github.com/bigzoro/my_simplechain@v0.0.0-20240315012955-8ad0a2a29bb9/core/access_contoller/crypto/x509/verify.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package x509
     6  
     7  import (
     8  	"bytes"
     9  	"crypto/x509"
    10  	"errors"
    11  	"fmt"
    12  	"net"
    13  	"net/url"
    14  	"os"
    15  	"reflect"
    16  	"strings"
    17  	"time"
    18  	"unicode/utf8"
    19  )
    20  
    21  // ignoreCN disables interpreting Common Name as a hostname. See issue 24151.
    22  var ignoreCN = strings.Contains(os.Getenv("GODEBUG"), "x509ignoreCN=1")
    23  
    24  type InvalidReason int
    25  
    26  const (
    27  	// NotAuthorizedToSign results when a certificate is signed by another
    28  	// which isn't marked as a CA certificate.
    29  	NotAuthorizedToSign InvalidReason = iota
    30  	// Expired results when a certificate has expired, based on the time
    31  	// given in the VerifyOptions.
    32  	Expired
    33  	// CANotAuthorizedForThisName results when an intermediate or root
    34  	// certificate has a name constraint which doesn't permit a DNS or
    35  	// other name (including IP address) in the leaf certificate.
    36  	CANotAuthorizedForThisName
    37  	// TooManyIntermediates results when a path length constraint is
    38  	// violated.
    39  	TooManyIntermediates
    40  	// IncompatibleUsage results when the certificate's key usage indicates
    41  	// that it may only be used for a different purpose.
    42  	IncompatibleUsage
    43  	// NameMismatch results when the subject name of a parent certificate
    44  	// does not match the issuer name in the child.
    45  	NameMismatch
    46  	// NameConstraintsWithoutSANs results when a leaf certificate doesn't
    47  	// contain a Subject Alternative Name extension, but a CA certificate
    48  	// contains name constraints, and the Common Name can be interpreted as
    49  	// a hostname.
    50  	//
    51  	// You can avoid this error by setting the experimental GODEBUG environment
    52  	// variable to "x509ignoreCN=1", disabling Common Name matching entirely.
    53  	// This behavior might become the default in the future.
    54  	NameConstraintsWithoutSANs
    55  	// UnconstrainedName results when a CA certificate contains permitted
    56  	// name constraints, but leaf certificate contains a name of an
    57  	// unsupported or unconstrained type.
    58  	UnconstrainedName
    59  	// TooManyConstraints results when the number of comparison operations
    60  	// needed to check a certificate exceeds the limit set by
    61  	// VerifyOptions.MaxConstraintComparisions. This limit exists to
    62  	// prevent pathological certificates can consuming excessive amounts of
    63  	// CPU time to verify.
    64  	TooManyConstraints
    65  	// CANotAuthorizedForExtKeyUsage results when an intermediate or root
    66  	// certificate does not permit a requested extended key usage.
    67  	CANotAuthorizedForExtKeyUsage
    68  )
    69  
    70  // CertificateInvalidError results when an odd error occurs. Users of this
    71  // library probably want to handle all these errors uniformly.
    72  type CertificateInvalidError struct {
    73  	Cert   *Certificate
    74  	Reason InvalidReason
    75  	Detail string
    76  }
    77  
    78  func (e CertificateInvalidError) Error() string {
    79  	switch e.Reason {
    80  	case NotAuthorizedToSign:
    81  		return "x509: certificate is not authorized to sign other certificates"
    82  	case Expired:
    83  		return "x509: certificate has expired or is not yet valid"
    84  	case CANotAuthorizedForThisName:
    85  		return "x509: a root or intermediate certificate is not authorized to sign for this name: " + e.Detail
    86  	case CANotAuthorizedForExtKeyUsage:
    87  		return "x509: a root or intermediate certificate is not authorized for an extended key usage: " + e.Detail
    88  	case TooManyIntermediates:
    89  		return "x509: too many intermediates for path length constraint"
    90  	case IncompatibleUsage:
    91  		return "x509: certificate specifies an incompatible key usage"
    92  	case NameMismatch:
    93  		return "x509: issuer name does not match subject from issuing certificate"
    94  	case NameConstraintsWithoutSANs:
    95  		return "x509: issuer has name constraints but leaf doesn't have a SAN extension"
    96  	case UnconstrainedName:
    97  		return "x509: issuer has name constraints but leaf contains unknown or unconstrained name: " + e.Detail
    98  	}
    99  	return "x509: unknown error"
   100  }
   101  
   102  // HostnameError results when the set of authorized names doesn't match the
   103  // requested name.
   104  type HostnameError struct {
   105  	Certificate *Certificate
   106  	Host        string
   107  }
   108  
   109  func (h HostnameError) Error() string {
   110  	c := h.Certificate
   111  
   112  	if !c.hasSANExtension() && !validHostname(c.Subject.CommonName) &&
   113  		matchHostnames(toLowerCaseASCII(c.Subject.CommonName), toLowerCaseASCII(h.Host)) {
   114  		// This would have validated, if it weren't for the validHostname check on Common Name.
