github.com/bigcommerce/nomad@v0.9.3-bc/scheduler/generic_sched.go (about)

     1  package scheduler
     2  
     3  import (
     4  	"fmt"
     5  	"time"
     6  
     7  	log "github.com/hashicorp/go-hclog"
     8  	"github.com/hashicorp/go-memdb"
     9  	"github.com/hashicorp/go-multierror"
    10  	"github.com/hashicorp/nomad/helper/uuid"
    11  	"github.com/hashicorp/nomad/nomad/structs"
    12  )
    13  
    14  const (
    15  	// maxServiceScheduleAttempts is used to limit the number of times
    16  	// we will attempt to schedule if we continue to hit conflicts for services.
    17  	maxServiceScheduleAttempts = 5
    18  
    19  	// maxBatchScheduleAttempts is used to limit the number of times
    20  	// we will attempt to schedule if we continue to hit conflicts for batch.
    21  	maxBatchScheduleAttempts = 2
    22  
    23  	// allocNotNeeded is the status used when a job no longer requires an allocation
    24  	allocNotNeeded = "alloc not needed due to job update"
    25  
    26  	// allocMigrating is the status used when we must migrate an allocation
    27  	allocMigrating = "alloc is being migrated"
    28  
    29  	// allocUpdating is the status used when a job requires an update
    30  	allocUpdating = "alloc is being updated due to job update"
    31  
    32  	// allocLost is the status used when an allocation is lost
    33  	allocLost = "alloc is lost since its node is down"
    34  
    35  	// allocInPlace is the status used when speculating on an in-place update
    36  	allocInPlace = "alloc updating in-place"
    37  
    38  	// allocNodeTainted is the status used when stopping an alloc because it's
    39  	// node is tainted.
    40  	allocNodeTainted = "alloc not needed as node is tainted"
    41  
    42  	// blockedEvalMaxPlanDesc is the description used for blocked evals that are
    43  	// a result of hitting the max number of plan attempts
    44  	blockedEvalMaxPlanDesc = "created due to placement conflicts"
    45  
    46  	// blockedEvalFailedPlacements is the description used for blocked evals
    47  	// that are a result of failing to place all allocations.
    48  	blockedEvalFailedPlacements = "created to place remaining allocations"
    49  
    50  	// reschedulingFollowupEvalDesc is the description used when creating follow
    51  	// up evals for delayed rescheduling
    52  	reschedulingFollowupEvalDesc = "created for delayed rescheduling"
    53  
    54  	// maxPastRescheduleEvents is the maximum number of past reschedule event
    55  	// that we track when unlimited rescheduling is enabled
    56  	maxPastRescheduleEvents = 5
    57  )
    58  
    59  // SetStatusError is used to set the status of the evaluation to the given error
    60  type SetStatusError struct {
    61  	Err        error
    62  	EvalStatus string
    63  }
    64  
    65  func (s *SetStatusError) Error() string {
    66  	return s.Err.Error()
    67  }
    68  
    69  // GenericScheduler is used for 'service' and 'batch' type jobs. This scheduler is
    70  // designed for long-lived services, and as such spends more time attempting
    71  // to make a high quality placement. This is the primary scheduler for
    72  // most workloads. It also supports a 'batch' mode to optimize for fast decision
    73  // making at the cost of quality.
