github.com/bir3/gocompiler@v0.3.205/src/cmd/compile/internal/ssa/_gen/generic.rules (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Simplifications that apply to all backend architectures. As an example, this 6 // Go source code 7 // 8 // y := 0 * x 9 // 10 // can be translated into y := 0 without losing any information, which saves a 11 // pointless multiplication instruction. Other .rules files in this directory 12 // (for example AMD64.rules) contain rules specific to the architecture in the 13 // filename. The rules here apply to every architecture. 14 // 15 // The code for parsing this file lives in rulegen.go; this file generates 16 // ssa/rewritegeneric.go. 17 18 // values are specified using the following format: 19 // (op <type> [auxint] {aux} arg0 arg1 ...) 20 // the type, aux, and auxint fields are optional 21 // on the matching side 22 // - the type, aux, and auxint fields must match if they are specified. 23 // - the first occurrence of a variable defines that variable. Subsequent 24 // uses must match (be == to) the first use. 25 // - v is defined to be the value matched. 26 // - an additional conditional can be provided after the match pattern with "&&". 27 // on the generated side 28 // - the type of the top-level expression is the same as the one on the left-hand side. 29 // - the type of any subexpressions must be specified explicitly (or 30 // be specified in the op's type field). 31 // - auxint will be 0 if not specified. 32 // - aux will be nil if not specified. 33 34 // blocks are specified using the following format: 35 // (kind controlvalue succ0 succ1 ...) 36 // controlvalue must be "nil" or a value expression 37 // succ* fields must be variables 38 // For now, the generated successors must be a permutation of the matched successors. 39 40 // constant folding 41 (Trunc16to8 (Const16 [c])) => (Const8 [int8(c)]) 42 (Trunc32to8 (Const32 [c])) => (Const8 [int8(c)]) 43 (Trunc32to16 (Const32 [c])) => (Const16 [int16(c)]) 44 (Trunc64to8 (Const64 [c])) => (Const8 [int8(c)]) 45 (Trunc64to16 (Const64 [c])) => (Const16 [int16(c)]) 46 (Trunc64to32 (Const64 [c])) => (Const32 [int32(c)]) 47 (Cvt64Fto32F (Const64F [c])) => (Const32F [float32(c)]) 48 (Cvt32Fto64F (Const32F [c])) => (Const64F [float64(c)]) 49 (Cvt32to32F (Const32 [c])) => (Const32F [float32(c)]) 50 (Cvt32to64F (Const32 [c])) => (Const64F [float64(c)]) 51 (Cvt64to32F (Const64 [c])) => (Const32F [float32(c)]) 52 (Cvt64to64F (Const64 [c])) => (Const64F [float64(c)]) 53 (Cvt32Fto32 (Const32F [c])) => (Const32 [int32(c)]) 54 (Cvt32Fto64 (Const32F [c])) => (Const64 [int64(c)]) 55 (Cvt64Fto32 (Const64F [c])) => (Const32 [int32(c)]) 56 (Cvt64Fto64 (Const64F [c])) => (Const64 [int64(c)]) 57 (Round32F x:(Const32F)) => x 58 (Round64F x:(Const64F)) => x 59 (CvtBoolToUint8 (ConstBool [false])) => (Const8 [0]) 60 (CvtBoolToUint8 (ConstBool [true])) => (Const8 [1]) 61 62 (Trunc16to8 (ZeroExt8to16 x)) => x 63 (Trunc32to8 (ZeroExt8to32 x)) => x 64 (Trunc32to16 (ZeroExt8to32 x)) => (ZeroExt8to16 x) 65 (Trunc32to16 (ZeroExt16to32 x)) => x 66 (Trunc64to8 (ZeroExt8to64 x)) => x 67 (Trunc64to16 (ZeroExt8to64 x)) => (ZeroExt8to16 x) 68 (Trunc64to16 (ZeroExt16to64 x)) => x 69 (Trunc64to32 (ZeroExt8to64 x)) => (ZeroExt8to32 x) 70 (Trunc64to32 (ZeroExt16to64 x)) => (ZeroExt16to32 x) 71 (Trunc64to32 (ZeroExt32to64 x)) => x 72 (Trunc16to8 (SignExt8to16 x)) => x 73 (Trunc32to8 (SignExt8to32 x)) => x 74 (Trunc32to16 (SignExt8to32 x)) => (SignExt8to16 x) 75 (Trunc32to16 (SignExt16to32 x)) => x 76 (Trunc64to8 (SignExt8to64 x)) => x 77 (Trunc64to16 (SignExt8to64 x)) => (SignExt8to16 x) 78 (Trunc64to16 (SignExt16to64 x)) => x 79 (Trunc64to32 (SignExt8to64 x)) => (SignExt8to32 x) 80 (Trunc64to32 (SignExt16to64 x)) => (SignExt16to32 x) 81 (Trunc64to32 (SignExt32to64 x)) => x 82 83 (ZeroExt8to16 (Const8 [c])) => (Const16 [int16( uint8(c))]) 84 (ZeroExt8to32 (Const8 [c])) => (Const32 [int32( uint8(c))]) 85 (ZeroExt8to64 (Const8 [c])) => (Const64 [int64( uint8(c))]) 86 (ZeroExt16to32 (Const16 [c])) => (Const32 [int32(uint16(c))]) 87 (ZeroExt16to64 (Const16 [c])) => (Const64 [int64(uint16(c))]) 88 (ZeroExt32to64 (Const32 [c])) => (Const64 [int64(uint32(c))]) 89 (SignExt8to16 (Const8 [c])) => (Const16 [int16(c)]) 90 (SignExt8to32 (Const8 [c])) => (Const32 [int32(c)]) 91 (SignExt8to64 (Const8 [c])) => (Const64 [int64(c)]) 92 (SignExt16to32 (Const16 [c])) => (Const32 [int32(c)]) 93 (SignExt16to64 (Const16 [c])) => (Const64 [int64(c)]) 94 (SignExt32to64 (Const32 [c])) => (Const64 [int64(c)]) 95 96 (Neg8 (Const8 [c])) => (Const8 [-c]) 97 (Neg16 (Const16 [c])) => (Const16 [-c]) 98 (Neg32 (Const32 [c])) => (Const32 [-c]) 99 (Neg64 (Const64 [c])) => (Const64 [-c]) 100 (Neg32F (Const32F [c])) && c != 0 => (Const32F [-c]) 101 (Neg64F (Const64F [c])) && c != 0 => (Const64F [-c]) 102 103 (Add8 (Const8 [c]) (Const8 [d])) => (Const8 [c+d]) 104 (Add16 (Const16 [c]) (Const16 [d])) => (Const16 [c+d]) 105 (Add32 (Const32 [c]) (Const32 [d])) => (Const32 [c+d]) 106 (Add64 (Const64 [c]) (Const64 [d])) => (Const64 [c+d]) 107 (Add32F (Const32F [c]) (Const32F [d])) && c+d == c+d => (Const32F [c+d]) 108 (Add64F (Const64F [c]) (Const64F [d])) && c+d == c+d => (Const64F [c+d]) 109 (AddPtr <t> x (Const64 [c])) => (OffPtr <t> x [c]) 110 (AddPtr <t> x (Const32 [c])) => (OffPtr <t> x [int64(c)]) 111 112 (Sub8 (Const8 [c]) (Const8 [d])) => (Const8 [c-d]) 113 (Sub16 (Const16 [c]) (Const16 [d])) => (Const16 [c-d]) 114 (Sub32 (Const32 [c]) (Const32 [d])) => (Const32 [c-d]) 115 (Sub64 (Const64 [c]) (Const64 [d])) => (Const64 [c-d]) 116 (Sub32F (Const32F [c]) (Const32F [d])) && c-d == c-d => (Const32F [c-d]) 117 (Sub64F (Const64F [c]) (Const64F [d])) && c-d == c-d => (Const64F [c-d]) 118 119 (Mul8 (Const8 [c]) (Const8 [d])) => (Const8 [c*d]) 120 (Mul16 (Const16 [c]) (Const16 [d])) => (Const16 [c*d]) 121 (Mul32 (Const32 [c]) (Const32 [d])) => (Const32 [c*d]) 122 (Mul64 (Const64 [c]) (Const64 [d])) => (Const64 [c*d]) 123 (Mul32F (Const32F [c]) (Const32F [d])) && c*d == c*d => (Const32F [c*d]) 124 (Mul64F (Const64F [c]) (Const64F [d])) && c*d == c*d => (Const64F [c*d]) 125 126 (And8 (Const8 [c]) (Const8 [d])) => (Const8 [c&d]) 127 (And16 (Const16 [c]) (Const16 [d])) => (Const16 [c&d]) 128 (And32 (Const32 [c]) (Const32 [d])) => (Const32 [c&d]) 129 (And64 (Const64 [c]) (Const64 [d])) => (Const64 [c&d]) 130 131 (Or8 (Const8 [c]) (Const8 [d])) => (Const8 [c|d]) 132 (Or16 (Const16 [c]) (Const16 [d])) => (Const16 [c|d]) 133 (Or32 (Const32 [c]) (Const32 [d])) => (Const32 [c|d]) 134 (Or64 (Const64 [c]) (Const64 [d])) => (Const64 [c|d]) 135 136 (Xor8 (Const8 [c]) (Const8 [d])) => (Const8 [c^d]) 137 (Xor16 (Const16 [c]) (Const16 [d])) => (Const16 [c^d]) 138 (Xor32 (Const32 [c]) (Const32 [d])) => (Const32 [c^d]) 139 (Xor64 (Const64 [c]) (Const64 [d])) => (Const64 [c^d]) 140 141 (Ctz64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz64(c))]) 142 (Ctz32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz32(c))]) 143 (Ctz16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz16(c))]) 144 (Ctz8 (Const8 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz8(c))]) 145 146 (Ctz64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz64(c))]) 147 (Ctz32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz32(c))]) 148 (Ctz16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz16(c))]) 149 (Ctz8 (Const8 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz8(c))]) 150 151 (Div8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c/d]) 152 (Div16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c/d]) 153 (Div32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c/d]) 154 (Div64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c/d]) 155 (Div8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c)/uint8(d))]) 156 (Div16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c)/uint16(d))]) 157 (Div32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c)/uint32(d))]) 158 (Div64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c)/uint64(d))]) 159 (Div32F (Const32F [c]) (Const32F [d])) && c/d == c/d => (Const32F [c/d]) 160 (Div64F (Const64F [c]) (Const64F [d])) && c/d == c/d => (Const64F [c/d]) 161 (Select0 (Div128u (Const64 [0]) lo y)) => (Div64u lo y) 162 (Select1 (Div128u (Const64 [0]) lo y)) => (Mod64u lo y) 163 164 (Not (ConstBool [c])) => (ConstBool [!c]) 165 166 (Floor (Const64F [c])) => (Const64F [math.Floor(c)]) 167 (Ceil (Const64F [c])) => (Const64F [math.Ceil(c)]) 168 (Trunc (Const64F [c])) => (Const64F [math.Trunc(c)]) 169 (RoundToEven (Const64F [c])) => (Const64F [math.RoundToEven(c)]) 170 171 // Convert x * 1 to x. 172 (Mul(8|16|32|64) (Const(8|16|32|64) [1]) x) => x 173 (Select0 (Mul(32|64)uover (Const(32|64) [1]) x)) => x 174 (Select1 (Mul(32|64)uover (Const(32|64) [1]) x)) => (ConstBool [false]) 175 176 // Convert x * -1 to -x. 177 (Mul(8|16|32|64) (Const(8|16|32|64) [-1]) x) => (Neg(8|16|32|64) x) 178 179 // Convert multiplication by a power of two to a shift. 