   115  		return "x509: Common Name is not a valid hostname: " + c.Subject.CommonName
   116  	}
   117  
   118  	var valid string
   119  	if ip := net.ParseIP(h.Host); ip != nil {
   120  		// Trying to validate an IP
   121  		if len(c.IPAddresses) == 0 {
   122  			return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs"
   123  		}
   124  		for _, san := range c.IPAddresses {
   125  			if len(valid) > 0 {
   126  				valid += ", "
   127  			}
   128  			valid += san.String()
   129  		}
   130  	} else {
   131  		if c.commonNameAsHostname() {
   132  			valid = c.Subject.CommonName
   133  		} else {
   134  			valid = strings.Join(c.DNSNames, ", ")
   135  		}
   136  	}
   137  
   138  	if len(valid) == 0 {
   139  		return "x509: certificate is not valid for any names, but wanted to match " + h.Host
   140  	}
   141  	return "x509: certificate is valid for " + valid + ", not " + h.Host
   142  }
   143  
   144  // UnknownAuthorityError results when the certificate issuer is unknown
   145  type UnknownAuthorityError struct {
   146  	Cert *Certificate
   147  	// hintErr contains an error that may be helpful in determining why an
   148  	// authority wasn't found.
   149  	hintErr error
   150  	// hintCert contains a possible authority certificate that was rejected
   151  	// because of the error in hintErr.
   152  	hintCert *Certificate
   153  }
   154  
   155  func (e UnknownAuthorityError) Error() string {
   156  	s := "x509: certificate signed by unknown authority"
   157  	if e.hintErr != nil {
   158  		certName := e.hintCert.Subject.CommonName
   159  		if len(certName) == 0 {
   160  			if len(e.hintCert.Subject.Organization) > 0 {
   161  				certName = e.hintCert.Subject.Organization[0]
   162  			} else {
   163  				certName = "serial:" + e.hintCert.SerialNumber.String()
   164  			}
   165  		}
   166  		s += fmt.Sprintf(
   167  			" (possibly because of %q while trying to verify candidate authority certificate %q)",
   168  			e.hintErr,
   169  			certName,
   170  		)
   171  	}
   172  	return s
   173  }
   174  
   175  // SystemRootsError results when we fail to load the system root certificates.
   176  type SystemRootsError struct {
   177  	Err error
   178  }
   179  
   180  func (se SystemRootsError) Error() string {
   181  	msg := "x509: failed to load system roots and no roots provided"
   182  	if se.Err != nil {
   183  		return msg + "; " + se.Err.Error()
   184  	}
   185  	return msg
   186  }
   187  
   188  // errNotParsed is returned when a certificate without ASN.1 contents is
   189  // verified. Platform-specific verification needs the ASN.1 contents.
   190  var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate")
   191  
   192  // VerifyOptions contains parameters for Certificate.Verify. It's a structure
   193  // because other PKIX verification APIs have ended up needing many options.
   194  type VerifyOptions struct {
   195  	DNSName       string
   196  	Intermediates *CertPool
   197  	Roots         *CertPool // if nil, the system roots are used
   198  	CurrentTime   time.Time // if zero, the current time is used
   199  	// KeyUsage specifies which Extended Key Usage values are acceptable. A leaf
   200  	// certificate is accepted if it contains any of the listed values. An empty
   201  	// list means ExtKeyUsageServerAuth. To accept any key usage, include
   202  	// ExtKeyUsageAny.
   203  	//
   204  	// Certificate chains are required to nest these extended key usage values.
   205  	// (This matches the Windows CryptoAPI behavior, but not the spec.)
   206  	KeyUsages []x509.ExtKeyUsage
   207  	// MaxConstraintComparisions is the maximum number of comparisons to
   208  	// perform when checking a given certificate's name constraints. If
   209  	// zero, a sensible default is used. This limit prevents pathological
   210  	// certificates from consuming excessive amounts of CPU time when
   211  	// validating.
   212  	MaxConstraintComparisions int
   213  }
   214  
   215  const (
   216  	leafCertificate = iota
   217  	intermediateCertificate
   218  	rootCertificate
   219  )
   220  
   221  // rfc2821Mailbox represents a “mailbox” (which is an email address to most
   222  // people) by breaking it into the “local” (i.e. before the '@') and “domain”
   223  // parts.
   224  type rfc2821Mailbox struct {
   225  	local, domain string
   226  }
   227  
   228  // parseRFC2821Mailbox parses an email address into local and domain parts,
   229  // based on the ABNF for a “Mailbox” from RFC 2821. According to RFC 5280,
   230  // Section 4.2.1.6 that's correct for an rfc822Name from a certificate: “The
   231  // format of an rfc822Name is a "Mailbox" as defined in RFC 2821, Section 4.1.2”.
