github.com/bir3/gocompiler@v0.3.205/src/cmd/compile/internal/ir/node.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // “Abstract” syntax representation.
     6  
     7  package ir
     8  
     9  import (
    10  	"fmt"
    11  	"github.com/bir3/gocompiler/src/go/constant"
    12  	"sort"
    13  
    14  	"github.com/bir3/gocompiler/src/cmd/compile/internal/base"
    15  	"github.com/bir3/gocompiler/src/cmd/compile/internal/types"
    16  	"github.com/bir3/gocompiler/src/cmd/internal/src"
    17  )
    18  
    19  // A Node is the abstract interface to an IR node.
    20  type Node interface {
    21  	// Formatting
    22  	Format(s fmt.State, verb rune)
    23  
    24  	// Source position.
    25  	Pos() src.XPos
    26  	SetPos(x src.XPos)
    27  
    28  	// For making copies. For Copy and SepCopy.
    29  	copy() Node
    30  
    31  	doChildren(func(Node) bool) bool
    32  	editChildren(func(Node) Node)
    33  	editChildrenWithHidden(func(Node) Node)
    34  
    35  	// Abstract graph structure, for generic traversals.
    36  	Op() Op
    37  	Init() Nodes
    38  
    39  	// Fields specific to certain Ops only.
    40  	Type() *types.Type
    41  	SetType(t *types.Type)
    42  	Name() *Name
    43  	Sym() *types.Sym
    44  	Val() constant.Value
    45  	SetVal(v constant.Value)
    46  
    47  	// Storage for analysis passes.
    48  	Esc() uint16
    49  	SetEsc(x uint16)
    50  
    51  	// Typecheck values:
    52  	//  0 means the node is not typechecked
    53  	//  1 means the node is completely typechecked
    54  	//  2 means typechecking of the node is in progress
    55  	//  3 means the node has its type from types2, but may need transformation
    56  	Typecheck() uint8
    57  	SetTypecheck(x uint8)
    58  	NonNil() bool
    59  	MarkNonNil()
    60  }
    61  
    62  // Line returns n's position as a string. If n has been inlined,
    63  // it uses the outermost position where n has been inlined.
    64  func Line(n Node) string {
    65  	return base.FmtPos(n.Pos())
    66  }
    67  
    68  func IsSynthetic(n Node) bool {
    69  	name := n.Sym().Name
    70  	return name[0] == '.' || name[0] == '~'
    71  }
    72  
    73  // IsAutoTmp indicates if n was created by the compiler as a temporary,
    74  // based on the setting of the .AutoTemp flag in n's Name.
    75  func IsAutoTmp(n Node) bool {
    76  	if n == nil || n.Op() != ONAME {
    77  		return false
    78  	}
    79  	return n.Name().AutoTemp()
    80  }
    81  
    82  // MayBeShared reports whether n may occur in multiple places in the AST.
    83  // Extra care must be taken when mutating such a node.
    84  func MayBeShared(n Node) bool {
    85  	switch n.Op() {
    86  	case ONAME, OLITERAL, ONIL, OTYPE:
    87  		return true
    88  	}
    89  	return false
    90  }
    91  
    92  type InitNode interface {
    93  	Node
    94  	PtrInit() *Nodes
    95  	SetInit(x Nodes)
    96  }
    97  
    98  func TakeInit(n Node) Nodes {
    99  	init := n.Init()
   100  	if len(init) != 0 {
   101  		n.(InitNode).SetInit(nil)
   102  	}
   103  	return init
   104  }
   105  
   106  //go:generate stringer -type=Op -trimprefix=O node.go
   107  
   108  type Op uint8
   109  
   110  // Node ops.
   111  const (
   112  	OXXX Op = iota
   113  
   114  	// names
   115  	ONAME // var or func name
   116  	// Unnamed arg or return value: f(int, string) (int, error) { etc }
   117  	// Also used for a qualified package identifier that hasn't been resolved yet.