180 (Mul8 <t> n (Const8 [c])) && isPowerOfTwo8(c) => (Lsh8x64 <t> n (Const64 <typ.UInt64> [log8(c)])) 181 (Mul16 <t> n (Const16 [c])) && isPowerOfTwo16(c) => (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(c)])) 182 (Mul32 <t> n (Const32 [c])) && isPowerOfTwo32(c) => (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(c)])) 183 (Mul64 <t> n (Const64 [c])) && isPowerOfTwo64(c) => (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(c)])) 184 (Mul8 <t> n (Const8 [c])) && t.IsSigned() && isPowerOfTwo8(-c) => (Neg8 (Lsh8x64 <t> n (Const64 <typ.UInt64> [log8(-c)]))) 185 (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo16(-c) => (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(-c)]))) 186 (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo32(-c) => (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(-c)]))) 187 (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo64(-c) => (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(-c)]))) 188 189 (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c % d]) 190 (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c % d]) 191 (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c % d]) 192 (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c % d]) 193 194 (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c) % uint8(d))]) 195 (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c) % uint16(d))]) 196 (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c) % uint32(d))]) 197 (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c) % uint64(d))]) 198 199 (Lsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c << uint64(d)]) 200 (Rsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c >> uint64(d)]) 201 (Rsh64Ux64 (Const64 [c]) (Const64 [d])) => (Const64 [int64(uint64(c) >> uint64(d))]) 202 (Lsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c << uint64(d)]) 203 (Rsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c >> uint64(d)]) 204 (Rsh32Ux64 (Const32 [c]) (Const64 [d])) => (Const32 [int32(uint32(c) >> uint64(d))]) 205 (Lsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c << uint64(d)]) 206 (Rsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c >> uint64(d)]) 207 (Rsh16Ux64 (Const16 [c]) (Const64 [d])) => (Const16 [int16(uint16(c) >> uint64(d))]) 208 (Lsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c << uint64(d)]) 209 (Rsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c >> uint64(d)]) 210 (Rsh8Ux64 (Const8 [c]) (Const64 [d])) => (Const8 [int8(uint8(c) >> uint64(d))]) 211 212 // Fold IsInBounds when the range of the index cannot exceed the limit. 213 (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c => (ConstBool [true]) 214 (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c => (ConstBool [true]) 215 (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c => (ConstBool [true]) 216 (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c => (ConstBool [true]) 217 (IsInBounds x x) => (ConstBool [false]) 218 (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d => (ConstBool [true]) 219 (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && int16(c) < d => (ConstBool [true]) 220 (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true]) 221 (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) 222 (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d => (ConstBool [true]) 223 (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true]) 224 (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) 225 (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d => (ConstBool [true]) 226 (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) 227 (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d => (ConstBool [true]) 228 (IsInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c < d]) 229 (IsInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c < d]) 230 // (Mod64u x y) is always between 0 (inclusive) and y (exclusive). 231 (IsInBounds (Mod32u _ y) y) => (ConstBool [true]) 232 (IsInBounds (Mod64u _ y) y) => (ConstBool [true]) 233 // Right shifting an unsigned number limits its value. 234 (IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 235 (IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 236 (IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 237 (IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 238 (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) 239 (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) 240 (IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) 241 (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true]) 242 (IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true]) 243 (IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d => (ConstBool [true]) 244 245 (IsSliceInBounds x x) => (ConstBool [true]) 246 (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d => (ConstBool [true]) 247 (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d => (ConstBool [true]) 248 (IsSliceInBounds (Const32 [0]) _) => (ConstBool [true]) 249 (IsSliceInBounds (Const64 [0]) _) => (ConstBool [true]) 250 (IsSliceInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c <= d]) 251 (IsSliceInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c <= d]) 252 (IsSliceInBounds (SliceLen x) (SliceCap x)) => (ConstBool [true]) 253 254 (Eq(64|32|16|8) x x) => (ConstBool [true]) 255 (EqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c == d]) 256 (EqB (ConstBool [false]) x) => (Not x) 257 (EqB (ConstBool [true]) x) => x 258 259 (Neq(64|32|16|8) x x) => (ConstBool [false]) 260 (NeqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c != d]) 261 (NeqB (ConstBool [false]) x) => x 262 (NeqB (ConstBool [true]) x) => (Not x) 263 (NeqB (Not x) (Not y)) => (NeqB x y) 264 265 (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Eq64 (Const64 <t> [c-d]) x) 266 (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Eq32 (Const32 <t> [c-d]) x) 267 (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Eq16 (Const16 <t> [c-d]) x) 268 (Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Eq8 (Const8 <t> [c-d]) x) 269 270 (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Neq64 (Const64 <t> [c-d]) x) 271 (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Neq32 (Const32 <t> [c-d]) x) 272 (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Neq16 (Const16 <t> [c-d]) x) 273 (Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Neq8 (Const8 <t> [c-d]) x) 274 275 // signed integer range: ( c <= x && x (<|<=) d ) -> ( unsigned(x-c) (<|<=) unsigned(d-c) ) 276 (AndB (Leq64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c])) 277 (AndB (Leq32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c])) 278 (AndB (Leq16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c])) 279 (AndB (Leq8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c])) 280 281 // signed integer range: ( c < x && x (<|<=) d ) -> ( unsigned(x-(c+1)) (<|<=) unsigned(d-(c+1)) ) 282 (AndB (Less64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1])) 283 (AndB (Less32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1])) 284 (AndB (Less16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1])) 285 (AndB (Less8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1])) 286 287 // unsigned integer range: ( c <= x && x (<|<=) d ) -> ( x-c (<|<=) d-c ) 288 (AndB (Leq64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c])) 289 (AndB (Leq32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c])) 290 (AndB (Leq16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c])) 291 (AndB (Leq8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c])) 292 293 // unsigned integer range: ( c < x && x (<|<=) d ) -> ( x-(c+1) (<|<=) d-(c+1) ) 294 (AndB (Less64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c+1) && uint64(c+1) > uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1])) 295 (AndB (Less32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c+1) && uint32(c+1) > uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1])) 296 (AndB (Less16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c+1) && uint16(c+1) > uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1])) 297 (AndB (Less8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c+1) && uint8(c+1) > uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1])) 298 299 // signed integer range: ( c (<|<=) x || x < d ) -> ( unsigned(c-d) (<|<=) unsigned(x-d) ) 300 (OrB ((Less|Leq)64 (Const64 [c]) x) (Less64 x (Const64 [d]))) && c >= d => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d]))) 301 (OrB ((Less|Leq)32 (Const32 [c]) x) (Less32 x (Const32 [d]))) && c >= d => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d]))) 302 (OrB ((Less|Leq)16 (Const16 [c]) x) (Less16 x (Const16 [d]))) && c >= d => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d]))) 303 (OrB ((Less|Leq)8 (Const8 [c]) x) (Less8 x (Const8 [d]))) && c >= d => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d]))) 304 305 // signed integer range: ( c (<|<=) x || x <= d ) -> ( unsigned(c-(d+1)) (<|<=) unsigned(x-(d+1)) ) 306 (OrB ((Less|Leq)64 (Const64 [c]) x) (Leq64 x (Const64 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1]))) 307 (OrB ((Less|Leq)32 (Const32 [c]) x) (Leq32 x (Const32 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1]))) 308 (OrB ((Less|Leq)16 (Const16 [c]) x) (Leq16 x (Const16 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1]))) 309 (OrB ((Less|Leq)8 (Const8 [c]) x) (Leq8 x (Const8 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1]))) 310 311 // unsigned integer range: ( c (<|<=) x || x < d ) -> ( c-d (<|<=) x-d ) 312 (OrB ((Less|Leq)64U (Const64 [c]) x) (Less64U x (Const64 [d]))) && uint64(c) >= uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d]))) 313 (OrB ((Less|Leq)32U (Const32 [c]) x) (Less32U x (Const32 [d]))) && uint32(c) >= uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d]))) 314 (OrB ((Less|Leq)16U (Const16 [c]) x) (Less16U x (Const16 [d]))) && uint16(c) >= uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d]))) 315 (OrB ((Less|Leq)8U (Const8 [c]) x) (Less8U x (Const8 [d]))) && uint8(c) >= uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d]))) 316 317 // unsigned integer range: ( c (<|<=) x || x <= d ) -> ( c-(d+1) (<|<=) x-(d+1) ) 318 (OrB ((Less|Leq)64U (Const64 [c]) x) (Leq64U x (Const64 [d]))) && uint64(c) >= uint64(d+1) && uint64(d+1) > uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1]))) 319 (OrB ((Less|Leq)32U (Const32 [c]) x) (Leq32U x (Const32 [d]))) && uint32(c) >= uint32(d+1) && uint32(d+1) > uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1]))) 320 (OrB ((Less|Leq)16U (Const16 [c]) x) (Leq16U x (Const16 [d]))) && uint16(c) >= uint16(d+1) && uint16(d+1) > uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1]))) 321 (OrB ((Less|Leq)8U (Const8 [c]) x) (Leq8U x (Const8 [d]))) && uint8(c) >= uint8(d+1) && uint8(d+1) > uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1]))) 322 323 // Canonicalize x-const to x+(-const) 324 (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 => (Add64 (Const64 <t> [-c]) x) 325 (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 => (Add32 (Const32 <t> [-c]) x) 326 (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 => (Add16 (Const16 <t> [-c]) x) 327 (Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 => (Add8 (Const8 <t> [-c]) x) 328 329 // fold negation into comparison operators 330 (Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Neq(64|32|16|8|B|Ptr|64F|32F) x y) 331 (Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Eq(64|32|16|8|B|Ptr|64F|32F) x y) 332 333 (Not (Less(64|32|16|8) x y)) => (Leq(64|32|16|8) y x) 334 (Not (Less(64|32|16|8)U x y)) => (Leq(64|32|16|8)U y x) 335 (Not (Leq(64|32|16|8) x y)) => (Less(64|32|16|8) y x) 336 (Not (Leq(64|32|16|8)U x y)) => (Less(64|32|16|8)U y x) 337 338 // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: 339 // a[i].b = ...; a[i+1].b = ... 340 (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) => 341 (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x)) 342 (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) => 343 (Add32 (Const32 <t> [c*d]) (Mul32 <t> (Const32 <t> [c]) x)) 344 345 // Rewrite x*y ± x*z to x*(y±z) 346 (Add(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) 347 => (Mul(64|32|16|8) x (Add(64|32|16|8) <t> y z)) 348 (Sub(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) 349 => (Mul(64|32|16|8) x (Sub(64|32|16|8) <t> y z)) 350 351 // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce 352 // the number of the other rewrite rules for const shifts 353 (Lsh64x32 <t> x (Const32 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint32(c))])) 354 (Lsh64x16 <t> x (Const16 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint16(c))])) 355 (Lsh64x8 <t> x (Const8 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint8(c))])) 356 (Rsh64x32 <t> x (Const32 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint32(c))])) 357 (Rsh64x16 <t> x (Const16 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint16(c))])) 358 (Rsh64x8 <t> x (Const8 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint8(c))])) 359 (Rsh64Ux32 <t> x (Const32 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))])) 360 (Rsh64Ux16 <t> x (Const16 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))])) 361 (Rsh64Ux8 <t> x (Const8 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))])) 362 363 (Lsh32x32 <t> x (Const32 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint32(c))])) 364 (Lsh32x16 <t> x (Const16 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint16(c))])) 365 (Lsh32x8 <t> x (Const8 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint8(c))])) 366 (Rsh32x32 <t> x (Const32 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint32(c))])) 367 (Rsh32x16 <t> x (Const16 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint16(c))])) 368 (Rsh32x8 <t> x (Const8 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint8(c))])) 369 (Rsh32Ux32 <t> x (Const32 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))])) 370 (Rsh32Ux16 <t> x (Const16 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))])) 371 (Rsh32Ux8 <t> x (Const8 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))])) 372 373 (Lsh16x32 <t> x (Const32 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint32(c))])) 374 (Lsh16x16 <t> x (Const16 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint16(c))])) 375 (Lsh16x8 <t> x (Const8 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint8(c))])) 376 (Rsh16x32 <t> x (Const32 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint32(c))])) 377 (Rsh16x16 <t> x (Const16 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint16(c))])) 378 (Rsh16x8 <t> x (Const8 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint8(c))])) 379 (Rsh16Ux32 <t> x (Const32 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))])) 380 (Rsh16Ux16 <t> x (Const16 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))])) 381 (Rsh16Ux8 <t> x (Const8 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))])) 382 383 (Lsh8x32 <t> x (Const32 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint32(c))])) 384 (Lsh8x16 <t> x (Const16 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint16(c))])) 385 (Lsh8x8 <t> x (Const8 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint8(c))])) 386 (Rsh8x32 <t> x (Const32 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint32(c))])) 387 (Rsh8x16 <t> x (Const16 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint16(c))])) 388 (Rsh8x8 <t> x (Const8 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint8(c))])) 389 (Rsh8Ux32 <t> x (Const32 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))])) 390 (Rsh8Ux16 <t> x (Const16 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))])) 391 (Rsh8Ux8 <t> x (Const8 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))])) 392 393 // shifts by zero 394 (Lsh(64|32|16|8)x64 x (Const64 [0])) => x 395 (Rsh(64|32|16|8)x64 x (Const64 [0])) => x 396 (Rsh(64|32|16|8)Ux64 x (Const64 [0])) => x 397 398 // rotates by multiples of register width 399 (RotateLeft64 x (Const64 [c])) && c%64 == 0 => x 400 (RotateLeft32 x (Const32 [c])) && c%32 == 0 => x 401 (RotateLeft16 x (Const16 [c])) && c%16 == 0 => x 402 (RotateLeft8 x (Const8 [c])) && c%8 == 0 => x 403 404 // zero shifted 405 (Lsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) 406 (Rsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) 407 (Rsh64Ux(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) 408 (Lsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) 409 (Rsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) 410 (Rsh32Ux(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) 411 (Lsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) 412 (Rsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) 413 (Rsh16Ux(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) 414 (Lsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) 415 (Rsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) 416 (Rsh8Ux(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) 417 418 // large left shifts of all values, and right shifts of unsigned values 419 ((Lsh64|Rsh64U)x64 _ (Const64 [c])) && uint64(c) >= 64 => (Const64 [0]) 420 ((Lsh32|Rsh32U)x64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0]) 421 ((Lsh16|Rsh16U)x64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0]) 422 ((Lsh8|Rsh8U)x64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0]) 423 424 // combine const shifts 425 (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh64x64 x (Const64 <t> [c+d])) 426 (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh32x64 x (Const64 <t> [c+d])) 427 (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh16x64 x (Const64 <t> [c+d])) 428 (Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh8x64 x (Const64 <t> [c+d])) 429 430 (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64x64 x (Const64 <t> [c+d])) 431 (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32x64 x (Const64 <t> [c+d])) 432 (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16x64 x (Const64 <t> [c+d])) 433 (Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8x64 x (Const64 <t> [c+d])) 434 435 (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64Ux64 x (Const64 <t> [c+d])) 436 (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32Ux64 x (Const64 <t> [c+d])) 437 (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16Ux64 x (Const64 <t> [c+d])) 438 (Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8Ux64 x (Const64 <t> [c+d])) 439 440 // Remove signed right shift before an unsigned right shift that extracts the sign bit. 441 (Rsh8Ux64 (Rsh8x64 x _) (Const64 <t> [7] )) => (Rsh8Ux64 x (Const64 <t> [7] )) 442 (Rsh16Ux64 (Rsh16x64 x _) (Const64 <t> [15])) => (Rsh16Ux64 x (Const64 <t> [15])) 443 (Rsh32Ux64 (Rsh32x64 x _) (Const64 <t> [31])) => (Rsh32Ux64 x (Const64 <t> [31])) 444 (Rsh64Ux64 (Rsh64x64 x _) (Const64 <t> [63])) => (Rsh64Ux64 x (Const64 <t> [63])) 445 446 // Convert x>>c<<c to x&^(1<<c-1) 447 (Lsh64x64 i:(Rsh(64|64U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(-1) << c])) 448 (Lsh32x64 i:(Rsh(32|32U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(-1) << c])) 449 (Lsh16x64 i:(Rsh(16|16U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(-1) << c])) 450 (Lsh8x64 i:(Rsh(8|8U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 <v.Type> [int8(-1) << c])) 451 // similarly for x<<c>>c 452 (Rsh64Ux64 i:(Lsh64x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(^uint64(0)>>c)])) 453 (Rsh32Ux64 i:(Lsh32x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(^uint32(0)>>c)])) 454 (Rsh16Ux64 i:(Lsh16x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(^uint16(0)>>c)])) 455 (Rsh8Ux64 i:(Lsh8x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 <v.Type> [int8 (^uint8 (0)>>c)])) 456 457 // ((x >> c1) << c2) >> c3 458 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 459 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 460 => (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 461 462 // ((x << c1) >> c2) << c3 463 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 464 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 465 => (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 466 467 // (x >> c) & uppermask = 0 468 (And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= int64(64-ntz64(m)) => (Const64 [0]) 469 (And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= int64(32-ntz32(m)) => (Const32 [0]) 470 (And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= int64(16-ntz16(m)) => (Const16 [0]) 471 (And8 (Const8 [m]) (Rsh8Ux64 _ (Const64 [c]))) && c >= int64(8-ntz8(m)) => (Const8 [0]) 472 473 // (x << c) & lowermask = 0 474 (And64 (Const64 [m]) (Lsh64x64 _ (Const64 [c]))) && c >= int64(64-nlz64(m)) => (Const64 [0]) 475 (And32 (Const32 [m]) (Lsh32x64 _ (Const64 [c]))) && c >= int64(32-nlz32(m)) => (Const32 [0]) 476 (And16 (Const16 [m]) (Lsh16x64 _ (Const64 [c]))) && c >= int64(16-nlz16(m)) => (Const16 [0]) 477 (And8 (Const8 [m]) (Lsh8x64 _ (Const64 [c]))) && c >= int64(8-nlz8(m)) => (Const8 [0]) 478 479 // replace shifts with zero extensions 480 (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (ZeroExt8to16 (Trunc16to8 <typ.UInt8> x)) 481 (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (ZeroExt8to32 (Trunc32to8 <typ.UInt8> x)) 482 (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (ZeroExt8to64 (Trunc64to8 <typ.UInt8> x)) 483 (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x)) 484 (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x)) 485 (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x)) 486 487 // replace shifts with sign extensions 488 (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (SignExt8to16 (Trunc16to8 <typ.Int8> x)) 489 (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (SignExt8to32 (Trunc32to8 <typ.Int8> x)) 490 (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (SignExt8to64 (Trunc64to8 <typ.Int8> x)) 491 (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (SignExt16to32 (Trunc32to16 <typ.Int16> x)) 492 (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (SignExt16to64 (Trunc64to16 <typ.Int16> x)) 493 (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (SignExt32to64 (Trunc64to32 <typ.Int32> x)) 494 495 // constant comparisons 496 (Eq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c == d]) 497 (Neq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c != d]) 498 (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c < d]) 499 (Leq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c <= d]) 500 501 (Less64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) < uint64(d)]) 502 (Less32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) < uint32(d)]) 503 (Less16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) < uint16(d)]) 504 (Less8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) < uint8(d)]) 505 506 (Leq64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) <= uint64(d)]) 507 (Leq32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) <= uint32(d)]) 508 (Leq16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) <= uint16(d)]) 509 (Leq8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) <= uint8(d)]) 510 511 (Leq8 (Const8 [0]) (And8 _ (Const8 [c]))) && c >= 0 => (ConstBool [true]) 512 (Leq16 (Const16 [0]) (And16 _ (Const16 [c]))) && c >= 0 => (ConstBool [true]) 513 (Leq32 (Const32 [0]) (And32 _ (Const32 [c]))) && c >= 0 => (ConstBool [true]) 514 (Leq64 (Const64 [0]) (And64 _ (Const64 [c]))) && c >= 0 => (ConstBool [true]) 515 516 (Leq8 (Const8 [0]) (Rsh8Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 517 (Leq16 (Const16 [0]) (Rsh16Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 518 (Leq32 (Const32 [0]) (Rsh32Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 519 (Leq64 (Const64 [0]) (Rsh64Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 520 521 (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) && isNonNegative(x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 522 (Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) && isNonNegative(x) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 523 524 // constant floating point comparisons 525 (Eq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c == d]) 526 (Eq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c == d]) 527 (Neq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c != d]) 528 (Neq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c != d]) 529 (Less32F (Const32F [c]) (Const32F [d])) => (ConstBool [c < d]) 530 (Less64F (Const64F [c]) (Const64F [d])) => (ConstBool [c < d]) 531 (Leq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c <= d]) 532 (Leq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c <= d]) 533 534 // simplifications 535 (Or(64|32|16|8) x x) => x 536 (Or(64|32|16|8) (Const(64|32|16|8) [0]) x) => x 537 (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) => (Const(64|32|16|8) [-1]) 538 (Or(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) 539 540 (And(64|32|16|8) x x) => x 541 (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) => x 542 (And(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0]) 543 (And(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [0]) 544 545 (Xor(64|32|16|8) x x) => (Const(64|32|16|8) [0]) 546 (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) => x 547 (Xor(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) 548 549 (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) => x 550 (Sub(64|32|16|8) x x) => (Const(64|32|16|8) [0]) 551 (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0]) 552 (Select0 (Mul(64|32)uover (Const(64|32) [0]) x)) => (Const(64|32) [0]) 