   232  // nolint: gocyclo
   233  func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) {
   234  	if len(in) == 0 {
   235  		return mailbox, false
   236  	}
   237  
   238  	localPartBytes := make([]byte, 0, len(in)/2)
   239  
   240  	if in[0] == '"' {
   241  		// Quoted-string = DQUOTE *qcontent DQUOTE
   242  		// non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127
   243  		// qcontent = qtext / quoted-pair
   244  		// qtext = non-whitespace-control /
   245  		//         %d33 / %d35-91 / %d93-126
   246  		// quoted-pair = ("\" text) / obs-qp
   247  		// text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text
   248  		//
   249  		// (Names beginning with “obs-” are the obsolete syntax from RFC 2822,
   250  		// Section 4. Since it has been 16 years, we no longer accept that.)
   251  		in = in[1:]
   252  	QuotedString:
   253  		for {
   254  			if len(in) == 0 {
   255  				return mailbox, false
   256  			}
   257  			c := in[0]
   258  			in = in[1:]
   259  
   260  			switch {
   261  			case c == '"':
   262  				break QuotedString
   263  
   264  			case c == '\\':
   265  				// quoted-pair
   266  				if len(in) == 0 {
   267  					return mailbox, false
   268  				}
   269  				if in[0] == 11 ||
   270  					in[0] == 12 ||
   271  					(1 <= in[0] && in[0] <= 9) ||
   272  					(14 <= in[0] && in[0] <= 127) {
   273  					localPartBytes = append(localPartBytes, in[0])
   274  					in = in[1:]
   275  				} else {
   276  					return mailbox, false
   277  				}
   278  
   279  			case c == 11 ||
   280  				c == 12 ||
   281  				// Space (char 32) is not allowed based on the
   282  				// BNF, but RFC 3696 gives an example that
   283  				// assumes that it is. Several “verified”
   284  				// errata continue to argue about this point.
   285  				// We choose to accept it.
   286  				c == 32 ||
   287  				c == 33 ||
   288  				c == 127 ||
   289  				(1 <= c && c <= 8) ||
   290  				(14 <= c && c <= 31) ||
   291  				(35 <= c && c <= 91) ||
   292  				(93 <= c && c <= 126):
   293  				// qtext
   294  				localPartBytes = append(localPartBytes, c)
   295  
   296  			default:
   297  				return mailbox, false
   298  			}
   299  		}
   300  	} else {
   301  		// Atom ("." Atom)*
   302  	NextChar:
   303  		for len(in) > 0 {
   304  			// atext from RFC 2822, Section 3.2.4
   305  			c := in[0]
   306  
   307  			switch {
   308  			case c == '\\':
   309  				// Examples given in RFC 3696 suggest that
   310  				// escaped characters can appear outside of a
   311  				// quoted string. Several “verified” errata
   312  				// continue to argue the point. We choose to
   313  				// accept it.
   314  				in = in[1:]
   315  				if len(in) == 0 {
   316  					return mailbox, false
   317  				}
   318  				fallthrough
   319  
   320  			case ('0' <= c && c <= '9') ||
   321  				('a' <= c && c <= 'z') ||
   322  				('A' <= c && c <= 'Z') ||
   323  				c == '!' || c == '#' || c == '$' || c == '%' ||
   324  				c == '&' || c == '\'' || c == '*' || c == '+' ||
   325  				c == '-' || c == '/' || c == '=' || c == '?' ||
   326  				c == '^' || c == '_' || c == '`' || c == '{' ||
   327  				c == '|' || c == '}' || c == '~' || c == '.':
   328  				localPartBytes = append(localPartBytes, in[0])
   329  				in = in[1:]
   330  
   331  			default:
   332  				break NextChar
   333  			}
   334  		}
   335  
   336  		if len(localPartBytes) == 0 {
   337  			return mailbox, false
   338  		}
   339  
   340  		// From RFC 3696, Section 3:
   341  		// “period (".") may also appear, but may not be used to start
   342  		// or end the local part, nor may two or more consecutive
   343  		// periods appear.”
   344  		twoDots := []byte{'.', '.'}
   345  		if localPartBytes[0] == '.' ||
   346  			localPartBytes[len(localPartBytes)-1] == '.' ||
   347  			bytes.Contains(localPartBytes, twoDots) {
   348  			return mailbox, false
   349  		}
   350  	}
   351  
   352  	if len(in) == 0 || in[0] != '@' {
   353  		return mailbox, false
   354  	}
   355  	in = in[1:]
   356  
   357  	// The RFC species a format for domains, but that's known to be
   358  	// violated in practice so we accept that anything after an '@' is the
   359  	// domain part.
   360  	if _, ok := domainToReverseLabels(in); !ok {
   361  		return mailbox, false
   362  	}
   363  
   364  	mailbox.local = string(localPartBytes)
   365  	mailbox.domain = in
   366  	return mailbox, true
   367  }
   368  
   369  // domainToReverseLabels converts a textual domain name like foo.example.com to
   370  // the list of labels in reverse order, e.g. ["com", "example", "foo"].
   371  func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) {
   372  	for len(domain) > 0 {
   373  		if i := strings.LastIndexByte(domain, '.'); i == -1 {
   374  			reverseLabels = append(reverseLabels, domain)
   375  			domain = ""
   376  		} else {
   377  			reverseLabels = append(reverseLabels, domain[i+1:])
   378  			domain = domain[:i]
   379  		}
   380  	}
   381  
   382  	if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 {
   383  		// An empty label at the end indicates an absolute value.
