github.com/bigzoro/my_simplechain@v0.0.0-20240315012955-8ad0a2a29bb9/core/vm/contracts.go (about) 1 // Copyright 2014 The go-simplechain Authors 2 // This file is part of the go-simplechain library. 3 // 4 // The go-simplechain library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-simplechain library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-simplechain library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "encoding/binary" 22 "errors" 23 "math/big" 24 25 "github.com/bigzoro/my_simplechain/common" 26 "github.com/bigzoro/my_simplechain/common/math" 27 "github.com/bigzoro/my_simplechain/crypto" 28 "github.com/bigzoro/my_simplechain/crypto/blake2b" 29 "github.com/bigzoro/my_simplechain/crypto/bn256" 30 "github.com/bigzoro/my_simplechain/params" 31 32 //lint:ignore SA1019 Needed for precompile 33 "golang.org/x/crypto/ripemd160" 34 ) 35 36 // PrecompiledContract is the basic interface for native Go contracts. The implementation 37 // requires a deterministic gas count based on the input size of the Run method of the 38 // contract. 39 type PrecompiledContract interface { 40 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 41 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 42 } 43 44 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 45 // contracts used in the Frontier and Homestead releases. 46 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 47 common.BytesToAddress([]byte{1}): &ecrecover{}, 48 common.BytesToAddress([]byte{2}): &sha256hash{}, 49 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 50 common.BytesToAddress([]byte{4}): &dataCopy{}, 51 } 52 53 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 54 // contracts used in the Byzantium release. 55 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 56 common.BytesToAddress([]byte{1}): &ecrecover{}, 57 common.BytesToAddress([]byte{2}): &sha256hash{}, 58 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 59 common.BytesToAddress([]byte{4}): &dataCopy{}, 60 common.BytesToAddress([]byte{5}): &bigModExp{}, 61 common.BytesToAddress([]byte{6}): &bn256AddByzantium{}, 62 common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{}, 63 common.BytesToAddress([]byte{8}): &bn256PairingByzantium{}, 64 } 65 66 // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum 67 // contracts used in the Istanbul release. 68 var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{ 69 common.BytesToAddress([]byte{1}): &ecrecover{}, 70 common.BytesToAddress([]byte{2}): &sha256hash{}, 71 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 72 common.BytesToAddress([]byte{4}): &dataCopy{}, 73 common.BytesToAddress([]byte{5}): &bigModExp{}, 74 common.BytesToAddress([]byte{6}): &bn256AddIstanbul{}, 75 common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{}, 76 common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{}, 77 common.BytesToAddress([]byte{9}): &blake2F{}, 78 } 79 80 func IsPrecompiledContract(addr common.Address) bool { 81 _, ok := PrecompiledContractsIstanbul[addr] 82 return ok 83 } 84 85 var VoidAddress = common.BytesToAddress([]byte{0}) 86 87 var PrecompiledContractsExperiment = map[common.Address]PrecompiledContract{ 88 VoidAddress: &void{}, 89 } 90 91 type void struct{} 92 93 func (c *void) RequiredGas(input []byte) uint64 { return 0 } 94 func (c *void) Run(input []byte) ([]byte, error) { return nil, nil } 95 96 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 97 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { 98 gas := p.RequiredGas(input) 99 if contract.UseGas(gas) { 100 return p.Run(input) 101 } 102 return nil, ErrOutOfGas 103 } 104 105 // ECRECOVER implemented as a native contract. 106 type ecrecover struct{} 107 108 func (c *ecrecover) RequiredGas(input []byte) uint64 { 109 return params.EcrecoverGas 110 } 111 112 func (c *ecrecover) Run(input []byte) ([]byte, error) { 113 const ecRecoverInputLength = 128 114 115 input = common.RightPadBytes(input, ecRecoverInputLength) 116 // "input" is (hash, v, r, s), each 32 bytes 117 // but for ecrecover we want (r, s, v) 118 119 r := new(big.Int).SetBytes(input[64:96]) 120 s := new(big.Int).SetBytes(input[96:128]) 121 v := input[63] - 27 122 123 // tighter sig s values input homestead only apply to tx sigs 124 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 125 return nil, nil 126 } 127 // We must make sure not to modify the 'input', so placing the 'v' along with 128 // the signature needs to be done on a new allocation 129 sig := make([]byte, 65) 130 copy(sig, input[64:128]) 131 sig[64] = v 132 // v needs to be at the end for libsecp256k1 133 pubKey, err := crypto.Ecrecover(input[:32], sig) 134 // make sure the public key is a valid one 135 if err != nil { 136 return nil, nil 137 } 138 139 // the first byte of pubkey is bitcoin heritage 140 return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil 141 } 142 143 // SHA256 implemented as a native contract. 