553 (Select1 (Mul(64|32)uover (Const(64|32) [0]) x)) => (ConstBool [false]) 554 555 (Com(64|32|16|8) (Com(64|32|16|8) x)) => x 556 (Com(64|32|16|8) (Const(64|32|16|8) [c])) => (Const(64|32|16|8) [^c]) 557 558 (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) => (Sub(64|32|16|8) y x) 559 (Add(64|32|16|8) x (Neg(64|32|16|8) y)) => (Sub(64|32|16|8) x y) 560 561 (Xor(64|32|16|8) (Const(64|32|16|8) [-1]) x) => (Com(64|32|16|8) x) 562 563 (Sub(64|32|16|8) (Neg(64|32|16|8) x) (Com(64|32|16|8) x)) => (Const(64|32|16|8) [1]) 564 (Sub(64|32|16|8) (Com(64|32|16|8) x) (Neg(64|32|16|8) x)) => (Const(64|32|16|8) [-1]) 565 (Add(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) 566 567 // ^(x-1) == ^x+1 == -x 568 (Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) => (Neg(64|32|16|8) x) 569 (Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) => (Neg(64|32|16|8) x) 570 571 // -(-x) == x 572 (Neg(64|32|16|8) (Neg(64|32|16|8) x)) => x 573 574 // -^x == x+1 575 (Neg(64|32|16|8) <t> (Com(64|32|16|8) x)) => (Add(64|32|16|8) (Const(64|32|16|8) <t> [1]) x) 576 577 (And(64|32|16|8) x (And(64|32|16|8) x y)) => (And(64|32|16|8) x y) 578 (Or(64|32|16|8) x (Or(64|32|16|8) x y)) => (Or(64|32|16|8) x y) 579 (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) => y 580 581 // Unsigned comparisons to zero. 582 (Less(64U|32U|16U|8U) _ (Const(64|32|16|8) [0])) => (ConstBool [false]) 583 (Leq(64U|32U|16U|8U) (Const(64|32|16|8) [0]) _) => (ConstBool [true]) 584 585 // Ands clear bits. Ors set bits. 586 // If a subsequent Or will set all the bits 587 // that an And cleared, we can skip the And. 588 // This happens in bitmasking code like: 589 // x &^= 3 << shift // clear two old bits 590 // x |= v << shift // set two new bits 591 // when shift is a small constant and v ends up a constant 3. 592 (Or8 (And8 x (Const8 [c2])) (Const8 <t> [c1])) && ^(c1 | c2) == 0 => (Or8 (Const8 <t> [c1]) x) 593 (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 => (Or16 (Const16 <t> [c1]) x) 594 (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 => (Or32 (Const32 <t> [c1]) x) 595 (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 => (Or64 (Const64 <t> [c1]) x) 596 597 (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF => (Trunc64to8 x) 598 (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc64to16 x) 599 (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF => (Trunc64to32 x) 600 (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF => (Trunc32to8 x) 601 (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc32to16 x) 602 (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF => (Trunc16to8 x) 603 604 (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 => x 605 (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 => x 606 (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 => x 607 (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 => x 608 (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 => x 609 (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 => x 610 611 (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 => x 612 (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 => x 613 (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 => x 614 (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 => x 615 (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 => x 616 (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 => x 617 618 (Slicemask (Const32 [x])) && x > 0 => (Const32 [-1]) 619 (Slicemask (Const32 [0])) => (Const32 [0]) 620 (Slicemask (Const64 [x])) && x > 0 => (Const64 [-1]) 621 (Slicemask (Const64 [0])) => (Const64 [0]) 622 623 // simplifications often used for lengths. e.g. len(s[i:i+5])==5 624 (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) => y 625 (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) => x 626 (Sub(64|32|16|8) (Sub(64|32|16|8) x y) x) => (Neg(64|32|16|8) y) 627 (Sub(64|32|16|8) x (Add(64|32|16|8) x y)) => (Neg(64|32|16|8) y) 628 (Add(64|32|16|8) x (Sub(64|32|16|8) y x)) => y 629 (Add(64|32|16|8) x (Add(64|32|16|8) y (Sub(64|32|16|8) z x))) => (Add(64|32|16|8) y z) 630 631 // basic phi simplifications 632 (Phi (Const8 [c]) (Const8 [c])) => (Const8 [c]) 633 (Phi (Const16 [c]) (Const16 [c])) => (Const16 [c]) 634 (Phi (Const32 [c]) (Const32 [c])) => (Const32 [c]) 635 (Phi (Const64 [c]) (Const64 [c])) => (Const64 [c]) 636 637 // slice and interface comparisons 638 // The frontend ensures that we can only compare against nil, 639 // so we need only compare the first word (interface type or slice ptr). 640 (EqInter x y) => (EqPtr (ITab x) (ITab y)) 641 (NeqInter x y) => (NeqPtr (ITab x) (ITab y)) 642 (EqSlice x y) => (EqPtr (SlicePtr x) (SlicePtr y)) 643 (NeqSlice x y) => (NeqPtr (SlicePtr x) (SlicePtr y)) 644 645 // Load of store of same address, with compatibly typed value and same size 646 (Load <t1> p1 (Store {t2} p2 x _)) 647 && isSamePtr(p1, p2) 648 && t1.Compare(x.Type) == types.CMPeq 649 && t1.Size() == t2.Size() 650 => x 651 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 x _))) 652 && isSamePtr(p1, p3) 653 && t1.Compare(x.Type) == types.CMPeq 654 && t1.Size() == t2.Size() 655 && disjoint(p3, t3.Size(), p2, t2.Size()) 656 => x 657 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _)))) 658 && isSamePtr(p1, p4) 659 && t1.Compare(x.Type) == types.CMPeq 660 && t1.Size() == t2.Size() 661 && disjoint(p4, t4.Size(), p2, t2.Size()) 662 && disjoint(p4, t4.Size(), p3, t3.Size()) 663 => x 664 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _))))) 665 && isSamePtr(p1, p5) 666 && t1.Compare(x.Type) == types.CMPeq 667 && t1.Size() == t2.Size() 668 && disjoint(p5, t5.Size(), p2, t2.Size()) 669 && disjoint(p5, t5.Size(), p3, t3.Size()) 670 && disjoint(p5, t5.Size(), p4, t4.Size()) 671 => x 672 673 // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits 674 (Load <t1> p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitFloat(t1) && !math.IsNaN(math.Float64frombits(uint64(x))) => (Const64F [math.Float64frombits(uint64(x))]) 675 (Load <t1> p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitFloat(t1) && !math.IsNaN(float64(math.Float32frombits(uint32(x)))) => (Const32F [math.Float32frombits(uint32(x))]) 676 (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitInt(t1) => (Const64 [int64(math.Float64bits(x))]) 677 (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitInt(t1) => (Const32 [int32(math.Float32bits(x))]) 678 679 // Float Loads up to Zeros so they can be constant folded. 680 (Load <t1> op:(OffPtr [o1] p1) 681 (Store {t2} p2 _ 682 mem:(Zero [n] p3 _))) 683 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3) 684 && fe.CanSSA(t1) 685 && disjoint(op, t1.Size(), p2, t2.Size()) 686 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p3) mem) 687 (Load <t1> op:(OffPtr [o1] p1) 688 (Store {t2} p2 _ 689 (Store {t3} p3 _ 690 mem:(Zero [n] p4 _)))) 691 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4) 692 && fe.CanSSA(t1) 693 && disjoint(op, t1.Size(), p2, t2.Size()) 694 && disjoint(op, t1.Size(), p3, t3.Size()) 695 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p4) mem) 696 (Load <t1> op:(OffPtr [o1] p1) 697 (Store {t2} p2 _ 698 (Store {t3} p3 _ 699 (Store {t4} p4 _ 700 mem:(Zero [n] p5 _))))) 701 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5) 702 && fe.CanSSA(t1) 703 && disjoint(op, t1.Size(), p2, t2.Size()) 704 && disjoint(op, t1.Size(), p3, t3.Size()) 705 && disjoint(op, t1.Size(), p4, t4.Size()) 706 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p5) mem) 707 (Load <t1> op:(OffPtr [o1] p1) 708 (Store {t2} p2 _ 709 (Store {t3} p3 _ 710 (Store {t4} p4 _ 711 (Store {t5} p5 _ 712 mem:(Zero [n] p6 _)))))) 713 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6) 714 && fe.CanSSA(t1) 715 && disjoint(op, t1.Size(), p2, t2.Size()) 716 && disjoint(op, t1.Size(), p3, t3.Size()) 717 && disjoint(op, t1.Size(), p4, t4.Size()) 718 && disjoint(op, t1.Size(), p5, t5.Size()) 719 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p6) mem) 720 721 // Zero to Load forwarding. 722 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 723 && t1.IsBoolean() 724 && isSamePtr(p1, p2) 725 && n >= o + 1 726 => (ConstBool [false]) 727 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 728 && is8BitInt(t1) 729 && isSamePtr(p1, p2) 730 && n >= o + 1 731 => (Const8 [0]) 732 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 733 && is16BitInt(t1) 734 && isSamePtr(p1, p2) 735 && n >= o + 2 736 => (Const16 [0]) 737 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 738 && is32BitInt(t1) 739 && isSamePtr(p1, p2) 740 && n >= o + 4 741 => (Const32 [0]) 742 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 743 && is64BitInt(t1) 744 && isSamePtr(p1, p2) 745 && n >= o + 8 746 => (Const64 [0]) 747 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 748 && is32BitFloat(t1) 749 && isSamePtr(p1, p2) 750 && n >= o + 4 751 => (Const32F [0]) 752 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 753 && is64BitFloat(t1) 754 && isSamePtr(p1, p2) 755 && n >= o + 8 756 => (Const64F [0]) 757 758 // Eliminate stores of values that have just been loaded from the same location. 