    74  type GenericScheduler struct {
    75  	logger  log.Logger
    76  	state   State
    77  	planner Planner
    78  	batch   bool
    79  
    80  	eval       *structs.Evaluation
    81  	job        *structs.Job
    82  	plan       *structs.Plan
    83  	planResult *structs.PlanResult
    84  	ctx        *EvalContext
    85  	stack      *GenericStack
    86  
    87  	followUpEvals []*structs.Evaluation
    88  
    89  	deployment *structs.Deployment
    90  
    91  	blocked        *structs.Evaluation
    92  	failedTGAllocs map[string]*structs.AllocMetric
    93  	queuedAllocs   map[string]int
    94  }
    95  
    96  // NewServiceScheduler is a factory function to instantiate a new service scheduler
    97  func NewServiceScheduler(logger log.Logger, state State, planner Planner) Scheduler {
    98  	s := &GenericScheduler{
    99  		logger:  logger.Named("service_sched"),
   100  		state:   state,
   101  		planner: planner,
   102  		batch:   false,
   103  	}
   104  	return s
   105  }
   106  
   107  // NewBatchScheduler is a factory function to instantiate a new batch scheduler
   108  func NewBatchScheduler(logger log.Logger, state State, planner Planner) Scheduler {
   109  	s := &GenericScheduler{
   110  		logger:  logger.Named("batch_sched"),
   111  		state:   state,
   112  		planner: planner,
   113  		batch:   true,
   114  	}
   115  	return s
   116  }
   117  
   118  // Process is used to handle a single evaluation
   119  func (s *GenericScheduler) Process(eval *structs.Evaluation) error {
   120  	// Store the evaluation
   121  	s.eval = eval
   122  
   123  	// Update our logger with the eval's information
   124  	s.logger = s.logger.With("eval_id", eval.ID, "job_id", eval.JobID, "namespace", eval.Namespace)
   125  
   126  	// Verify the evaluation trigger reason is understood
   127  	switch eval.TriggeredBy {
   128  	case structs.EvalTriggerJobRegister, structs.EvalTriggerJobDeregister,
   129  		structs.EvalTriggerNodeDrain, structs.EvalTriggerNodeUpdate,
   130  		structs.EvalTriggerAllocStop,
   131  		structs.EvalTriggerRollingUpdate, structs.EvalTriggerQueuedAllocs,
   132  		structs.EvalTriggerPeriodicJob, structs.EvalTriggerMaxPlans,
   133  		structs.EvalTriggerDeploymentWatcher, structs.EvalTriggerRetryFailedAlloc,
   134  		structs.EvalTriggerFailedFollowUp, structs.EvalTriggerPreemption:
   135  	default:
   136  		desc := fmt.Sprintf("scheduler cannot handle '%s' evaluation reason",
   137  			eval.TriggeredBy)
   138  		return setStatus(s.logger, s.planner, s.eval, nil, s.blocked,
   139  			s.failedTGAllocs, structs.EvalStatusFailed, desc, s.queuedAllocs,
   140  			s.deployment.GetID())
   141  	}
   142  
   143  	// Retry up to the maxScheduleAttempts and reset if progress is made.
   144  	progress := func() bool { return progressMade(s.planResult) }
   145  	limit := maxServiceScheduleAttempts
   146  	if s.batch {
   147  		limit = maxBatchScheduleAttempts
   148  	}
   149  	if err := retryMax(limit, s.process, progress); err != nil {
   150  		if statusErr, ok := err.(*SetStatusError); ok {
   151  			// Scheduling was tried but made no forward progress so create a
   152  			// blocked eval to retry once resources become available.
   153  			var mErr multierror.Error
   154  			if err := s.createBlockedEval(true); err != nil {
   155  				mErr.Errors = append(mErr.Errors, err)
   156  			}
   157  			if err := setStatus(s.logger, s.planner, s.eval, nil, s.blocked,
   158  				s.failedTGAllocs, statusErr.EvalStatus, err.Error(),
   159  				s.queuedAllocs, s.deployment.GetID()); err != nil {
   160  				mErr.Errors = append(mErr.Errors, err)
   161  			}
   162  			return mErr.ErrorOrNil()
   163  		}
   164  		return err
   165  	}
   166  
   167  	// If the current evaluation is a blocked evaluation and we didn't place
   168  	// everything, do not update the status to complete.