   384  		return nil, false
   385  	}
   386  
   387  	for _, label := range reverseLabels {
   388  		if len(label) == 0 {
   389  			// Empty labels are otherwise invalid.
   390  			return nil, false
   391  		}
   392  
   393  		for _, c := range label {
   394  			if c < 33 || c > 126 {
   395  				// Invalid character.
   396  				return nil, false
   397  			}
   398  		}
   399  	}
   400  
   401  	return reverseLabels, true
   402  }
   403  
   404  func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) {
   405  	// If the constraint contains an @, then it specifies an exact mailbox
   406  	// name.
   407  	if strings.Contains(constraint, "@") {
   408  		constraintMailbox, ok := parseRFC2821Mailbox(constraint)
   409  		if !ok {
   410  			return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint)
   411  		}
   412  		return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil
   413  	}
   414  
   415  	// Otherwise the constraint is like a DNS constraint of the domain part
   416  	// of the mailbox.
   417  	return matchDomainConstraint(mailbox.domain, constraint)
   418  }
   419  
   420  func matchURIConstraint(uri *url.URL, constraint string) (bool, error) {
   421  	// From RFC 5280, Section 4.2.1.10:
   422  	// “a uniformResourceIdentifier that does not include an authority
   423  	// component with a host name specified as a fully qualified domain
   424  	// name (e.g., if the URI either does not include an authority
   425  	// component or includes an authority component in which the host name
   426  	// is specified as an IP address), then the application MUST reject the
   427  	// certificate.”
   428  
   429  	host := uri.Host
   430  	if len(host) == 0 {
   431  		return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String())
   432  	}
   433  
   434  	if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") {
   435  		var err error
   436  		host, _, err = net.SplitHostPort(uri.Host)
   437  		if err != nil {
   438  			return false, err
   439  		}
   440  	}
   441  
   442  	if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") ||
   443  		net.ParseIP(host) != nil {
   444  		return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String())
   445  	}
   446  
   447  	return matchDomainConstraint(host, constraint)
   448  }
   449  
   450  func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) {
   451  	if len(ip) != len(constraint.IP) {
   452  		return false, nil
   453  	}
   454  
   455  	for i := range ip {
   456  		if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask {
   457  			return false, nil
   458  		}
   459  	}
   460  
   461  	return true, nil
   462  }
   463  
   464  func matchDomainConstraint(domain, constraint string) (bool, error) {
   465  	// The meaning of zero length constraints is not specified, but this
   466  	// code follows NSS and accepts them as matching everything.
   467  	if len(constraint) == 0 {
   468  		return true, nil
   469  	}
   470  
   471  	domainLabels, ok := domainToReverseLabels(domain)
   472  	if !ok {
   473  		return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain)
   474  	}
   475  
   476  	// RFC 5280 says that a leading period in a domain name means that at
   477  	// least one label must be prepended, but only for URI and email
   478  	// constraints, not DNS constraints. The code also supports that
   479  	// behaviour for DNS constraints.
   480  
   481  	mustHaveSubdomains := false
   482  	if constraint[0] == '.' {
   483  		mustHaveSubdomains = true
   484  		constraint = constraint[1:]
   485  	}
   486  
   487  	constraintLabels, ok := domainToReverseLabels(constraint)
   488  	if !ok {
   489  		return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint)
   490  	}
   491  
   492  	if len(domainLabels) < len(constraintLabels) ||
   493  		(mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) {
   494  		return false, nil
   495  	}
   496  
   497  	for i, constraintLabel := range constraintLabels {
   498  		if !strings.EqualFold(constraintLabel, domainLabels[i]) {
   499  			return false, nil
   500  		}
   501  	}
   502  
   503  	return true, nil
   504  }
   505  
   506  // checkNameConstraints checks that c permits a child certificate to claim the
   507  // given name, of type nameType. The argument parsedName contains the parsed
   508  // form of name, suitable for passing to the match function. The total number
   509  // of comparisons is tracked in the given count and should not exceed the given
   510  // limit.