144 type sha256hash struct{} 145 146 // RequiredGas returns the gas required to execute the pre-compiled contract. 147 // 148 // This method does not require any overflow checking as the input size gas costs 149 // required for anything significant is so high it's impossible to pay for. 150 func (c *sha256hash) RequiredGas(input []byte) uint64 { 151 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 152 } 153 func (c *sha256hash) Run(input []byte) ([]byte, error) { 154 h := sha256.Sum256(input) 155 return h[:], nil 156 } 157 158 // RIPEMD160 implemented as a native contract. 159 type ripemd160hash struct{} 160 161 // RequiredGas returns the gas required to execute the pre-compiled contract. 162 // 163 // This method does not require any overflow checking as the input size gas costs 164 // required for anything significant is so high it's impossible to pay for. 165 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 166 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 167 } 168 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 169 ripemd := ripemd160.New() 170 ripemd.Write(input) 171 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 172 } 173 174 // data copy implemented as a native contract. 175 type dataCopy struct{} 176 177 // RequiredGas returns the gas required to execute the pre-compiled contract. 178 // 179 // This method does not require any overflow checking as the input size gas costs 180 // required for anything significant is so high it's impossible to pay for. 181 func (c *dataCopy) RequiredGas(input []byte) uint64 { 182 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 183 } 184 func (c *dataCopy) Run(in []byte) ([]byte, error) { 185 return in, nil 186 } 187 188 // bigModExp implements a native big integer exponential modular operation. 189 type bigModExp struct{} 190 191 var ( 192 big1 = big.NewInt(1) 193 big4 = big.NewInt(4) 194 big8 = big.NewInt(8) 195 big16 = big.NewInt(16) 196 big32 = big.NewInt(32) 197 big64 = big.NewInt(64) 198 big96 = big.NewInt(96) 199 big480 = big.NewInt(480) 200 big1024 = big.NewInt(1024) 201 big3072 = big.NewInt(3072) 202 big199680 = big.NewInt(199680) 203 ) 204 205 // RequiredGas returns the gas required to execute the pre-compiled contract. 206 func (c *bigModExp) RequiredGas(input []byte) uint64 { 207 var ( 208 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 209 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 210 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 211 ) 212 if len(input) > 96 { 213 input = input[96:] 214 } else { 215 input = input[:0] 216 } 217 // Retrieve the head 32 bytes of exp for the adjusted exponent length 218 var expHead *big.Int 219 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 220 expHead = new(big.Int) 221 } else { 222 if expLen.Cmp(big32) > 0 { 223 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 224 } else { 225 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 226 } 227 } 228 // Calculate the adjusted exponent length 229 var msb int 230 if bitlen := expHead.BitLen(); bitlen > 0 { 231 msb = bitlen - 1 232 } 233 adjExpLen := new(big.Int) 234 if expLen.Cmp(big32) > 0 { 235 adjExpLen.Sub(expLen, big32) 236 adjExpLen.Mul(big8, adjExpLen) 237 } 238 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 239 240 // Calculate the gas cost of the operation 241 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 242 switch { 243 case gas.Cmp(big64) <= 0: 244 gas.Mul(gas, gas) 245 case gas.Cmp(big1024) <= 0: 246 gas = new(big.Int).Add( 247 new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), 248 new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), 249 ) 250 default: 251 gas = new(big.Int).Add( 252 