   169  	if s.eval.Status == structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 {
   170  		e := s.ctx.Eligibility()
   171  		newEval := s.eval.Copy()
   172  		newEval.EscapedComputedClass = e.HasEscaped()
   173  		newEval.ClassEligibility = e.GetClasses()
   174  		newEval.QuotaLimitReached = e.QuotaLimitReached()
   175  		return s.planner.ReblockEval(newEval)
   176  	}
   177  
   178  	// Update the status to complete
   179  	return setStatus(s.logger, s.planner, s.eval, nil, s.blocked,
   180  		s.failedTGAllocs, structs.EvalStatusComplete, "", s.queuedAllocs,
   181  		s.deployment.GetID())
   182  }
   183  
   184  // createBlockedEval creates a blocked eval and submits it to the planner. If
   185  // failure is set to true, the eval's trigger reason reflects that.
   186  func (s *GenericScheduler) createBlockedEval(planFailure bool) error {
   187  	e := s.ctx.Eligibility()
   188  	escaped := e.HasEscaped()
   189  
   190  	// Only store the eligible classes if the eval hasn't escaped.
   191  	var classEligibility map[string]bool
   192  	if !escaped {
   193  		classEligibility = e.GetClasses()
   194  	}
   195  
   196  	s.blocked = s.eval.CreateBlockedEval(classEligibility, escaped, e.QuotaLimitReached())
   197  	if planFailure {
   198  		s.blocked.TriggeredBy = structs.EvalTriggerMaxPlans
   199  		s.blocked.StatusDescription = blockedEvalMaxPlanDesc
   200  	} else {
   201  		s.blocked.StatusDescription = blockedEvalFailedPlacements
   202  	}
   203  
   204  	return s.planner.CreateEval(s.blocked)
   205  }
   206  
   207  // process is wrapped in retryMax to iteratively run the handler until we have no
   208  // further work or we've made the maximum number of attempts.
   209  func (s *GenericScheduler) process() (bool, error) {
   210  	// Lookup the Job by ID
   211  	var err error
   212  	ws := memdb.NewWatchSet()
   213  	s.job, err = s.state.JobByID(ws, s.eval.Namespace, s.eval.JobID)
   214  	if err != nil {
   215  		return false, fmt.Errorf("failed to get job %q: %v", s.eval.JobID, err)
   216  	}
   217  
   218  	numTaskGroups := 0
   219  	stopped := s.job.Stopped()
   220  	if !stopped {
   221  		numTaskGroups = len(s.job.TaskGroups)
   222  	}
   223  	s.queuedAllocs = make(map[string]int, numTaskGroups)
   224  	s.followUpEvals = nil
   225  
   226  	// Create a plan
   227  	s.plan = s.eval.MakePlan(s.job)
   228  
   229  	if !s.batch {
   230  		// Get any existing deployment
   231  		s.deployment, err = s.state.LatestDeploymentByJobID(ws, s.eval.Namespace, s.eval.JobID)
   232  		if err != nil {
   233  			return false, fmt.Errorf("failed to get job deployment %q: %v", s.eval.JobID, err)
   234  		}
   235  	}
   236  
   237  	// Reset the failed allocations
   238  	s.failedTGAllocs = nil
   239  
   240  	// Create an evaluation context
   241  	s.ctx = NewEvalContext(s.state, s.plan, s.logger)
   242  
   243  	// Construct the placement stack
   244  	s.stack = NewGenericStack(s.batch, s.ctx)
   245  	if !s.job.Stopped() {
   246  		s.stack.SetJob(s.job)
   247  	}
   248  
   249  	// Compute the target job allocations
   250  	if err := s.computeJobAllocs(); err != nil {
   251  		s.logger.Error("failed to compute job allocations", "error", err)
   252  		return false, err
   253  	}
   254  
   255  	// If there are failed allocations, we need to create a blocked evaluation
   256  	// to place the failed allocations when resources become available. If the
   257  	// current evaluation is already a blocked eval, we reuse it.
   258  	if s.eval.Status != structs.EvalStatusBlocked && len(s.failedTGAllocs) != 0 && s.blocked == nil {
   259  		if err := s.createBlockedEval(false); err != nil {
   260  			s.logger.Error("failed to make blocked eval", "error", err)
   261  			return false, err
   262  		}
   263  		s.logger.Debug("failed to place all allocations, blocked eval created", "blocked_eval_id", s.blocked.ID)
   264  	}
   265  
   266  	// If the plan is a no-op, we can bail. If AnnotatePlan is set submit the plan
   267  	// anyways to get the annotations.