   118  	ONONAME
   119  	OTYPE    // type name
   120  	OLITERAL // literal
   121  	ONIL     // nil
   122  
   123  	// expressions
   124  	OADD          // X + Y
   125  	OSUB          // X - Y
   126  	OOR           // X | Y
   127  	OXOR          // X ^ Y
   128  	OADDSTR       // +{List} (string addition, list elements are strings)
   129  	OADDR         // &X
   130  	OANDAND       // X && Y
   131  	OAPPEND       // append(Args); after walk, X may contain elem type descriptor
   132  	OBYTES2STR    // Type(X) (Type is string, X is a []byte)
   133  	OBYTES2STRTMP // Type(X) (Type is string, X is a []byte, ephemeral)
   134  	ORUNES2STR    // Type(X) (Type is string, X is a []rune)
   135  	OSTR2BYTES    // Type(X) (Type is []byte, X is a string)
   136  	OSTR2BYTESTMP // Type(X) (Type is []byte, X is a string, ephemeral)
   137  	OSTR2RUNES    // Type(X) (Type is []rune, X is a string)
   138  	OSLICE2ARR    // Type(X) (Type is [N]T, X is a []T)
   139  	OSLICE2ARRPTR // Type(X) (Type is *[N]T, X is a []T)
   140  	// X = Y or (if Def=true) X := Y
   141  	// If Def, then Init includes a DCL node for X.
   142  	OAS
   143  	// Lhs = Rhs (x, y, z = a, b, c) or (if Def=true) Lhs := Rhs
   144  	// If Def, then Init includes DCL nodes for Lhs
   145  	OAS2
   146  	OAS2DOTTYPE // Lhs = Rhs (x, ok = I.(int))
   147  	OAS2FUNC    // Lhs = Rhs (x, y = f())
   148  	OAS2MAPR    // Lhs = Rhs (x, ok = m["foo"])
   149  	OAS2RECV    // Lhs = Rhs (x, ok = <-c)
   150  	OASOP       // X AsOp= Y (x += y)
   151  	OCALL       // X(Args) (function call, method call or type conversion)
   152  
   153  	// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
   154  	// Prior to walk, they are: X(Args), where Args is all regular arguments.
   155  	// After walk, if any argument whose evaluation might requires temporary variable,
   156  	// that temporary variable will be pushed to Init, Args will contains an updated
   157  	// set of arguments.
   158  	OCALLFUNC  // X(Args) (function call f(args))
   159  	OCALLMETH  // X(Args) (direct method call x.Method(args))
   160  	OCALLINTER // X(Args) (interface method call x.Method(args))
   161  	OCAP       // cap(X)
   162  	OCLOSE     // close(X)
   163  	OCLOSURE   // func Type { Func.Closure.Body } (func literal)
   164  	OCOMPLIT   // Type{List} (composite literal, not yet lowered to specific form)
   165  	OMAPLIT    // Type{List} (composite literal, Type is map)
   166  	OSTRUCTLIT // Type{List} (composite literal, Type is struct)
   167  	OARRAYLIT  // Type{List} (composite literal, Type is array)
   168  	OSLICELIT  // Type{List} (composite literal, Type is slice), Len is slice length.
   169  	OPTRLIT    // &X (X is composite literal)
   170  	OCONV      // Type(X) (type conversion)
   171  	OCONVIFACE // Type(X) (type conversion, to interface)
   172  	OCONVIDATA // Builds a data word to store X in an interface. Equivalent to IDATA(CONVIFACE(X)). Is an ir.ConvExpr.
   173  	OCONVNOP   // Type(X) (type conversion, no effect)
   174  	OCOPY      // copy(X, Y)
   175  	ODCL       // var X (declares X of type X.Type)
   176  
   177  	// Used during parsing but don't last.