759 // We also handle the common case where there are some intermediate stores. 760 (Store {t1} p1 (Load <t2> p2 mem) mem) 761 && isSamePtr(p1, p2) 762 && t2.Size() == t1.Size() 763 => mem 764 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ oldmem)) 765 && isSamePtr(p1, p2) 766 && t2.Size() == t1.Size() 767 && disjoint(p1, t1.Size(), p3, t3.Size()) 768 => mem 769 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem))) 770 && isSamePtr(p1, p2) 771 && t2.Size() == t1.Size() 772 && disjoint(p1, t1.Size(), p3, t3.Size()) 773 && disjoint(p1, t1.Size(), p4, t4.Size()) 774 => mem 775 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem)))) 776 && isSamePtr(p1, p2) 777 && t2.Size() == t1.Size() 778 && disjoint(p1, t1.Size(), p3, t3.Size()) 779 && disjoint(p1, t1.Size(), p4, t4.Size()) 780 && disjoint(p1, t1.Size(), p5, t5.Size()) 781 => mem 782 783 // Don't Store zeros to cleared variables. 784 (Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _)) 785 && isConstZero(x) 786 && o >= 0 && t.Size() + o <= n && isSamePtr(p1, p2) 787 => mem 788 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _))) 789 && isConstZero(x) 790 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p3) 791 && disjoint(op, t1.Size(), p2, t2.Size()) 792 => mem 793 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _)))) 794 && isConstZero(x) 795 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p4) 796 && disjoint(op, t1.Size(), p2, t2.Size()) 797 && disjoint(op, t1.Size(), p3, t3.Size()) 798 => mem 799 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _))))) 800 && isConstZero(x) 801 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p5) 802 && disjoint(op, t1.Size(), p2, t2.Size()) 803 && disjoint(op, t1.Size(), p3, t3.Size()) 804 && disjoint(op, t1.Size(), p4, t4.Size()) 805 => mem 806 807 // Collapse OffPtr 808 (OffPtr (OffPtr p [y]) [x]) => (OffPtr p [x+y]) 809 (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq => p 810 811 // indexing operations 812 // Note: bounds check has already been done 813 (PtrIndex <t> ptr idx) && config.PtrSize == 4 && is32Bit(t.Elem().Size()) => (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [int32(t.Elem().Size())]))) 814 (PtrIndex <t> ptr idx) && config.PtrSize == 8 => (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.Elem().Size()]))) 815 816 // struct operations 817 (StructSelect (StructMake1 x)) => x 818 (StructSelect [0] (StructMake2 x _)) => x 819 (StructSelect [1] (StructMake2 _ x)) => x 820 (StructSelect [0] (StructMake3 x _ _)) => x 821 (StructSelect [1] (StructMake3 _ x _)) => x 822 (StructSelect [2] (StructMake3 _ _ x)) => x 823 (StructSelect [0] (StructMake4 x _ _ _)) => x 824 (StructSelect [1] (StructMake4 _ x _ _)) => x 825 (StructSelect [2] (StructMake4 _ _ x _)) => x 826 (StructSelect [3] (StructMake4 _ _ _ x)) => x 827 828 (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) => 829 (StructMake0) 830 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) => 831 (StructMake1 832 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem)) 833 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) => 834 (StructMake2 835 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 836 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)) 837 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) => 838 (StructMake3 839 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 840 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 841 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)) 842 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) => 843 (StructMake4 844 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 845 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 846 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem) 847 (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem)) 848 849 (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) => 850 @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem) 851 852 (Store _ (StructMake0) mem) => mem 853 (Store dst (StructMake1 <t> f0) mem) => 854 (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem) 855 (Store dst (StructMake2 <t> f0 f1) mem) => 856 (Store {t.FieldType(1)} 857 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 858 f1 859 (Store {t.FieldType(0)} 860 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 861 f0 mem)) 862 (Store dst (StructMake3 <t> f0 f1 f2) mem) => 863 (Store {t.FieldType(2)} 864 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 865 f2 866 (Store {t.FieldType(1)} 867 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 868 f1 869 (Store {t.FieldType(0)} 870 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 871 f0 mem))) 872 (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) => 873 (Store {t.FieldType(3)} 874 (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst) 875 f3 876 (Store {t.FieldType(2)} 877 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 878 f2 879 (Store {t.FieldType(1)} 880 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 881 f1 882 (Store {t.FieldType(0)} 883 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 884 f0 mem)))) 885 886 // Putting struct{*byte} and similar into direct interfaces. 887 (IMake _typ (StructMake1 val)) => (IMake _typ val) 888 (StructSelect [0] (IData x)) => (IData x) 889 890 // un-SSAable values use mem->mem copies 891 (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t) => 892 (Move {t} [t.Size()] dst src mem) 893 (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t) => 894 (Move {t} [t.Size()] dst src (VarDef {x} mem)) 895 896 // array ops 897 (ArraySelect (ArrayMake1 x)) => x 898 899 (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 => 900 (ArrayMake0) 901 902 (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) => 903 (ArrayMake1 (Load <t.Elem()> ptr mem)) 904 905 (Store _ (ArrayMake0) mem) => mem 906 (Store dst (ArrayMake1 e) mem) => (Store {e.Type} dst e mem) 907 908 // Putting [1]*byte and similar into direct interfaces. 909 (IMake _typ (ArrayMake1 val)) => (IMake _typ val) 910 (ArraySelect [0] (IData x)) => (IData x) 911 912 // string ops 913 // Decomposing StringMake and lowering of StringPtr and StringLen 914 // happens in a later pass, dec, so that these operations are available 915 // to other passes for optimizations. 916 (StringPtr (StringMake (Addr <t> {s} base) _)) => (Addr <t> {s} base) 917 (StringLen (StringMake _ (Const64 <t> [c]))) => (Const64 <t> [c]) 918 (ConstString {str}) && config.PtrSize == 4 && str == "" => 919 (StringMake (ConstNil) (Const32 <typ.Int> [0])) 920 (ConstString {str}) && config.PtrSize == 8 && str == "" => 921 (StringMake (ConstNil) (Const64 <typ.Int> [0])) 922 (ConstString {str}) && config.PtrSize == 4 && str != "" => 923 (StringMake 924 (Addr <typ.BytePtr> {fe.StringData(str)} 925 (SB)) 926 (Const32 <typ.Int> [int32(len(str))])) 927 (ConstString {str}) && config.PtrSize == 8 && str != "" => 928 (StringMake 929 (Addr <typ.BytePtr> {fe.StringData(str)} 930 (SB)) 931 (Const64 <typ.Int> [int64(len(str))])) 932 933 // slice ops 934 // Only a few slice rules are provided here. See dec.rules for 935 // a more comprehensive set. 936 (SliceLen (SliceMake _ (Const64 <t> [c]) _)) => (Const64 <t> [c]) 937 (SliceCap (SliceMake _ _ (Const64 <t> [c]))) => (Const64 <t> [c]) 938 (SliceLen (SliceMake _ (Const32 <t> [c]) _)) => (Const32 <t> [c]) 939 (SliceCap (SliceMake _ _ (Const32 <t> [c]))) => (Const32 <t> [c]) 940 (SlicePtr (SliceMake (SlicePtr x) _ _)) => (SlicePtr x) 941 (SliceLen (SliceMake _ (SliceLen x) _)) => (SliceLen x) 942 (SliceCap (SliceMake _ _ (SliceCap x))) => (SliceCap x) 943 (SliceCap (SliceMake _ _ (SliceLen x))) => (SliceLen x) 944 (ConstSlice) && config.PtrSize == 4 => 945 (SliceMake 946 (ConstNil <v.Type.Elem().PtrTo()>) 947 (Const32 <typ.Int> [0]) 948 (Const32 <typ.Int> [0])) 949 (ConstSlice) && config.PtrSize == 8 => 950 (SliceMake 951 (ConstNil <v.Type.Elem().PtrTo()>) 952 (Const64 <typ.Int> [0]) 953 (Const64 <typ.Int> [0])) 954 955 // interface ops 956 (ConstInterface) => 957 (IMake 958 (ConstNil <typ.Uintptr>) 959 (ConstNil <typ.BytePtr>)) 960 961 (NilCheck (GetG mem) mem) => mem 962 963 (If (Not cond) yes no) => (If cond no yes) 964 (If (ConstBool [c]) yes no) && c => (First yes no) 965 (If (ConstBool [c]) yes no) && !c => (First no yes) 966 967 (Phi <t> nx:(Not x) ny:(Not y)) && nx.Uses == 1 && ny.Uses == 1 => (Not (Phi <t> x y)) 968 969 // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. 