new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), 253 new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), 254 ) 255 } 256 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 257 gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) 258 259 if gas.BitLen() > 64 { 260 return math.MaxUint64 261 } 262 return gas.Uint64() 263 } 264 265 func (c *bigModExp) Run(input []byte) ([]byte, error) { 266 var ( 267 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 268 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 269 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 270 ) 271 if len(input) > 96 { 272 input = input[96:] 273 } else { 274 input = input[:0] 275 } 276 // Handle a special case when both the base and mod length is zero 277 if baseLen == 0 && modLen == 0 { 278 return []byte{}, nil 279 } 280 // Retrieve the operands and execute the exponentiation 281 var ( 282 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 283 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 284 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 285 ) 286 if mod.BitLen() == 0 { 287 // Modulo 0 is undefined, return zero 288 return common.LeftPadBytes([]byte{}, int(modLen)), nil 289 } 290 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 291 } 292 293 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 294 // returning it, or an error if the point is invalid. 295 func newCurvePoint(blob []byte) (*bn256.G1, error) { 296 p := new(bn256.G1) 297 if _, err := p.Unmarshal(blob); err != nil { 298 return nil, err 299 } 300 return p, nil 301 } 302 303 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 304 // returning it, or an error if the point is invalid. 305 func newTwistPoint(blob []byte) (*bn256.G2, error) { 306 p := new(bn256.G2) 307 if _, err := p.Unmarshal(blob); err != nil { 308 return nil, err 309 } 310 return p, nil 311 } 312 313 // runBn256Add implements the Bn256Add precompile, referenced by both 314 // Byzantium and Istanbul operations. 315 func runBn256Add(input []byte) ([]byte, error) { 316 x, err := newCurvePoint(getData(input, 0, 64)) 317 if err != nil { 318 return nil, err 319 } 320 y, err := newCurvePoint(getData(input, 64, 64)) 321 if err != nil { 322 return nil, err 323 } 324 res := new(bn256.G1) 325 res.Add(x, y) 326 return res.Marshal(), nil 327 } 328 329 // bn256Add implements a native elliptic curve point addition conforming to 330 // Istanbul consensus rules. 331 type bn256AddIstanbul struct{} 332 333 // RequiredGas returns the gas required to execute the pre-compiled contract. 334 func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 { 335 return params.Bn256AddGasIstanbul 336 } 337 338 func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) { 339 return runBn256Add(input) 340 } 341 342 // bn256AddByzantium implements a native elliptic curve point addition 343 // conforming to Byzantium consensus rules. 344 type bn256AddByzantium struct{} 345 346 // RequiredGas returns the gas required to execute the pre-compiled contract. 347 func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 { 348 return params.Bn256AddGasByzantium 349 } 350 351 func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) { 352 return runBn256Add(input) 353 } 354 355 // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by 356 // both Byzantium and Istanbul operations. 357 func runBn256ScalarMul(input []byte) ([]byte, error) { 358 p, err := newCurvePoint(getData(input, 0, 64)) 359 if err != nil { 360 return nil, err 361 } 362 res := new(bn256.G1) 363 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 364 return res.Marshal(), nil 365 } 366 367 // bn256ScalarMulIstanbul implements a native elliptic curve scalar 368 // multiplication conforming to Istanbul consensus rules. 369 type bn256ScalarMulIstanbul struct{} 370 371 // RequiredGas returns the gas required to execute the pre-compiled contract. 372 func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 { 373 return params.Bn256ScalarMulGasIstanbul 374 } 375 376 func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) { 377 return runBn256ScalarMul(input) 378 } 379 380 // bn256ScalarMulByzantium implements a native elliptic curve scalar 381 // multiplication conforming to Byzantium consensus rules. 382 type bn256ScalarMulByzantium struct{} 383 384 // RequiredGas returns the gas required to execute the pre-compiled contract. 