   178  	ODCLFUNC  // func f() or func (r) f()
   179  	ODCLCONST // const pi = 3.14
   180  	ODCLTYPE  // type Int int or type Int = int
   181  
   182  	ODELETE        // delete(Args)
   183  	ODOT           // X.Sel (X is of struct type)
   184  	ODOTPTR        // X.Sel (X is of pointer to struct type)
   185  	ODOTMETH       // X.Sel (X is non-interface, Sel is method name)
   186  	ODOTINTER      // X.Sel (X is interface, Sel is method name)
   187  	OXDOT          // X.Sel (before rewrite to one of the preceding)
   188  	ODOTTYPE       // X.Ntype or X.Type (.Ntype during parsing, .Type once resolved); after walk, Itab contains address of interface type descriptor and Itab.X contains address of concrete type descriptor
   189  	ODOTTYPE2      // X.Ntype or X.Type (.Ntype during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, Itab contains address of interface type descriptor
   190  	OEQ            // X == Y
   191  	ONE            // X != Y
   192  	OLT            // X < Y
   193  	OLE            // X <= Y
   194  	OGE            // X >= Y
   195  	OGT            // X > Y
   196  	ODEREF         // *X
   197  	OINDEX         // X[Index] (index of array or slice)
   198  	OINDEXMAP      // X[Index] (index of map)
   199  	OKEY           // Key:Value (key:value in struct/array/map literal)
   200  	OSTRUCTKEY     // Field:Value (key:value in struct literal, after type checking)
   201  	OLEN           // len(X)
   202  	OMAKE          // make(Args) (before type checking converts to one of the following)
   203  	OMAKECHAN      // make(Type[, Len]) (type is chan)
   204  	OMAKEMAP       // make(Type[, Len]) (type is map)
   205  	OMAKESLICE     // make(Type[, Len[, Cap]]) (type is slice)
   206  	OMAKESLICECOPY // makeslicecopy(Type, Len, Cap) (type is slice; Len is length and Cap is the copied from slice)
   207  	// OMAKESLICECOPY is created by the order pass and corresponds to:
   208  	//  s = make(Type, Len); copy(s, Cap)
   209  	//
   210  	// Bounded can be set on the node when Len == len(Cap) is known at compile time.
   211  	//
   212  	// This node is created so the walk pass can optimize this pattern which would
   213  	// otherwise be hard to detect after the order pass.
   214  	OMUL              // X * Y
   215  	ODIV              // X / Y
   216  	OMOD              // X % Y
   217  	OLSH              // X << Y
   218  	ORSH              // X >> Y
   219  	OAND              // X & Y
   220  	OANDNOT           // X &^ Y
   221  	ONEW              // new(X); corresponds to calls to new in source code
   222  	ONOT              // !X
   223  	OBITNOT           // ^X
   224  	OPLUS             // +X
   225  	ONEG              // -X
   226  	OOROR             // X || Y
   227  	OPANIC            // panic(X)
   228  	OPRINT            // print(List)
   229  	OPRINTN           // println(List)
   230  	OPAREN            // (X)
   231  	OSEND             // Chan <- Value
   232  	OSLICE            // X[Low : High] (X is untypechecked or slice)
   233  	OSLICEARR         // X[Low : High] (X is pointer to array)
   234  	OSLICESTR         // X[Low : High] (X is string)
   235  	OSLICE3           // X[Low : High : Max] (X is untypedchecked or slice)
   236  	OSLICE3ARR        // X[Low : High : Max] (X is pointer to array)
   237  	OSLICEHEADER      // sliceheader{Ptr, Len, Cap} (Ptr is unsafe.Pointer, Len is length, Cap is capacity)
   238  	OSTRINGHEADER     // stringheader{Ptr, Len} (Ptr is unsafe.Pointer, Len is length)
   239  	ORECOVER          // recover()
   240  	ORECOVERFP        // recover(Args) w/ explicit FP argument
   241  	ORECV             // <-X
   242  	ORUNESTR          // Type(X) (Type is string, X is rune)
   243  	OSELRECV2         // like OAS2: Lhs = Rhs where len(Lhs)=2, len(Rhs)=1, Rhs[0].Op = ORECV (appears as .Var of OCASE)
   244  	OREAL             // real(X)
   245  	OIMAG             // imag(X)
   246  	OCOMPLEX          // complex(X, Y)
   247  	OALIGNOF          // unsafe.Alignof(X)
   248  	OOFFSETOF         // unsafe.Offsetof(X)
   249  	OSIZEOF           // unsafe.Sizeof(X)
   250  	OUNSAFEADD        // unsafe.Add(X, Y)
   251  	OUNSAFESLICE      // unsafe.Slice(X, Y)
   252  	OUNSAFESLICEDATA  // unsafe.SliceData(X)
   253  	OUNSAFESTRING     // unsafe.String(X, Y)
   254  	OUNSAFESTRINGDATA // unsafe.StringData(X)
   255  	OMETHEXPR         // X(Args) (method expression T.Method(args), first argument is the method receiver)
   256  	OMETHVALUE        // X.Sel   (method expression t.Method, not called)
   257  
   258  	// statements
   259  	OBLOCK // { List } (block of code)
   260  	OBREAK // break [Label]
   261  	// OCASE:  case List: Body (List==nil means default)
   262  	//   For OTYPESW, List is a OTYPE node for the specified type (or OLITERAL
   263  	//   for nil) or an ODYNAMICTYPE indicating a runtime type for generics.
