github.com/binkynet/BinkyNet@v1.12.1-0.20240421190447-da4e34c20be0/proto_vendor/golang.org/x/text/unicode/norm/iter.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package norm
     6  
     7  import (
     8  	"fmt"
     9  	"unicode/utf8"
    10  )
    11  
    12  // MaxSegmentSize is the maximum size of a byte buffer needed to consider any
    13  // sequence of starter and non-starter runes for the purpose of normalization.
    14  const MaxSegmentSize = maxByteBufferSize
    15  
    16  // An Iter iterates over a string or byte slice, while normalizing it
    17  // to a given Form.
    18  type Iter struct {
    19  	rb     reorderBuffer
    20  	buf    [maxByteBufferSize]byte
    21  	info   Properties // first character saved from previous iteration
    22  	next   iterFunc   // implementation of next depends on form
    23  	asciiF iterFunc
    24  
    25  	p        int    // current position in input source
    26  	multiSeg []byte // remainder of multi-segment decomposition
    27  }
    28  
    29  type iterFunc func(*Iter) []byte
    30  
    31  // Init initializes i to iterate over src after normalizing it to Form f.
    32  func (i *Iter) Init(f Form, src []byte) {
    33  	i.p = 0
    34  	if len(src) == 0 {
    35  		i.setDone()
    36  		i.rb.nsrc = 0
    37  		return
    38  	}
    39  	i.multiSeg = nil
    40  	i.rb.init(f, src)
    41  	i.next = i.rb.f.nextMain
    42  	i.asciiF = nextASCIIBytes
    43  	i.info = i.rb.f.info(i.rb.src, i.p)
    44  	i.rb.ss.first(i.info)
    45  }
    46  
    47  // InitString initializes i to iterate over src after normalizing it to Form f.
    48  func (i *Iter) InitString(f Form, src string) {
    49  	i.p = 0
    50  	if len(src) == 0 {
    51  		i.setDone()
    52  		i.rb.nsrc = 0
    53  		return
    54  	}
    55  	i.multiSeg = nil
    56  	i.rb.initString(f, src)
    57  	i.next = i.rb.f.nextMain
    58  	i.asciiF = nextASCIIString
    59  	i.info = i.rb.f.info(i.rb.src, i.p)
    60  	i.rb.ss.first(i.info)
    61  }
    62  
    63  // Seek sets the segment to be returned by the next call to Next to start
    64  // at position p.  It is the responsibility of the caller to set p to the
    65  // start of a segment.
    66  func (i *Iter) Seek(offset int64, whence int) (int64, error) {
    67  	var abs int64
    68  	switch whence {
    69  	case 0:
    70  		abs = offset
    71  	case 1:
    72  		abs = int64(i.p) + offset
    73  	case 2:
    74  		abs = int64(i.rb.nsrc) + offset
    75  	default:
    76  		return 0, fmt.Errorf("norm: invalid whence")
    77  	}
    78  	if abs < 0 {
    79  		return 0, fmt.Errorf("norm: negative position")
    80  	}
    81  	if int(abs) >= i.rb.nsrc {
    82  		i.setDone()
    83  		return int64(i.p), nil
    84  	}
    85  	i.p = int(abs)
    86  	i.multiSeg = nil
    87  	i.next = i.rb.f.nextMain
    88  	i.info = i.rb.f.info(i.rb.src, i.p)
    89  	i.rb.ss.first(i.info)
    90  	return abs, nil
    91  }
    92  
    93  // returnSlice returns a slice of the underlying input type as a byte slice.
    94  // If the underlying is of type []byte, it will simply return a slice.
    95  // If the underlying is of type string, it will copy the slice to the buffer
    96  // and return that.
    97  func (i *Iter) returnSlice(a, b int) []byte {
    98  	if i.rb.src.bytes == nil {
    99  		return i.buf[:copy(i.buf[:], i.rb.src.str[a:b])]
   100  	}
   101  	return i.rb.src.bytes[a:b]
   102  }
   103  
   104  // Pos returns the byte position at which the next call to Next will commence processing.
   105  func (i *Iter) Pos() int {
   106  	return i.p
   107  }
   108  
   109  func (i *Iter) setDone() {
   110  	i.next = nextDone
   111  	i.p = i.rb.nsrc
   112  }
   113  
   114  // Done returns true if there is no more input to process.
   115  func (i *Iter) Done() bool {
   116  	return i.p >= i.rb.nsrc
   117  }
   118  
   119  // Next returns f(i.input[i.Pos():n]), where n is a boundary of i.input.