970 (Convert (Add(64|32) (Convert ptr mem) off) mem) => (AddPtr ptr off) 971 (Convert (Convert ptr mem) mem) => ptr 972 973 // strength reduction of divide by a constant. 974 // See ../magic.go for a detailed description of these algorithms. 975 976 // Unsigned divide by power of 2. Strength reduce to a shift. 977 (Div8u n (Const8 [c])) && isPowerOfTwo8(c) => (Rsh8Ux64 n (Const64 <typ.UInt64> [log8(c)])) 978 (Div16u n (Const16 [c])) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)])) 979 (Div32u n (Const32 [c])) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)])) 980 (Div64u n (Const64 [c])) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)])) 981 (Div64u n (Const64 [-1<<63])) => (Rsh64Ux64 n (Const64 <typ.UInt64> [63])) 982 983 // Signed non-negative divide by power of 2. 984 (Div8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo8(c) => (Rsh8Ux64 n (Const64 <typ.UInt64> [log8(c)])) 985 (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)])) 986 (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)])) 987 (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)])) 988 (Div64 n (Const64 [-1<<63])) && isNonNegative(n) => (Const64 [0]) 989 990 // Unsigned divide, not a power of 2. Strength reduce to a multiply. 991 // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. 992 (Div8u x (Const8 [c])) && umagicOK8(c) => 993 (Trunc32to8 994 (Rsh32Ux64 <typ.UInt32> 995 (Mul32 <typ.UInt32> 996 (Const32 <typ.UInt32> [int32(1<<8+umagic8(c).m)]) 997 (ZeroExt8to32 x)) 998 (Const64 <typ.UInt64> [8+umagic8(c).s]))) 999 1000 // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. 1001 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 8 => 1002 (Trunc64to16 1003 (Rsh64Ux64 <typ.UInt64> 1004 (Mul64 <typ.UInt64> 1005 (Const64 <typ.UInt64> [int64(1<<16+umagic16(c).m)]) 1006 (ZeroExt16to64 x)) 1007 (Const64 <typ.UInt64> [16+umagic16(c).s]))) 1008 1009 // For 16-bit divides on 32-bit machines 1010 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && umagic16(c).m&1 == 0 => 1011 (Trunc32to16 1012 (Rsh32Ux64 <typ.UInt32> 1013 (Mul32 <typ.UInt32> 1014 (Const32 <typ.UInt32> [int32(1<<15+umagic16(c).m/2)]) 1015 (ZeroExt16to32 x)) 1016 (Const64 <typ.UInt64> [16+umagic16(c).s-1]))) 1017 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && c&1 == 0 => 1018 (Trunc32to16 1019 (Rsh32Ux64 <typ.UInt32> 1020 (Mul32 <typ.UInt32> 1021 (Const32 <typ.UInt32> [int32(1<<15+(umagic16(c).m+1)/2)]) 1022 (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1]))) 1023 (Const64 <typ.UInt64> [16+umagic16(c).s-2]))) 1024 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && config.useAvg => 1025 (Trunc32to16 1026 (Rsh32Ux64 <typ.UInt32> 1027 (Avg32u 1028 (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16])) 1029 (Mul32 <typ.UInt32> 1030 (Const32 <typ.UInt32> [int32(umagic16(c).m)]) 1031 (ZeroExt16to32 x))) 1032 (Const64 <typ.UInt64> [16+umagic16(c).s-1]))) 1033 1034 // For 32-bit divides on 32-bit machines 1035 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && umagic32(c).m&1 == 0 && config.useHmul => 1036 (Rsh32Ux64 <typ.UInt32> 1037 (Hmul32u <typ.UInt32> 1038 (Const32 <typ.UInt32> [int32(1<<31+umagic32(c).m/2)]) 1039 x) 1040 (Const64 <typ.UInt64> [umagic32(c).s-1])) 1041 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && c&1 == 0 && config.useHmul => 1042 (Rsh32Ux64 <typ.UInt32> 1043 (Hmul32u <typ.UInt32> 1044 (Const32 <typ.UInt32> [int32(1<<31+(umagic32(c).m+1)/2)]) 1045 (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1]))) 1046 (Const64 <typ.UInt64> [umagic32(c).s-2])) 1047 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && config.useAvg && config.useHmul => 1048 (Rsh32Ux64 <typ.UInt32> 1049 (Avg32u 1050 x 1051 (Hmul32u <typ.UInt32> 1052 (Const32 <typ.UInt32> [int32(umagic32(c).m)]) 1053 x)) 1054 (Const64 <typ.UInt64> [umagic32(c).s-1])) 1055 1056 // For 32-bit divides on 64-bit machines 1057 // We'll use a regular (non-hi) multiply for this case. 1058 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && umagic32(c).m&1 == 0 => 1059 (Trunc64to32 1060 (Rsh64Ux64 <typ.UInt64> 1061 (Mul64 <typ.UInt64> 1062 (Const64 <typ.UInt64> [int64(1<<31+umagic32(c).m/2)]) 1063 (ZeroExt32to64 x)) 1064 (Const64 <typ.UInt64> [32+umagic32(c).s-1]))) 1065 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && c&1 == 0 => 1066 (Trunc64to32 1067 (Rsh64Ux64 <typ.UInt64> 1068 (Mul64 <typ.UInt64> 1069 (Const64 <typ.UInt64> [int64(1<<31+(umagic32(c).m+1)/2)]) 1070 (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1]))) 1071 (Const64 <typ.UInt64> [32+umagic32(c).s-2]))) 1072 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && config.useAvg => 1073 (Trunc64to32 1074 (Rsh64Ux64 <typ.UInt64> 1075 (Avg64u 1076 (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32])) 1077 (Mul64 <typ.UInt64> 1078 (Const64 <typ.UInt32> [int64(umagic32(c).m)]) 1079 (ZeroExt32to64 x))) 1080 (Const64 <typ.UInt64> [32+umagic32(c).s-1]))) 1081 1082 // For unsigned 64-bit divides on 32-bit machines, 1083 // if the constant fits in 16 bits (so that the last term 1084 // fits in 32 bits), convert to three 32-bit divides by a constant. 1085 // 1086 // If 1<<32 = Q * c + R 1087 // and x = hi << 32 + lo 1088 // 1089 // Then x = (hi/c*c + hi%c) << 32 + lo 1090 // = hi/c*c<<32 + hi%c<<32 + lo 1091 // = hi/c*c<<32 + (hi%c)*(Q*c+R) + lo/c*c + lo%c 1092 // = hi/c*c<<32 + (hi%c)*Q*c + lo/c*c + (hi%c*R+lo%c) 1093 // and x / c = (hi/c)<<32 + (hi%c)*Q + lo/c + (hi%c*R+lo%c)/c 1094 (Div64u x (Const64 [c])) && c > 0 && c <= 0xFFFF && umagicOK32(int32(c)) && config.RegSize == 4 && config.useHmul => 1095 (Add64 1096 (Add64 <typ.UInt64> 1097 (Add64 <typ.UInt64> 1098 (Lsh64x64 <typ.UInt64> 1099 (ZeroExt32to64 1100 (Div32u <typ.UInt32> 1101 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) 1102 (Const32 <typ.UInt32> [int32(c)]))) 1103 (Const64 <typ.UInt64> [32])) 1104 (ZeroExt32to64 (Div32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)])))) 1105 (Mul64 <typ.UInt64> 1106 (ZeroExt32to64 <typ.UInt64> 1107 (Mod32u <typ.UInt32> 1108 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) 1109 (Const32 <typ.UInt32> [int32(c)]))) 1110 (Const64 <typ.UInt64> [int64((1<<32)/c)]))) 1111 (ZeroExt32to64 1112 (Div32u <typ.UInt32> 1113 (Add32 <typ.UInt32> 1114 (Mod32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)])) 1115 (Mul32 <typ.UInt32> 1116 (Mod32u <typ.UInt32> 1117 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) 1118 (Const32 <typ.UInt32> [int32(c)])) 1119 (Const32 <typ.UInt32> [int32((1<<32)%c)]))) 1120 (Const32 <typ.UInt32> [int32(c)])))) 1121 1122 // For 64-bit divides on 64-bit machines 1123 // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) 1124 (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && umagic64(c).m&1 == 0 && config.useHmul => 1125 (Rsh64Ux64 <typ.UInt64> 1126 (Hmul64u <typ.UInt64> 1127 (Const64 <typ.UInt64> [int64(1<<63+umagic64(c).m/2)]) 1128 x) 1129 (Const64 <typ.UInt64> [umagic64(c).s-1])) 1130 (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && c&1 == 0 && config.useHmul => 1131 (Rsh64Ux64 <typ.UInt64> 1132 (Hmul64u <typ.UInt64> 1133 (Const64 <typ.UInt64> [int64(1<<63+(umagic64(c).m+1)/2)]) 1134 (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1]))) 1135 (Const64 <typ.UInt64> [umagic64(c).s-2])) 1136 (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && config.useAvg && config.useHmul => 1137 (Rsh64Ux64 <typ.UInt64> 1138 (Avg64u 1139 x 1140 (Hmul64u <typ.UInt64> 1141 (Const64 <typ.UInt64> [int64(umagic64(c).m)]) 1142 x)) 1143 (Const64 <typ.UInt64> [umagic64(c).s-1])) 1144 1145 // Signed divide by a negative constant. Rewrite to divide by a positive constant. 1146 (Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Neg8 (Div8 <t> n (Const8 <t> [-c]))) 1147 (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Neg16 (Div16 <t> n (Const16 <t> [-c]))) 1148 (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Neg32 (Div32 <t> n (Const32 <t> [-c]))) 1149 (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Neg64 (Div64 <t> n (Const64 <t> [-c]))) 1150 1151 // Dividing by the most-negative number. Result is always 0 except 1152 // if the input is also the most-negative number. 1153 // We can detect that using the sign bit of x & -x. 1154 (Div8 <t> x (Const8 [-1<<7 ])) => (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <typ.UInt64> [7 ])) 1155 (Div16 <t> x (Const16 [-1<<15])) => (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15])) 1156 (Div32 <t> x (Const32 [-1<<31])) => (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31])) 1157 (Div64 <t> x (Const64 [-1<<63])) => (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63])) 1158 1159 // Signed divide by power of 2. 