   511  func (c *Certificate) checkNameConstraints(count *int,
   512  	maxConstraintComparisons int,
   513  	nameType string,
   514  	name string,
   515  	parsedName interface{},
   516  	match func(parsedName, constraint interface{}) (match bool, err error),
   517  	permitted, excluded interface{}) error {
   518  
   519  	excludedValue := reflect.ValueOf(excluded)
   520  
   521  	*count += excludedValue.Len()
   522  	if *count > maxConstraintComparisons {
   523  		return CertificateInvalidError{c, TooManyConstraints, ""}
   524  	}
   525  
   526  	for i := 0; i < excludedValue.Len(); i++ {
   527  		constraint := excludedValue.Index(i).Interface()
   528  		match, err := match(parsedName, constraint)
   529  		if err != nil {
   530  			return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
   531  		}
   532  
   533  		if match {
   534  			return CertificateInvalidError{
   535  				c,
   536  				CANotAuthorizedForThisName,
   537  				fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint),
   538  			}
   539  		}
   540  	}
   541  
   542  	permittedValue := reflect.ValueOf(permitted)
   543  
   544  	*count += permittedValue.Len()
   545  	if *count > maxConstraintComparisons {
   546  		return CertificateInvalidError{c, TooManyConstraints, ""}
   547  	}
   548  
   549  	ok := true
   550  	for i := 0; i < permittedValue.Len(); i++ {
   551  		constraint := permittedValue.Index(i).Interface()
   552  
   553  		var err error
   554  		if ok, err = match(parsedName, constraint); err != nil {
   555  			return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()}
   556  		}
   557  
   558  		if ok {
   559  			break
   560  		}
   561  	}
   562  
   563  	if !ok {
   564  		return CertificateInvalidError{
   565  			c,
   566  			CANotAuthorizedForThisName,
   567  			fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name),
   568  		}
   569  	}
   570  
   571  	return nil
   572  }
   573  
   574  // isValid performs validity checks on c given that it is a candidate to append
   575  // to the chain in currentChain.
   576  // nolint: gocyclo
   577  func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error {
   578  	if len(c.UnhandledCriticalExtensions) > 0 {
   579  		return UnhandledCriticalExtension{}
   580  	}
   581  
   582  	if len(currentChain) > 0 {
   583  		child := currentChain[len(currentChain)-1]
   584  		if !bytes.Equal(child.RawIssuer, c.RawSubject) {
   585  			return CertificateInvalidError{c, NameMismatch, ""}
   586  		}
   587  	}
   588  
   589  	now := opts.CurrentTime
   590  	if now.IsZero() {
   591  		now = time.Now()
   592  	}
   593  	if now.Before(c.NotBefore) || now.After(c.NotAfter) {
   594  		return CertificateInvalidError{c, Expired, ""}
   595  	}
   596  
   597  	maxConstraintComparisons := opts.MaxConstraintComparisions
   598  	if maxConstraintComparisons == 0 {
   599  		maxConstraintComparisons = 250000
   600  	}
   601  	comparisonCount := 0
   602  
   603  	var leaf *Certificate
   604  	if certType == intermediateCertificate || certType == rootCertificate {
   605  		if len(currentChain) == 0 {
   606  			return errors.New("x509: internal error: empty chain when appending CA cert")
   607  		}
   608  		leaf = currentChain[0]
   609  	}
   610  
   611  	checkNameConstraints := (certType == intermediateCertificate || certType == rootCertificate) && c.hasNameConstraints()
   612  	if checkNameConstraints && leaf.commonNameAsHostname() {
   613  		// This is the deprecated, legacy case of depending on the commonName as
   614  		// a hostname. We don't enforce name constraints against the CN, but
   615  		// VerifyHostname will look for hostnames in there if there are no SANs.
   616  		// In order to ensure VerifyHostname will not accept an unchecked name,
   617  		// return an error here.
   618  		return CertificateInvalidError{c, NameConstraintsWithoutSANs, ""}
   619  	} else if checkNameConstraints && leaf.hasSANExtension() {
   620  		err := forEachSAN(leaf.getSANExtension(), func(tag int, data []byte) error {
   621  			switch tag {
   622  			case nameTypeEmail:
   623  				name := string(data)
   624  				mailbox, ok := parseRFC2821Mailbox(name)
   625  				if !ok {
   626  					return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox)
   627  				}
   628  
   629  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox,
   630  					func(parsedName, constraint interface{}) (bool, error) {
   631  						return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string))
   632  					}, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil {
   633  					return err
   634  				}
   635  
   636  			case nameTypeDNS:
   637  				name := string(data)
   638  				if _, ok := domainToReverseLabels(name); !ok {
   639  					return fmt.Errorf("x509: cannot parse dnsName %q", name)
   640  				}
   641  
   642  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name,
   643  					func(parsedName, constraint interface{}) (bool, error) {
   644  						return matchDomainConstraint(parsedName.(string), constraint.(string))
   645  					}, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil {
   646  					return err
   647  				}
   648  
   649  			case nameTypeURI:
   650  				name := string(data)
   651  				uri, err := url.Parse(name)
   652  				if err != nil {
   653  					return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name)
   654  				}
   655  
   656  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri,
   657  					func(parsedName, constraint interface{}) (bool, error) {
   658  						return matchURIConstraint(parsedName.(*url.URL), constraint.(string))
   659  					}, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil {
   660  					return err
   661  				}
   662  
   663  			case nameTypeIP:
   664  				ip := net.IP(data)
   665  				if l := len(ip); l != net.IPv4len && l != net.IPv6len {
   666  					return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data)
   667  				}
   668  
   669  				if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip,
   670  					func(parsedName, constraint interface{}) (bool, error) {
   671  						return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet))
   672  					}, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil {
   673  					return err
   674  				}
   675  
   676  			default:
   677  				// Unknown SAN types are ignored.