   268  	if s.plan.IsNoOp() && !s.eval.AnnotatePlan {
   269  		return true, nil
   270  	}
   271  
   272  	// Create follow up evals for any delayed reschedule eligible allocations
   273  	if len(s.followUpEvals) > 0 {
   274  		for _, eval := range s.followUpEvals {
   275  			eval.PreviousEval = s.eval.ID
   276  			// TODO(preetha) this should be batching evals before inserting them
   277  			if err := s.planner.CreateEval(eval); err != nil {
   278  				s.logger.Error("failed to make next eval for rescheduling", "error", err)
   279  				return false, err
   280  			}
   281  			s.logger.Debug("found reschedulable allocs, followup eval created", "followup_eval_id", eval.ID)
   282  		}
   283  	}
   284  
   285  	// Submit the plan and store the results.
   286  	result, newState, err := s.planner.SubmitPlan(s.plan)
   287  	s.planResult = result
   288  	if err != nil {
   289  		return false, err
   290  	}
   291  
   292  	// Decrement the number of allocations pending per task group based on the
   293  	// number of allocations successfully placed
   294  	adjustQueuedAllocations(s.logger, result, s.queuedAllocs)
   295  
   296  	// If we got a state refresh, try again since we have stale data
   297  	if newState != nil {
   298  		s.logger.Debug("refresh forced")
   299  		s.state = newState
   300  		return false, nil
   301  	}
   302  
   303  	// Try again if the plan was not fully committed, potential conflict
   304  	fullCommit, expected, actual := result.FullCommit(s.plan)
   305  	if !fullCommit {
   306  		s.logger.Debug("plan didn't fully commit", "attempted", expected, "placed", actual)
   307  		if newState == nil {
   308  			return false, fmt.Errorf("missing state refresh after partial commit")
   309  		}
   310  		return false, nil
   311  	}
   312  
   313  	// Success!
   314  	return true, nil
   315  }
   316  
   317  // computeJobAllocs is used to reconcile differences between the job,
   318  // existing allocations and node status to update the allocations.
   319  func (s *GenericScheduler) computeJobAllocs() error {
   320  	// Lookup the allocations by JobID
   321  	ws := memdb.NewWatchSet()
   322  	allocs, err := s.state.AllocsByJob(ws, s.eval.Namespace, s.eval.JobID, true)
   323  	if err != nil {
   324  		return fmt.Errorf("failed to get allocs for job '%s': %v",
   325  			s.eval.JobID, err)
   326  	}
   327  
   328  	// Determine the tainted nodes containing job allocs
   329  	tainted, err := taintedNodes(s.state, allocs)
   330  	if err != nil {
   331  		return fmt.Errorf("failed to get tainted nodes for job '%s': %v",
   332  			s.eval.JobID, err)
   333  	}
   334  
   335  	// Update the allocations which are in pending/running state on tainted
   336  	// nodes to lost
   337  	updateNonTerminalAllocsToLost(s.plan, tainted, allocs)
   338  
   339  	reconciler := NewAllocReconciler(s.logger,
   340  		genericAllocUpdateFn(s.ctx, s.stack, s.eval.ID),
   341  		s.batch, s.eval.JobID, s.job, s.deployment, allocs, tainted, s.eval.ID)
   342  	results := reconciler.Compute()
   343  	s.logger.Debug("reconciled current state with desired state", "results", log.Fmt("%#v", results))
   344  
   345  	if s.eval.AnnotatePlan {
   346  		s.plan.Annotations = &structs.PlanAnnotations{
   347  			DesiredTGUpdates: results.desiredTGUpdates,
   348  		}
   349  	}
   350  
   351  	// Add the deployment changes to the plan
   352  	s.plan.Deployment = results.deployment
   353  	s.plan.DeploymentUpdates = results.deploymentUpdates
   354  
   355  	// Store all the follow up evaluations from rescheduled allocations
   356  	if len(results.desiredFollowupEvals) > 0 {
   357  		for _, evals := range results.desiredFollowupEvals {
   358  			s.followUpEvals = append(s.followUpEvals, evals...)