   264  	//   If a type-switch variable is specified, Var is an
   265  	//   ONAME for the version of the type-switch variable with the specified
   266  	//   type.
   267  	OCASE
   268  	OCONTINUE // continue [Label]
   269  	ODEFER    // defer Call
   270  	OFALL     // fallthrough
   271  	OFOR      // for Init; Cond; Post { Body }
   272  	OGOTO     // goto Label
   273  	OIF       // if Init; Cond { Then } else { Else }
   274  	OLABEL    // Label:
   275  	OGO       // go Call
   276  	ORANGE    // for Key, Value = range X { Body }
   277  	ORETURN   // return Results
   278  	OSELECT   // select { Cases }
   279  	OSWITCH   // switch Init; Expr { Cases }
   280  	// OTYPESW:  X := Y.(type) (appears as .Tag of OSWITCH)
   281  	//   X is nil if there is no type-switch variable
   282  	OTYPESW
   283  	OFUNCINST // instantiation of a generic function
   284  
   285  	// misc
   286  	// intermediate representation of an inlined call.  Uses Init (assignments
   287  	// for the captured variables, parameters, retvars, & INLMARK op),
   288  	// Body (body of the inlined function), and ReturnVars (list of
   289  	// return values)
   290  	OINLCALL       // intermediary representation of an inlined call.
   291  	OEFACE         // itable and data words of an empty-interface value.
   292  	OITAB          // itable word of an interface value.
   293  	OIDATA         // data word of an interface value in X
   294  	OSPTR          // base pointer of a slice or string. Bounded==1 means known non-nil.
   295  	OCFUNC         // reference to c function pointer (not go func value)
   296  	OCHECKNIL      // emit code to ensure pointer/interface not nil
   297  	ORESULT        // result of a function call; Xoffset is stack offset
   298  	OINLMARK       // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.
   299  	OLINKSYMOFFSET // offset within a name
   300  	OJUMPTABLE     // A jump table structure for implementing dense expression switches
   301  
   302  	// opcodes for generics
   303  	ODYNAMICDOTTYPE  // x = i.(T) where T is a type parameter (or derived from a type parameter)
   304  	ODYNAMICDOTTYPE2 // x, ok = i.(T) where T is a type parameter (or derived from a type parameter)
   305  	ODYNAMICTYPE     // a type node for type switches (represents a dynamic target type for a type switch)
   306  
   307  	// arch-specific opcodes
   308  	OTAILCALL    // tail call to another function
   309  	OGETG        // runtime.getg() (read g pointer)
   310  	OGETCALLERPC // runtime.getcallerpc() (continuation PC in caller frame)
   311  	OGETCALLERSP // runtime.getcallersp() (stack pointer in caller frame)
   312  
   313  	OEND
   314  )
   315  
   316  // IsCmp reports whether op is a comparison operation (==, !=, <, <=,
   317  // >, or >=).
   318  func (op Op) IsCmp() bool {
   319  	switch op {
   320  	case OEQ, ONE, OLT, OLE, OGT, OGE:
   321  		return true
   322  	}
   323  	return false
   324  }
   325  
   326  // Nodes is a pointer to a slice of *Node.
   327  // For fields that are not used in most nodes, this is used instead of
   328  // a slice to save space.
   329  type Nodes []Node
   330  
   331  // Append appends entries to Nodes.
   332  func (n *Nodes) Append(a ...Node) {
   333  	if len(a) == 0 {
   334  		return
   335  	}
   336  	*n = append(*n, a...)
   337  }
   338  
   339  // Prepend prepends entries to Nodes.
   340  // If a slice is passed in, this will take ownership of it.
   341  func (n *Nodes) Prepend(a ...Node) {
   342  	if len(a) == 0 {
   343  		return
   344  	}
   345  	*n = append(a, *n...)
   346  }
   347  
   348  // Take clears n, returning its former contents.