   678  			}
   679  
   680  			return nil
   681  		})
   682  
   683  		if err != nil {
   684  			return err
   685  		}
   686  	}
   687  
   688  	// KeyUsage status flags are ignored. From Engineering Security, Peter
   689  	// Gutmann: A European government CA marked its signing certificates as
   690  	// being valid for encryption only, but no-one noticed. Another
   691  	// European CA marked its signature keys as not being valid for
   692  	// signatures. A different CA marked its own trusted root certificate
   693  	// as being invalid for certificate signing. Another national CA
   694  	// distributed a certificate to be used to encrypt data for the
   695  	// country’s tax authority that was marked as only being usable for
   696  	// digital signatures but not for encryption. Yet another CA reversed
   697  	// the order of the bit flags in the keyUsage due to confusion over
   698  	// encoding endianness, essentially setting a random keyUsage in
   699  	// certificates that it issued. Another CA created a self-invalidating
   700  	// certificate by adding a certificate policy statement stipulating
   701  	// that the certificate had to be used strictly as specified in the
   702  	// keyUsage, and a keyUsage containing a flag indicating that the RSA
   703  	// encryption key could only be used for Diffie-Hellman key agreement.
   704  
   705  	if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
   706  		return CertificateInvalidError{c, NotAuthorizedToSign, ""}
   707  	}
   708  
   709  	if c.BasicConstraintsValid && c.MaxPathLen >= 0 {
   710  		numIntermediates := len(currentChain) - 1
   711  		if numIntermediates > c.MaxPathLen {
   712  			return CertificateInvalidError{c, TooManyIntermediates, ""}
   713  		}
   714  	}
   715  
   716  	return nil
   717  }
   718  
   719  // Verify attempts to verify c by building one or more chains from c to a
   720  // certificate in opts.Roots, using certificates in opts.Intermediates if
   721  // needed. If successful, it returns one or more chains where the first
   722  // element of the chain is c and the last element is from opts.Roots.
   723  //
   724  // If opts.Roots is nil and system roots are unavailable the returned error
   725  // will be of type SystemRootsError.
   726  //
   727  // Name constraints in the intermediates will be applied to all names claimed
   728  // in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim
   729  // example.com if an intermediate doesn't permit it, even if example.com is not
   730  // the name being validated. Note that DirectoryName constraints are not
   731  // supported.
   732  //
   733  // Extended Key Usage values are enforced down a chain, so an intermediate or
   734  // root that enumerates EKUs prevents a leaf from asserting an EKU not in that
   735  // list.
   736  //
   737  // WARNING: this function doesn't do any revocation checking.
   738  func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
   739  	// Platform-specific verification needs the ASN.1 contents so
   740  	// this makes the behavior consistent across platforms.
   741  	if len(c.Raw) == 0 {
   742  		return nil, errNotParsed
   743  	}
   744  	if opts.Intermediates != nil {
   745  		for _, intermediate := range opts.Intermediates.certs {
   746  			if len(intermediate.Raw) == 0 {
   747  				return nil, errNotParsed
   748  			}
   749  		}
   750  	}
   751  
   752  	// Use Windows's own verification and chain building.
   753  	if opts.Roots == nil {
   754  		return nil, fmt.Errorf("trusted root certificate pool is empty")
   755  	}
   756  
   757  	err = c.isValid(leafCertificate, nil, &opts)
   758  	if err != nil {
   759  		return
   760  	}
   761  
   762  	if len(opts.DNSName) > 0 {
   763  		err = c.VerifyHostname(opts.DNSName)
   764  		if err != nil {
   765  			return
   766  		}
   767  	}
   768  
   769  	var candidateChains [][]*Certificate
   770  	if opts.Roots.contains(c) {
   771  		candidateChains = append(candidateChains, []*Certificate{c})
   772  	} else {
   773  		if candidateChains, err = c.buildChains(nil, []*Certificate{c}, nil, &opts); err != nil {
   774  			return nil, err
   775  		}
   776  	}
   777  
   778  	keyUsages := opts.KeyUsages
   779  	if len(keyUsages) == 0 {
   780  		keyUsages = []x509.ExtKeyUsage{x509.ExtKeyUsageServerAuth}
   781  	}
   782  
   783  	// If any key usage is acceptable then we're done.
   784  	for _, usage := range keyUsages {
   785  		if usage == x509.ExtKeyUsageAny {
   786  			return candidateChains, nil
   787  		}
   788  	}
   789  
   790  	for _, candidate := range candidateChains {
   791  		if checkChainForKeyUsage(candidate, keyUsages) {
   792  			chains = append(chains, candidate)
   793  		}
   794  	}
   795  
   796  	if len(chains) == 0 {
   797  		return nil, CertificateInvalidError{c, IncompatibleUsage, ""}
   798  	}
   799  
   800  	return chains, nil
   801  }
   802  
   803  func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
   804  	n := make([]*Certificate, len(chain)+1)
   805  	copy(n, chain)
   806  	n[len(chain)] = cert
   807  	return n
   808  }
   809  
   810  // maxChainSignatureChecks is the maximum number of CheckSignatureFrom calls
   811  // that an invocation of buildChains will (tranistively) make. Most chains are
   812  // less than 15 certificates long, so this leaves space for multiple chains and
   813  // for failed checks due to different intermediates having the same Subject.