385 func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 { 386 return params.Bn256ScalarMulGasByzantium 387 } 388 389 func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) { 390 return runBn256ScalarMul(input) 391 } 392 393 var ( 394 // true32Byte is returned if the bn256 pairing check succeeds. 395 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 396 397 // false32Byte is returned if the bn256 pairing check fails. 398 false32Byte = make([]byte, 32) 399 400 // errBadPairingInput is returned if the bn256 pairing input is invalid. 401 errBadPairingInput = errors.New("bad elliptic curve pairing size") 402 ) 403 404 // runBn256Pairing implements the Bn256Pairing precompile, referenced by both 405 // Byzantium and Istanbul operations. 406 func runBn256Pairing(input []byte) ([]byte, error) { 407 // Handle some corner cases cheaply 408 if len(input)%192 > 0 { 409 return nil, errBadPairingInput 410 } 411 // Convert the input into a set of coordinates 412 var ( 413 cs []*bn256.G1 414 ts []*bn256.G2 415 ) 416 for i := 0; i < len(input); i += 192 { 417 c, err := newCurvePoint(input[i : i+64]) 418 if err != nil { 419 return nil, err 420 } 421 t, err := newTwistPoint(input[i+64 : i+192]) 422 if err != nil { 423 return nil, err 424 } 425 cs = append(cs, c) 426 ts = append(ts, t) 427 } 428 // Execute the pairing checks and return the results 429 if bn256.PairingCheck(cs, ts) { 430 return true32Byte, nil 431 } 432 return false32Byte, nil 433 } 434 435 // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve 436 // conforming to Istanbul consensus rules. 437 type bn256PairingIstanbul struct{} 438 439 // RequiredGas returns the gas required to execute the pre-compiled contract. 440 func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 { 441 return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul 442 } 443 444 func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) { 445 return runBn256Pairing(input) 446 } 447 448 // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve 449 // conforming to Byzantium consensus rules. 450 type bn256PairingByzantium struct{} 451 452 // RequiredGas returns the gas required to execute the pre-compiled contract. 453 func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 { 454 return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium 455 } 456 457 func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) { 458 return runBn256Pairing(input) 459 } 460 461 type blake2F struct{} 462 463 func (c *blake2F) RequiredGas(input []byte) uint64 { 464 // If the input is malformed, we can't calculate the gas, return 0 and let the 465 // actual call choke and fault. 466 if len(input) != blake2FInputLength { 467 return 0 468 } 469 return uint64(binary.BigEndian.Uint32(input[0:4])) 470 } 471 472 const ( 473 blake2FInputLength = 213 474 blake2FFinalBlockBytes = byte(1) 475 blake2FNonFinalBlockBytes = byte(0) 476 ) 477 478 var ( 479 errBlake2FInvalidInputLength = errors.New("invalid input length") 480 errBlake2FInvalidFinalFlag = errors.New("invalid final flag") 481 ) 482 483 func (c *blake2F) Run(input []byte) ([]byte, error) { 484 // Make sure the input is valid (correct lenth and final flag) 485 if len(input) != blake2FInputLength { 486 return nil, errBlake2FInvalidInputLength 487 } 488 if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes { 489 return nil, errBlake2FInvalidFinalFlag 490 } 491 // Parse the input into the Blake2b call parameters 492 var ( 493 rounds = binary.BigEndian.Uint32(input[0:4]) 494 final = (input[212] == blake2FFinalBlockBytes) 495 496 h [8]uint64 497 m [16]uint64 498 t [2]uint64 499 ) 500 for i := 0; i < 8; i++ { 501 offset := 4 + i*8 502 h[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 503 } 504 for i := 0; i < 16; i++ { 505 offset := 68 + i*8 506 m[i] = binary.LittleEndian.Uint64(input[offset : offset+8]) 507 } 508 t[0] = binary.LittleEndian.Uint64(input[196:204]) 509 t[1] = binary.LittleEndian.Uint64(input[204:212]) 510 511 // Execute the compression function, extract and return the result 512 blake2b.F(&h, m, t, final, rounds) 513 514 output := make([]byte, 64) 515 for i := 0; i < 8; i++ { 516 offset := i * 8 517 binary.LittleEndian.PutUint64(output[offset:offset+8], h[i]) 518 } 519 return output, nil 520 }