   349  func (n *Nodes) Take() []Node {
   350  	ret := *n
   351  	*n = nil
   352  	return ret
   353  }
   354  
   355  // Copy returns a copy of the content of the slice.
   356  func (n Nodes) Copy() Nodes {
   357  	if n == nil {
   358  		return nil
   359  	}
   360  	c := make(Nodes, len(n))
   361  	copy(c, n)
   362  	return c
   363  }
   364  
   365  // NameQueue is a FIFO queue of *Name. The zero value of NameQueue is
   366  // a ready-to-use empty queue.
   367  type NameQueue struct {
   368  	ring       []*Name
   369  	head, tail int
   370  }
   371  
   372  // Empty reports whether q contains no Names.
   373  func (q *NameQueue) Empty() bool {
   374  	return q.head == q.tail
   375  }
   376  
   377  // PushRight appends n to the right of the queue.
   378  func (q *NameQueue) PushRight(n *Name) {
   379  	if len(q.ring) == 0 {
   380  		q.ring = make([]*Name, 16)
   381  	} else if q.head+len(q.ring) == q.tail {
   382  		// Grow the ring.
   383  		nring := make([]*Name, len(q.ring)*2)
   384  		// Copy the old elements.
   385  		part := q.ring[q.head%len(q.ring):]
   386  		if q.tail-q.head <= len(part) {
   387  			part = part[:q.tail-q.head]
   388  			copy(nring, part)
   389  		} else {
   390  			pos := copy(nring, part)
   391  			copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
   392  		}
   393  		q.ring, q.head, q.tail = nring, 0, q.tail-q.head
   394  	}
   395  
   396  	q.ring[q.tail%len(q.ring)] = n
   397  	q.tail++
   398  }
   399  
   400  // PopLeft pops a Name from the left of the queue. It panics if q is
   401  // empty.
   402  func (q *NameQueue) PopLeft() *Name {
   403  	if q.Empty() {
   404  		panic("dequeue empty")
   405  	}
   406  	n := q.ring[q.head%len(q.ring)]
   407  	q.head++
   408  	return n
   409  }
   410  
   411  // NameSet is a set of Names.
   412  type NameSet map[*Name]struct{}
   413  
   414  // Has reports whether s contains n.
   415  func (s NameSet) Has(n *Name) bool {
   416  	_, isPresent := s[n]
   417  	return isPresent
   418  }
   419  
   420  // Add adds n to s.
   421  func (s *NameSet) Add(n *Name) {
   422  	if *s == nil {
   423  		*s = make(map[*Name]struct{})
   424  	}
   425  	(*s)[n] = struct{}{}
   426  }
   427  
   428  // Sorted returns s sorted according to less.
   429  func (s NameSet) Sorted(less func(*Name, *Name) bool) []*Name {
   430  	var res []*Name
   431  	for n := range s {
   432  		res = append(res, n)
   433  	}
   434  	sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) })
   435  	return res
   436  }
   437  
   438  type PragmaFlag uint16
   439  
   440  const (
   441  	// Func pragmas.
   442  	Nointerface      PragmaFlag = 1 << iota
   443  	Noescape                    // func parameters don't escape
   444  	Norace                      // func must not have race detector annotations
   445  	Nosplit                     // func should not execute on separate stack
   446  	Noinline                    // func should not be inlined
   447  	NoCheckPtr                  // func should not be instrumented by checkptr
   448  	CgoUnsafeArgs               // treat a pointer to one arg as a pointer to them all
   449  	UintptrKeepAlive            // pointers converted to uintptr must be kept alive
   450  	UintptrEscapes              // pointers converted to uintptr escape
   451  
   452  	// Runtime-only func pragmas.
   453  	// See ../../../../runtime/HACKING.md for detailed descriptions.
   454  	Systemstack        // func must run on system stack
   455  	Nowritebarrier     // emit compiler error instead of write barrier
   456  	Nowritebarrierrec  // error on write barrier in this or recursive callees
   457  	Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees
   458  
   459  	// Go command pragmas
   460  	GoBuildPragma
   461  
   462  	RegisterParams // TODO(register args) remove after register abi is working
   463  
   464  )
   465  
   466  func AsNode(n types.Object) Node {
   467  	if n == nil {
   468  		return nil
   469  	}
   470  	return n.(Node)
   471  }
   472  
   473  var BlankNode Node
   474  
   475  func IsConst(n Node, ct constant.Kind) bool {
   476  	return ConstType(n) == ct
   477  }
   478  
   479  // IsNil reports whether n represents the universal untyped zero value "nil".