   814  const maxChainSignatureChecks = 100
   815  
   816  func (c *Certificate) buildChains(cache map[*Certificate][][]*Certificate, currentChain []*Certificate,
   817  	sigChecks *int, opts *VerifyOptions) (chains [][]*Certificate, err error) {
   818  	var (
   819  		hintErr  error
   820  		hintCert *Certificate
   821  	)
   822  
   823  	considerCandidate := func(certType int, candidate *Certificate) {
   824  		for _, cert := range currentChain {
   825  			if cert.Equal(candidate) {
   826  				return
   827  			}
   828  		}
   829  
   830  		if sigChecks == nil {
   831  			sigChecks = new(int)
   832  		}
   833  		*sigChecks++
   834  		if *sigChecks > maxChainSignatureChecks {
   835  			err = errors.New("x509: signature check attempts limit reached while verifying certificate chain")
   836  			return
   837  		}
   838  
   839  		if err = c.CheckSignatureFrom(candidate); err != nil {
   840  			if hintErr == nil {
   841  				hintErr = err
   842  				hintCert = candidate
   843  			}
   844  			return
   845  		}
   846  
   847  		err = candidate.isValid(certType, currentChain, opts)
   848  		if err != nil {
   849  			return
   850  		}
   851  
   852  		switch certType {
   853  		case rootCertificate:
   854  			chains = append(chains, appendToFreshChain(currentChain, candidate))
   855  		case intermediateCertificate:
   856  			if cache == nil {
   857  				cache = make(map[*Certificate][][]*Certificate)
   858  			}
   859  			childChains, ok := cache[candidate]
   860  			if !ok {
   861  				childChains, err = candidate.buildChains(cache, appendToFreshChain(currentChain, candidate), sigChecks, opts)
   862  				cache[candidate] = childChains
   863  			}
   864  			chains = append(chains, childChains...)
   865  		}
   866  	}
   867  
   868  	for _, rootNum := range opts.Roots.findPotentialParents(c) {
   869  		considerCandidate(rootCertificate, opts.Roots.certs[rootNum])
   870  	}
   871  	for _, intermediateNum := range opts.Intermediates.findPotentialParents(c) {
   872  		considerCandidate(intermediateCertificate, opts.Intermediates.certs[intermediateNum])
   873  	}
   874  
   875  	if len(chains) > 0 {
   876  		err = nil
   877  	}
   878  	if len(chains) == 0 && err == nil {
   879  		err = UnknownAuthorityError{c, hintErr, hintCert}
   880  	}
   881  
   882  	return
   883  }
   884  
   885  // validHostname reports whether host is a valid hostname that can be matched or
   886  // matched against according to RFC 6125 2.2, with some leniency to accommodate
   887  // legacy values.
   888  func validHostname(host string) bool {
   889  	host = strings.TrimSuffix(host, ".")
   890  
   891  	if len(host) == 0 {
   892  		return false
   893  	}
   894  
   895  	for i, part := range strings.Split(host, ".") {
   896  		if part == "" {
   897  			// Empty label.
   898  			return false
   899  		}
   900  		if i == 0 && part == "*" {
   901  			// Only allow full left-most wildcards, as those are the only ones
   902  			// we match, and matching literal '*' characters is probably never
   903  			// the expected behavior.
   904  			continue
   905  		}
   906  		for j, c := range part {
   907  			if 'a' <= c && c <= 'z' {
   908  				continue
   909  			}
   910  			if '0' <= c && c <= '9' {
   911  				continue
   912  			}
   913  			if 'A' <= c && c <= 'Z' {
   914  				continue
   915  			}
   916  			if c == '-' && j != 0 {
   917  				continue
   918  			}
   919  			if c == '_' || c == ':' {
   920  				// Not valid characters in hostnames, but commonly
   921  				// found in deployments outside the WebPKI.
   922  				continue
   923  			}
   924  			return false
   925  		}
   926  	}
   927  
   928  	return true
   929  }
   930  
   931  // commonNameAsHostname reports whether the Common Name field should be
   932  // considered the hostname that the certificate is valid for. This is a legacy
   933  // behavior, disabled if the Subject Alt Name extension is present.
   934  //
   935  // It applies the strict validHostname check to the Common Name field, so that
   936  // certificates without SANs can still be validated against CAs with name
   937  // constraints if there is no risk the CN would be matched as a hostname.
   938  // See NameConstraintsWithoutSANs and issue 24151.
   939  func (c *Certificate) commonNameAsHostname() bool {
   940  	return !ignoreCN && !c.hasSANExtension() && validHostname(c.Subject.CommonName)
   941  }
   942  
   943  func matchHostnames(pattern, host string) bool {
   944  	host = strings.TrimSuffix(host, ".")
   945  	pattern = strings.TrimSuffix(pattern, ".")
   946  
   947  	if len(pattern) == 0 || len(host) == 0 {
   948  		return false
   949  	}
   950  
   951  	patternParts := strings.Split(pattern, ".")
   952  	hostParts := strings.Split(host, ".")