   359  		}
   360  	}
   361  
   362  	// Update the stored deployment
   363  	if results.deployment != nil {
   364  		s.deployment = results.deployment
   365  	}
   366  
   367  	// Handle the stop
   368  	for _, stop := range results.stop {
   369  		s.plan.AppendStoppedAlloc(stop.alloc, stop.statusDescription, stop.clientStatus)
   370  	}
   371  
   372  	// Handle the in-place updates
   373  	for _, update := range results.inplaceUpdate {
   374  		if update.DeploymentID != s.deployment.GetID() {
   375  			update.DeploymentID = s.deployment.GetID()
   376  			update.DeploymentStatus = nil
   377  		}
   378  		s.ctx.Plan().AppendAlloc(update)
   379  	}
   380  
   381  	// Handle the annotation updates
   382  	for _, update := range results.attributeUpdates {
   383  		s.ctx.Plan().AppendAlloc(update)
   384  	}
   385  
   386  	// Nothing remaining to do if placement is not required
   387  	if len(results.place)+len(results.destructiveUpdate) == 0 {
   388  		// If the job has been purged we don't have access to the job. Otherwise
   389  		// set the queued allocs to zero. This is true if the job is being
   390  		// stopped as well.
   391  		if s.job != nil {
   392  			for _, tg := range s.job.TaskGroups {
   393  				s.queuedAllocs[tg.Name] = 0
   394  			}
   395  		}
   396  		return nil
   397  	}
   398  
   399  	// Record the number of allocations that needs to be placed per Task Group
   400  	for _, place := range results.place {
   401  		s.queuedAllocs[place.taskGroup.Name] += 1
   402  	}
   403  	for _, destructive := range results.destructiveUpdate {
   404  		s.queuedAllocs[destructive.placeTaskGroup.Name] += 1
   405  	}
   406  
   407  	// Compute the placements
   408  	place := make([]placementResult, 0, len(results.place))
   409  	for _, p := range results.place {
   410  		place = append(place, p)
   411  	}
   412  
   413  	destructive := make([]placementResult, 0, len(results.destructiveUpdate))
   414  	for _, p := range results.destructiveUpdate {
   415  		destructive = append(destructive, p)
   416  	}
   417  	return s.computePlacements(destructive, place)
   418  }
   419  
   420  // computePlacements computes placements for allocations. It is given the set of
   421  // destructive updates to place and the set of new placements to place.
   422  func (s *GenericScheduler) computePlacements(destructive, place []placementResult) error {
   423  	// Get the base nodes
   424  	nodes, byDC, err := readyNodesInDCs(s.state, s.job.Datacenters)
   425  	if err != nil {
   426  		return err
   427  	}
   428  
   429  	var deploymentID string
   430  	if s.deployment != nil && s.deployment.Active() {
   431  		deploymentID = s.deployment.ID
   432  	}
   433  
   434  	// Update the set of placement nodes
   435  	s.stack.SetNodes(nodes)
   436  
   437  	// Capture current time to use as the start time for any rescheduled allocations
   438  	now := time.Now()
   439  
   440  	// Have to handle destructive changes first as we need to discount their
   441  	// resources. To understand this imagine the resources were reduced and the
   442  	// count was scaled up.
   443  	for _, results := range [][]placementResult{destructive, place} {
   444  		for _, missing := range results {
   445  			// Get the task group
   446  			tg := missing.TaskGroup()
   447  
   448  			// Check if this task group has already failed
   449  			if metric, ok := s.failedTGAllocs[tg.Name]; ok {
   450  				metric.CoalescedFailures += 1
   451  				continue
   452  			}
   453  
   454  			// Find the preferred node
   455  			preferredNode, err := s.findPreferredNode(missing)
   456  			if err != nil {
   457  				return err
   458  			}
   459  
   460  			// Check if we should stop the previous allocation upon successful
   461  			// placement of its replacement. This allow atomic placements/stops. We
   462  			// stop the allocation before trying to find a replacement because this
   463  			// frees the resources currently used by the previous allocation.