   120  // For any input a and b for which f(a) == f(b), subsequent calls
   121  // to Next will return the same segments.
   122  // Modifying runes are grouped together with the preceding starter, if such a starter exists.
   123  // Although not guaranteed, n will typically be the smallest possible n.
   124  func (i *Iter) Next() []byte {
   125  	return i.next(i)
   126  }
   127  
   128  func nextASCIIBytes(i *Iter) []byte {
   129  	p := i.p + 1
   130  	if p >= i.rb.nsrc {
   131  		i.setDone()
   132  		return i.rb.src.bytes[i.p:p]
   133  	}
   134  	if i.rb.src.bytes[p] < utf8.RuneSelf {
   135  		p0 := i.p
   136  		i.p = p
   137  		return i.rb.src.bytes[p0:p]
   138  	}
   139  	i.info = i.rb.f.info(i.rb.src, i.p)
   140  	i.next = i.rb.f.nextMain
   141  	return i.next(i)
   142  }
   143  
   144  func nextASCIIString(i *Iter) []byte {
   145  	p := i.p + 1
   146  	if p >= i.rb.nsrc {
   147  		i.buf[0] = i.rb.src.str[i.p]
   148  		i.setDone()
   149  		return i.buf[:1]
   150  	}
   151  	if i.rb.src.str[p] < utf8.RuneSelf {
   152  		i.buf[0] = i.rb.src.str[i.p]
   153  		i.p = p
   154  		return i.buf[:1]
   155  	}
   156  	i.info = i.rb.f.info(i.rb.src, i.p)
   157  	i.next = i.rb.f.nextMain
   158  	return i.next(i)
   159  }
   160  
   161  func nextHangul(i *Iter) []byte {
   162  	p := i.p
   163  	next := p + hangulUTF8Size
   164  	if next >= i.rb.nsrc {
   165  		i.setDone()
   166  	} else if i.rb.src.hangul(next) == 0 {
   167  		i.rb.ss.next(i.info)
   168  		i.info = i.rb.f.info(i.rb.src, i.p)
   169  		i.next = i.rb.f.nextMain
   170  		return i.next(i)
   171  	}
   172  	i.p = next
   173  	return i.buf[:decomposeHangul(i.buf[:], i.rb.src.hangul(p))]
   174  }
   175  
   176  func nextDone(i *Iter) []byte {
   177  	return nil
   178  }
   179  
   180  // nextMulti is used for iterating over multi-segment decompositions
   181  // for decomposing normal forms.
   182  func nextMulti(i *Iter) []byte {
   183  	j := 0
   184  	d := i.multiSeg
   185  	// skip first rune
   186  	for j = 1; j < len(d) && !utf8.RuneStart(d[j]); j++ {
   187  	}
   188  	for j < len(d) {
   189  		info := i.rb.f.info(input{bytes: d}, j)
   190  		if info.BoundaryBefore() {
   191  			i.multiSeg = d[j:]
   192  			return d[:j]
   193  		}
   194  		j += int(info.size)
   195  	}
   196  	// treat last segment as normal decomposition
   197  	i.next = i.rb.f.nextMain
   198  	return i.next(i)
   199  }
   200  
   201  // nextMultiNorm is used for iterating over multi-segment decompositions
   202  // for composing normal forms.
   203  func nextMultiNorm(i *Iter) []byte {
   204  	j := 0
   205  	d := i.multiSeg
   206  	for j < len(d) {
   207  		info := i.rb.f.info(input{bytes: d}, j)
   208  		if info.BoundaryBefore() {
   209  			i.rb.compose()
   210  			seg := i.buf[:i.rb.flushCopy(i.buf[:])]
   211  			i.rb.insertUnsafe(input{bytes: d}, j, info)
   212  			i.multiSeg = d[j+int(info.size):]
   213  			return seg
   214  		}
   215  		i.rb.insertUnsafe(input{bytes: d}, j, info)
   216  		j += int(info.size)
   217  	}
   218  	i.multiSeg = nil
   219  	i.next = nextComposed
   220  	return doNormComposed(i)
   221  }
   222  
   223  // nextDecomposed is the implementation of Next for forms NFD and NFKD.
   224  func nextDecomposed(i *Iter) (next []byte) {
   225  	outp := 0
   226  	inCopyStart, outCopyStart := i.p, 0
   227  	for {
   228  		if sz := int(i.info.size); sz <= 1 {
   229  			i.rb.ss = 0
   230  			p := i.p
   231  			i.p++ // ASCII or illegal byte.  Either way, advance by 1.
