut.encIndir)
   687  	}
   688  	for i := 0; i < indir; i++ {
   689  		value = reflect.Indirect(value)
   690  	}
   691  	if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct {
   692  		enc.encodeStruct(b, engine, value)
   693  	} else {
   694  		enc.encodeSingle(b, engine, value)
   695  	}
   696  }