   464  			stopPrevAlloc, stopPrevAllocDesc := missing.StopPreviousAlloc()
   465  			prevAllocation := missing.PreviousAllocation()
   466  			if stopPrevAlloc {
   467  				s.plan.AppendStoppedAlloc(prevAllocation, stopPrevAllocDesc, "")
   468  			}
   469  
   470  			// Compute penalty nodes for rescheduled allocs
   471  			selectOptions := getSelectOptions(prevAllocation, preferredNode)
   472  			option := s.selectNextOption(tg, selectOptions)
   473  
   474  			// Store the available nodes by datacenter
   475  			s.ctx.Metrics().NodesAvailable = byDC
   476  
   477  			// Compute top K scoring node metadata
   478  			s.ctx.Metrics().PopulateScoreMetaData()
   479  
   480  			// Set fields based on if we found an allocation option
   481  			if option != nil {
   482  				resources := &structs.AllocatedResources{
   483  					Tasks: option.TaskResources,
   484  					Shared: structs.AllocatedSharedResources{
   485  						DiskMB: int64(tg.EphemeralDisk.SizeMB),
   486  					},
   487  				}
   488  
   489  				// Create an allocation for this
   490  				alloc := &structs.Allocation{
   491  					ID:                 uuid.Generate(),
   492  					Namespace:          s.job.Namespace,
   493  					EvalID:             s.eval.ID,
   494  					Name:               missing.Name(),
   495  					JobID:              s.job.ID,
   496  					TaskGroup:          tg.Name,
   497  					Metrics:            s.ctx.Metrics(),
   498  					NodeID:             option.Node.ID,
   499  					NodeName:           option.Node.Name,
   500  					DeploymentID:       deploymentID,
   501  					TaskResources:      resources.OldTaskResources(),
   502  					AllocatedResources: resources,
   503  					DesiredStatus:      structs.AllocDesiredStatusRun,
   504  					ClientStatus:       structs.AllocClientStatusPending,
   505  					SharedResources: &structs.Resources{
   506  						DiskMB: tg.EphemeralDisk.SizeMB,
   507  					},
   508  				}
   509  
   510  				// If the new allocation is replacing an older allocation then we
   511  				// set the record the older allocation id so that they are chained
   512  				if prevAllocation != nil {
   513  					alloc.PreviousAllocation = prevAllocation.ID
   514  					if missing.IsRescheduling() {
   515  						updateRescheduleTracker(alloc, prevAllocation, now)
   516  					}
   517  				}
   518  
   519  				// If we are placing a canary and we found a match, add the canary
   520  				// to the deployment state object and mark it as a canary.
   521  				if missing.Canary() && s.deployment != nil {
   522  					if state, ok := s.deployment.TaskGroups[tg.Name]; ok {
   523  						state.PlacedCanaries = append(state.PlacedCanaries, alloc.ID)
   524  					}
   525  
   526  					alloc.DeploymentStatus = &structs.AllocDeploymentStatus{
   527  						Canary: true,
   528  					}
   529  				}
   530  
   531  				s.handlePreemptions(option, alloc, missing)
   532  
   533  				// Track the placement
   534  				s.plan.AppendAlloc(alloc)
   535  
   536  			} else {
   537  				// Lazy initialize the failed map
   538  				if s.failedTGAllocs == nil {
   539  					s.failedTGAllocs = make(map[string]*structs.AllocMetric)
   540  				}
   541  
   542  				// Track the fact that we didn't find a placement
   543  				s.failedTGAllocs[tg.Name] = s.ctx.Metrics()
   544  
   545  				// If we weren't able to find a replacement for the allocation, back
   546  				// out the fact that we asked to stop the allocation.