   232  			if i.p >= i.rb.nsrc {
   233  				i.setDone()
   234  				return i.returnSlice(p, i.p)
   235  			} else if i.rb.src._byte(i.p) < utf8.RuneSelf {
   236  				i.next = i.asciiF
   237  				return i.returnSlice(p, i.p)
   238  			}
   239  			outp++
   240  		} else if d := i.info.Decomposition(); d != nil {
   241  			// Note: If leading CCC != 0, then len(d) == 2 and last is also non-zero.
   242  			// Case 1: there is a leftover to copy.  In this case the decomposition
   243  			// must begin with a modifier and should always be appended.
   244  			// Case 2: no leftover. Simply return d if followed by a ccc == 0 value.
   245  			p := outp + len(d)
   246  			if outp > 0 {
   247  				i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
   248  				// TODO: this condition should not be possible, but we leave it
   249  				// in for defensive purposes.
   250  				if p > len(i.buf) {
   251  					return i.buf[:outp]
   252  				}
   253  			} else if i.info.multiSegment() {
   254  				// outp must be 0 as multi-segment decompositions always
   255  				// start a new segment.
   256  				if i.multiSeg == nil {
   257  					i.multiSeg = d
   258  					i.next = nextMulti
   259  					return nextMulti(i)
   260  				}
   261  				// We are in the last segment.  Treat as normal decomposition.
   262  				d = i.multiSeg
   263  				i.multiSeg = nil
   264  				p = len(d)
   265  			}
   266  			prevCC := i.info.tccc
   267  			if i.p += sz; i.p >= i.rb.nsrc {
   268  				i.setDone()
   269  				i.info = Properties{} // Force BoundaryBefore to succeed.
   270  			} else {
   271  				i.info = i.rb.f.info(i.rb.src, i.p)
   272  			}
   273  			switch i.rb.ss.next(i.info) {
   274  			case ssOverflow:
   275  				i.next = nextCGJDecompose
   276  				fallthrough
   277  			case ssStarter:
   278  				if outp > 0 {
   279  					copy(i.buf[outp:], d)
   280  					return i.buf[:p]
   281  				}
   282  				return d
   283  			}
   284  			copy(i.buf[outp:], d)
   285  			outp = p
   286  			inCopyStart, outCopyStart = i.p, outp
   287  			if i.info.ccc < prevCC {
   288  				goto doNorm
   289  			}
   290  			continue
   291  		} else if r := i.rb.src.hangul(i.p); r != 0 {
   292  			outp = decomposeHangul(i.buf[:], r)
   293  			i.p += hangulUTF8Size
   294  			inCopyStart, outCopyStart = i.p, outp
   295  			if i.p >= i.rb.nsrc {
   296  				i.setDone()
   297  				break
   298  			} else if i.rb.src.hangul(i.p) != 0 {
   299  				i.next = nextHangul
   300  				return i.buf[:outp]
   301  			}
   302  		} else {
   303  			p := outp + sz
   304  			if p > len(i.buf) {
   305  				break
   306  			}
   307  			outp = p
   308  			i.p += sz
   309  		}
   310  		if i.p >= i.rb.nsrc {
   311  			i.setDone()
   312  			break
   313  		}
   314  		prevCC := i.info.tccc
   315  		i.info = i.rb.f.info(i.rb.src, i.p)
   316  		if v := i.rb.ss.next(i.info); v == ssStarter {
   317  			break
   318  		} else if v == ssOverflow {
   319  			i.next = nextCGJDecompose
   320  			break
   321  		}
   322  		if i.info.ccc < prevCC {
   323  			goto doNorm
   324  		}
   325  	}
   326  	if outCopyStart == 0 {
   327  		return i.returnSlice(inCopyStart, i.p)
   328  	} else if inCopyStart < i.p {
   329  		i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
   330  	}
   331  	return i.buf[:outp]
   332  doNorm:
   333  	// Insert what we have decomposed so far in the reorderBuffer.
   334  	// As we will only reorder, there will always be enough room.