   953  
   954  	if len(patternParts) != len(hostParts) {
   955  		return false
   956  	}
   957  
   958  	for i, patternPart := range patternParts {
   959  		if i == 0 && patternPart == "*" {
   960  			continue
   961  		}
   962  		if patternPart != hostParts[i] {
   963  			return false
   964  		}
   965  	}
   966  
   967  	return true
   968  }
   969  
   970  // toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
   971  // an explicitly ASCII function to avoid any sharp corners resulting from
   972  // performing Unicode operations on DNS labels.
   973  func toLowerCaseASCII(in string) string {
   974  	// If the string is already lower-case then there's nothing to do.
   975  	isAlreadyLowerCase := true
   976  	for _, c := range in {
   977  		if c == utf8.RuneError {
   978  			// If we get a UTF-8 error then there might be
   979  			// upper-case ASCII bytes in the invalid sequence.
   980  			isAlreadyLowerCase = false
   981  			break
   982  		}
   983  		if 'A' <= c && c <= 'Z' {
   984  			isAlreadyLowerCase = false
   985  			break
   986  		}
   987  	}
   988  
   989  	if isAlreadyLowerCase {
   990  		return in
   991  	}
   992  
   993  	out := []byte(in)
   994  	for i, c := range out {
   995  		if 'A' <= c && c <= 'Z' {
   996  			out[i] += 'a' - 'A'
   997  		}
   998  	}
   999  	return string(out)
  1000  }
  1001  
  1002  // VerifyHostname returns nil if c is a valid certificate for the named host.
  1003  // Otherwise it returns an error describing the mismatch.
  1004  func (c *Certificate) VerifyHostname(h string) error {
  1005  	// IP addresses may be written in [ ].
  1006  	candidateIP := h
  1007  	if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
  1008  		candidateIP = h[1 : len(h)-1]
  1009  	}
  1010  	if ip := net.ParseIP(candidateIP); ip != nil {
  1011  		// We only match IP addresses against IP SANs.
  1012  		// See RFC 6125, Appendix B.2.
  1013  		for _, candidate := range c.IPAddresses {
  1014  			if ip.Equal(candidate) {
  1015  				return nil
  1016  			}
  1017  		}
  1018  		return HostnameError{c, candidateIP}
  1019  	}
  1020  
  1021  	lowered := toLowerCaseASCII(h)
  1022  
  1023  	if len(c.DNSNames) > 0 {
  1024  		for _, match := range c.DNSNames {
  1025  			if matchHostnames(toLowerCaseASCII(match), lowered) {
  1026  				return nil
  1027  			}
  1028  		}
  1029  		// If Subject Alt Name is given, we ignore the common name.
  1030  	} else if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) {
  1031  		return nil
  1032  	}
  1033  
  1034  	return HostnameError{c, h}
  1035  }
  1036  
  1037  func checkChainForKeyUsage(chain []*Certificate, keyUsages []x509.ExtKeyUsage) bool {
  1038  	usages := make([]x509.ExtKeyUsage, len(keyUsages))
  1039  	copy(usages, keyUsages)
  1040  
  1041  	if len(chain) == 0 {
  1042  		return false
  1043  	}
  1044  
  1045  	usagesRemaining := len(usages)
  1046  
  1047  	// We walk down the list and cross out any usages that aren't supported
  1048  	// by each certificate. If we cross out all the usages, then the chain
  1049  	// is unacceptable.
  1050  
  1051  NextCert:
  1052  	for i := len(chain) - 1; i >= 0; i-- {
  1053  		cert := chain[i]
  1054  		if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 {
  1055  			// The certificate doesn't have any extended key usage specified.
  1056  			continue
  1057  		}
  1058  
  1059  		for _, usage := range cert.ExtKeyUsage {
  1060  			if usage == x509.ExtKeyUsageAny {
  1061  				// The certificate is explicitly good for any usage.
  1062  				continue NextCert
  1063  			}
  1064  		}
  1065  
  1066  		const invalidUsage x509.ExtKeyUsage = -1
  1067  
  1068  	NextRequestedUsage:
  1069  		for i, requestedUsage := range usages {
  1070  			if requestedUsage == invalidUsage {
  1071  				continue
  1072  			}
  1073  
  1074  			for _, usage := range cert.ExtKeyUsage {
  1075  				if requestedUsage == usage {
  1076  					continue NextRequestedUsage
  1077  				} else if requestedUsage == x509.ExtKeyUsageServerAuth &&
  1078  					(usage == x509.ExtKeyUsageNetscapeServerGatedCrypto ||
  1079  						usage == x509.ExtKeyUsageMicrosoftServerGatedCrypto) {
  1080  					// In order to support COMODO
  1081  					// certificate chains, we have to
  1082  					// accept Netscape or Microsoft SGC
  1083  					// usages as equal to ServerAuth.
  1084  					continue NextRequestedUsage
  1085  				}
  1086  			}
  1087  
  1088  			usages[i] = invalidUsage
  1089  			usagesRemaining--
  1090  			if usagesRemaining == 0 {
  1091  				return false
  1092  			}
  1093  		}
  1094  	}
  1095  
  1096  	return true
  1097  }