   547  				if stopPrevAlloc {
   548  					s.plan.PopUpdate(prevAllocation)
   549  				}
   550  			}
   551  
   552  		}
   553  	}
   554  
   555  	return nil
   556  }
   557  
   558  // getSelectOptions sets up preferred nodes and penalty nodes
   559  func getSelectOptions(prevAllocation *structs.Allocation, preferredNode *structs.Node) *SelectOptions {
   560  	selectOptions := &SelectOptions{}
   561  	if prevAllocation != nil {
   562  		penaltyNodes := make(map[string]struct{})
   563  		penaltyNodes[prevAllocation.NodeID] = struct{}{}
   564  		if prevAllocation.RescheduleTracker != nil {
   565  			for _, reschedEvent := range prevAllocation.RescheduleTracker.Events {
   566  				penaltyNodes[reschedEvent.PrevNodeID] = struct{}{}
   567  			}
   568  		}
   569  		selectOptions.PenaltyNodeIDs = penaltyNodes
   570  	}
   571  	if preferredNode != nil {
   572  		selectOptions.PreferredNodes = []*structs.Node{preferredNode}
   573  	}
   574  	return selectOptions
   575  }
   576  
   577  // updateRescheduleTracker carries over previous restart attempts and adds the most recent restart
   578  func updateRescheduleTracker(alloc *structs.Allocation, prev *structs.Allocation, now time.Time) {
   579  	reschedPolicy := prev.ReschedulePolicy()
   580  	var rescheduleEvents []*structs.RescheduleEvent
   581  	if prev.RescheduleTracker != nil {
   582  		var interval time.Duration
   583  		if reschedPolicy != nil {
   584  			interval = reschedPolicy.Interval
   585  		}
   586  		// If attempts is set copy all events in the interval range
   587  		if reschedPolicy.Attempts > 0 {
   588  			for _, reschedEvent := range prev.RescheduleTracker.Events {
   589  				timeDiff := now.UnixNano() - reschedEvent.RescheduleTime
   590  				// Only copy over events that are within restart interval
   591  				// This keeps the list of events small in cases where there's a long chain of old restart events
   592  				if interval > 0 && timeDiff <= interval.Nanoseconds() {
   593  					rescheduleEvents = append(rescheduleEvents, reschedEvent.Copy())
   594  				}
   595  			}
   596  		} else {
   597  			// Only copy the last n if unlimited is set
   598  			start := 0
   599  			if len(prev.RescheduleTracker.Events) > maxPastRescheduleEvents {
   600  				start = len(prev.RescheduleTracker.Events) - maxPastRescheduleEvents
   601  			}
   602  			for i := start; i < len(prev.RescheduleTracker.Events); i++ {
   603  				reschedEvent := prev.RescheduleTracker.Events[i]
   604  				rescheduleEvents = append(rescheduleEvents, reschedEvent.Copy())
   605  			}
   606  		}
   607  	}
   608  	nextDelay := prev.NextDelay()
   609  	rescheduleEvent := structs.NewRescheduleEvent(now.UnixNano(), prev.ID, prev.NodeID, nextDelay)
   610  	rescheduleEvents = append(rescheduleEvents, rescheduleEvent)
   611  	alloc.RescheduleTracker = &structs.RescheduleTracker{Events: rescheduleEvents}
   612  }
   613  
   614  // findPreferredNode finds the preferred node for an allocation
   615  func (s *GenericScheduler) findPreferredNode(place placementResult) (*structs.Node, error) {
   616  	if prev := place.PreviousAllocation(); prev != nil && place.TaskGroup().EphemeralDisk.Sticky == true {
   617  		var preferredNode *structs.Node
   618  		ws := memdb.NewWatchSet()
   619  		preferredNode, err := s.state.NodeByID(ws, prev.NodeID)
   620  		if err != nil {
   621  			return nil, err
   622  		}
   623  
   624  		if preferredNode != nil && preferredNode.Ready() {
   625  			return preferredNode, nil
   626  		}
   627  	}
   628  	return nil, nil
   629  }