   335  	i.rb.src.copySlice(i.buf[outCopyStart:], inCopyStart, i.p)
   336  	i.rb.insertDecomposed(i.buf[0:outp])
   337  	return doNormDecomposed(i)
   338  }
   339  
   340  func doNormDecomposed(i *Iter) []byte {
   341  	for {
   342  		i.rb.insertUnsafe(i.rb.src, i.p, i.info)
   343  		if i.p += int(i.info.size); i.p >= i.rb.nsrc {
   344  			i.setDone()
   345  			break
   346  		}
   347  		i.info = i.rb.f.info(i.rb.src, i.p)
   348  		if i.info.ccc == 0 {
   349  			break
   350  		}
   351  		if s := i.rb.ss.next(i.info); s == ssOverflow {
   352  			i.next = nextCGJDecompose
   353  			break
   354  		}
   355  	}
   356  	// new segment or too many combining characters: exit normalization
   357  	return i.buf[:i.rb.flushCopy(i.buf[:])]
   358  }
   359  
   360  func nextCGJDecompose(i *Iter) []byte {
   361  	i.rb.ss = 0
   362  	i.rb.insertCGJ()
   363  	i.next = nextDecomposed
   364  	i.rb.ss.first(i.info)
   365  	buf := doNormDecomposed(i)
   366  	return buf
   367  }
   368  
   369  // nextComposed is the implementation of Next for forms NFC and NFKC.
   370  func nextComposed(i *Iter) []byte {
   371  	outp, startp := 0, i.p
   372  	var prevCC uint8
   373  	for {
   374  		if !i.info.isYesC() {
   375  			goto doNorm
   376  		}
   377  		prevCC = i.info.tccc
   378  		sz := int(i.info.size)
   379  		if sz == 0 {
   380  			sz = 1 // illegal rune: copy byte-by-byte
   381  		}
   382  		p := outp + sz
   383  		if p > len(i.buf) {
   384  			break
   385  		}
   386  		outp = p
   387  		i.p += sz
   388  		if i.p >= i.rb.nsrc {
   389  			i.setDone()
   390  			break
   391  		} else if i.rb.src._byte(i.p) < utf8.RuneSelf {
   392  			i.rb.ss = 0
   393  			i.next = i.asciiF
   394  			break
   395  		}
   396  		i.info = i.rb.f.info(i.rb.src, i.p)
   397  		if v := i.rb.ss.next(i.info); v == ssStarter {
   398  			break
   399  		} else if v == ssOverflow {
   400  			i.next = nextCGJCompose
   401  			break
   402  		}
   403  		if i.info.ccc < prevCC {
   404  			goto doNorm
   405  		}
   406  	}
   407  	return i.returnSlice(startp, i.p)
   408  doNorm:
   409  	// reset to start position
   410  	i.p = startp
   411  	i.info = i.rb.f.info(i.rb.src, i.p)
   412  	i.rb.ss.first(i.info)
   413  	if i.info.multiSegment() {
   414  		d := i.info.Decomposition()
   415  		info := i.rb.f.info(input{bytes: d}, 0)
   416  		i.rb.insertUnsafe(input{bytes: d}, 0, info)
   417  		i.multiSeg = d[int(info.size):]
   418  		i.next = nextMultiNorm
   419  		return nextMultiNorm(i)
   420  	}
   421  	i.rb.ss.first(i.info)
   422  	i.rb.insertUnsafe(i.rb.src, i.p, i.info)
   423  	return doNormComposed(i)
   424  }
   425  
   426  func doNormComposed(i *Iter) []byte {
   427  	// First rune should already be inserted.
   428  	for {
   429  		if i.p += int(i.info.size); i.p >= i.rb.nsrc {
   430  			i.setDone()
   431  			break
   432  		}
   433  		i.info = i.rb.f.info(i.rb.src, i.p)
   434  		if s := i.rb.ss.next(i.info); s == ssStarter {
   435  			break
   436  		} else if s == ssOverflow {
   437  			i.next = nextCGJCompose
   438  			break
   439  		}
   440  		i.rb.insertUnsafe(i.rb.src, i.p, i.info)
   441  	}
   442  	i.rb.compose()
   443  	seg := i.buf[:i.rb.flushCopy(i.buf[:])]
   444  	return seg
   445  }
   446  
   447  func nextCGJCompose(i *Iter) []byte {
   448  	i.rb.ss = 0 // instead of first
   449  	i.rb.insertCGJ()
   450  	i.next = nextComposed
   451  	// Note that we treat any rune with nLeadingNonStarters > 0 as a non-starter,
   452  	// even if they are not. This is particularly dubious for U+FF9E and UFF9A.
   453  	// If we ever change that, insert a check here.
   454  	i.rb.ss.first(i.info)
   455  	i.rb.insertUnsafe(i.rb.src, i.p, i.info)
   456  	return doNormComposed(i)
   457  }