   480  func IsNil(n Node) bool {
   481  	// Check n.Orig because constant propagation may produce typed nil constants,
   482  	// which don't exist in the Go spec.
   483  	return n != nil && Orig(n).Op() == ONIL
   484  }
   485  
   486  func IsBlank(n Node) bool {
   487  	if n == nil {
   488  		return false
   489  	}
   490  	return n.Sym().IsBlank()
   491  }
   492  
   493  // IsMethod reports whether n is a method.
   494  // n must be a function or a method.
   495  func IsMethod(n Node) bool {
   496  	return n.Type().Recv() != nil
   497  }
   498  
   499  func HasNamedResults(fn *Func) bool {
   500  	typ := fn.Type()
   501  	return typ.NumResults() > 0 && types.OrigSym(typ.Results().Field(0).Sym) != nil
   502  }
   503  
   504  // HasUniquePos reports whether n has a unique position that can be
   505  // used for reporting error messages.
   506  //
   507  // It's primarily used to distinguish references to named objects,
   508  // whose Pos will point back to their declaration position rather than
   509  // their usage position.
   510  func HasUniquePos(n Node) bool {
   511  	switch n.Op() {
   512  	case ONAME:
   513  		return false
   514  	case OLITERAL, ONIL, OTYPE:
   515  		if n.Sym() != nil {
   516  			return false
   517  		}
   518  	}
   519  
   520  	if !n.Pos().IsKnown() {
   521  		if base.Flag.K != 0 {
   522  			base.Warn("setlineno: unknown position (line 0)")
   523  		}
   524  		return false
   525  	}
   526  
   527  	return true
   528  }
   529  
   530  func SetPos(n Node) src.XPos {
   531  	lno := base.Pos
   532  	if n != nil && HasUniquePos(n) {
   533  		base.Pos = n.Pos()
   534  	}
   535  	return lno
   536  }
   537  
   538  // The result of InitExpr MUST be assigned back to n, e.g.
   539  //
   540  //	n.X = InitExpr(init, n.X)
   541  func InitExpr(init []Node, expr Node) Node {
   542  	if len(init) == 0 {
   543  		return expr
   544  	}
   545  
   546  	n, ok := expr.(InitNode)
   547  	if !ok || MayBeShared(n) {
   548  		// Introduce OCONVNOP to hold init list.
   549  		n = NewConvExpr(base.Pos, OCONVNOP, nil, expr)
   550  		n.SetType(expr.Type())
   551  		n.SetTypecheck(1)
   552  	}
   553  
   554  	n.PtrInit().Prepend(init...)
   555  	return n
   556  }
   557  
   558  // what's the outer value that a write to n affects?
   559  // outer value means containing struct or array.
   560  func OuterValue(n Node) Node {
   561  	for {
   562  		switch nn := n; nn.Op() {
   563  		case OXDOT:
   564  			base.FatalfAt(n.Pos(), "OXDOT in OuterValue: %v", n)
   565  		case ODOT:
   566  			nn := nn.(*SelectorExpr)
   567  			n = nn.X
   568  			continue
   569  		case OPAREN:
   570  			nn := nn.(*ParenExpr)
   571  			n = nn.X
   572  			continue
   573  		case OCONVNOP:
   574  			nn := nn.(*ConvExpr)
   575  			n = nn.X
   576  			continue
   577  		case OINDEX:
   578  			nn := nn.(*IndexExpr)
   579  			if nn.X.Type() == nil {
   580  				base.Fatalf("OuterValue needs type for %v", nn.X)
   581  			}
   582  			if nn.X.Type().IsArray() {
   583  				n = nn.X
   584  				continue
   585  			}
   586  		}
   587  
   588  		return n
   589  	}
   590  }
   591  
   592  const (
   593  	EscUnknown = iota
   594  	EscNone    // Does not escape to heap, result, or parameters.
   595  	EscHeap    // Reachable from the heap
   596  	EscNever   // By construction will not escape.
   597  )