1160 // n / c = n >> log(c) if n >= 0 1161 // = (n+c-1) >> log(c) if n < 0 1162 // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). 1163 (Div8 <t> n (Const8 [c])) && isPowerOfTwo8(c) => 1164 (Rsh8x64 1165 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [int64( 8-log8(c))]))) 1166 (Const64 <typ.UInt64> [int64(log8(c))])) 1167 (Div16 <t> n (Const16 [c])) && isPowerOfTwo16(c) => 1168 (Rsh16x64 1169 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [int64(16-log16(c))]))) 1170 (Const64 <typ.UInt64> [int64(log16(c))])) 1171 (Div32 <t> n (Const32 [c])) && isPowerOfTwo32(c) => 1172 (Rsh32x64 1173 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [int64(32-log32(c))]))) 1174 (Const64 <typ.UInt64> [int64(log32(c))])) 1175 (Div64 <t> n (Const64 [c])) && isPowerOfTwo64(c) => 1176 (Rsh64x64 1177 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [int64(64-log64(c))]))) 1178 (Const64 <typ.UInt64> [int64(log64(c))])) 1179 1180 // Signed divide, not a power of 2. Strength reduce to a multiply. 1181 (Div8 <t> x (Const8 [c])) && smagicOK8(c) => 1182 (Sub8 <t> 1183 (Rsh32x64 <t> 1184 (Mul32 <typ.UInt32> 1185 (Const32 <typ.UInt32> [int32(smagic8(c).m)]) 1186 (SignExt8to32 x)) 1187 (Const64 <typ.UInt64> [8+smagic8(c).s])) 1188 (Rsh32x64 <t> 1189 (SignExt8to32 x) 1190 (Const64 <typ.UInt64> [31]))) 1191 (Div16 <t> x (Const16 [c])) && smagicOK16(c) => 1192 (Sub16 <t> 1193 (Rsh32x64 <t> 1194 (Mul32 <typ.UInt32> 1195 (Const32 <typ.UInt32> [int32(smagic16(c).m)]) 1196 (SignExt16to32 x)) 1197 (Const64 <typ.UInt64> [16+smagic16(c).s])) 1198 (Rsh32x64 <t> 1199 (SignExt16to32 x) 1200 (Const64 <typ.UInt64> [31]))) 1201 (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 8 => 1202 (Sub32 <t> 1203 (Rsh64x64 <t> 1204 (Mul64 <typ.UInt64> 1205 (Const64 <typ.UInt64> [int64(smagic32(c).m)]) 1206 (SignExt32to64 x)) 1207 (Const64 <typ.UInt64> [32+smagic32(c).s])) 1208 (Rsh64x64 <t> 1209 (SignExt32to64 x) 1210 (Const64 <typ.UInt64> [63]))) 1211 (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 == 0 && config.useHmul => 1212 (Sub32 <t> 1213 (Rsh32x64 <t> 1214 (Hmul32 <t> 1215 (Const32 <typ.UInt32> [int32(smagic32(c).m/2)]) 1216 x) 1217 (Const64 <typ.UInt64> [smagic32(c).s-1])) 1218 (Rsh32x64 <t> 1219 x 1220 (Const64 <typ.UInt64> [31]))) 1221 (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 != 0 && config.useHmul => 1222 (Sub32 <t> 1223 (Rsh32x64 <t> 1224 (Add32 <t> 1225 (Hmul32 <t> 1226 (Const32 <typ.UInt32> [int32(smagic32(c).m)]) 1227 x) 1228 x) 1229 (Const64 <typ.UInt64> [smagic32(c).s])) 1230 (Rsh32x64 <t> 1231 x 1232 (Const64 <typ.UInt64> [31]))) 1233 (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 == 0 && config.useHmul => 1234 (Sub64 <t> 1235 (Rsh64x64 <t> 1236 (Hmul64 <t> 1237 (Const64 <typ.UInt64> [int64(smagic64(c).m/2)]) 1238 x) 1239 (Const64 <typ.UInt64> [smagic64(c).s-1])) 1240 (Rsh64x64 <t> 1241 x 1242 (Const64 <typ.UInt64> [63]))) 1243 (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 != 0 && config.useHmul => 1244 (Sub64 <t> 1245 (Rsh64x64 <t> 1246 (Add64 <t> 1247 (Hmul64 <t> 1248 (Const64 <typ.UInt64> [int64(smagic64(c).m)]) 1249 x) 1250 x) 1251 (Const64 <typ.UInt64> [smagic64(c).s])) 1252 (Rsh64x64 <t> 1253 x 1254 (Const64 <typ.UInt64> [63]))) 1255 1256 // Unsigned mod by power of 2 constant. 1257 (Mod8u <t> n (Const8 [c])) && isPowerOfTwo8(c) => (And8 n (Const8 <t> [c-1])) 1258 (Mod16u <t> n (Const16 [c])) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1])) 1259 (Mod32u <t> n (Const32 [c])) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1])) 1260 (Mod64u <t> n (Const64 [c])) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1])) 1261 (Mod64u <t> n (Const64 [-1<<63])) => (And64 n (Const64 <t> [1<<63-1])) 1262 1263 // Signed non-negative mod by power of 2 constant. 1264 (Mod8 <t> n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo8(c) => (And8 n (Const8 <t> [c-1])) 1265 (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1])) 1266 (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1])) 1267 (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1])) 1268 (Mod64 n (Const64 [-1<<63])) && isNonNegative(n) => n 1269 1270 // Signed mod by negative constant. 1271 (Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Mod8 <t> n (Const8 <t> [-c])) 1272 (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Mod16 <t> n (Const16 <t> [-c])) 1273 (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Mod32 <t> n (Const32 <t> [-c])) 1274 (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Mod64 <t> n (Const64 <t> [-c])) 1275 1276 // All other mods by constants, do A%B = A-(A/B*B). 1277 // This implements % with two * and a bunch of ancillary ops. 1278 // One of the * is free if the user's code also computes A/B. 1279 (Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) 1280 => (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1281 (Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) 1282 => (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1283 (Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) 1284 => (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1285 (Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) 1286 => (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1287 (Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK8( c) 1288 => (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1289 (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK16(c) 1290 => (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1291 (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK32(c) 1292 => (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1293 (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK64(c) 1294 => (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1295 1296 // For architectures without rotates on less than 32-bits, promote these checks to 32-bit. 1297 (Eq8 (Mod8u x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK8(c) && !hasSmallRotate(config) => 1298 (Eq32 (Mod32u <typ.UInt32> (ZeroExt8to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint8(c))])) (Const32 <typ.UInt32> [0])) 1299 (Eq16 (Mod16u x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK16(c) && !hasSmallRotate(config) => 1300 (Eq32 (Mod32u <typ.UInt32> (ZeroExt16to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint16(c))])) (Const32 <typ.UInt32> [0])) 1301 (Eq8 (Mod8 x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK8(c) && !hasSmallRotate(config) => 1302 (Eq32 (Mod32 <typ.Int32> (SignExt8to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0])) 1303 (Eq16 (Mod16 x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK16(c) && !hasSmallRotate(config) => 1304 (Eq32 (Mod32 <typ.Int32> (SignExt16to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0])) 1305 1306 // Divisibility checks x%c == 0 convert to multiply and rotate. 1307 // Note, x%c == 0 is rewritten as x == c*(x/c) during the opt pass 1308 // where (x/c) is performed using multiplication with magic constants. 1309 // To rewrite x%c == 0 requires pattern matching the rewritten expression 1310 // and checking that the division by the same constant wasn't already calculated. 1311 // This check is made by counting uses of the magic constant multiplication. 1312 // Note that if there were an intermediate opt pass, this rule could be applied 1313 // directly on the Div op and magic division rewrites could be delayed to late opt. 1314 1315 // Unsigned divisibility checks convert to multiply and rotate. 1316 (Eq8 x (Mul8 (Const8 [c]) 1317 (Trunc32to8 1318 (Rsh32Ux64 1319 mul:(Mul32 1320 (Const32 [m]) 1321 (ZeroExt8to32 x)) 1322 (Const64 [s]))) 1323 ) 1324 ) 1325 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1326 && m == int32(1<<8+umagic8(c).m) && s == 8+umagic8(c).s 1327 && x.Op != OpConst8 && udivisibleOK8(c) 1328 => (Leq8U 1329 (RotateLeft8 <typ.UInt8> 1330 (Mul8 <typ.UInt8> 1331 (Const8 <typ.UInt8> [int8(udivisible8(c).m)]) 1332 x) 1333 (Const8 <typ.UInt8> [int8(8-udivisible8(c).k)]) 1334 ) 1335 (Const8 <typ.UInt8> [int8(udivisible8(c).max)]) 1336 ) 1337 1338 (Eq16 x (Mul16 (Const16 [c]) 1339 (Trunc64to16 1340 (Rsh64Ux64 1341 mul:(Mul64 1342 (Const64 [m]) 1343 (ZeroExt16to64 x)) 1344 (Const64 [s]))) 1345 ) 1346 ) 1347 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1348 && m == int64(1<<16+umagic16(c).m) && s == 16+umagic16(c).s 1349 && x.Op != OpConst16 && udivisibleOK16(c) 1350 => (Leq16U 1351 (RotateLeft16 <typ.UInt16> 1352 (Mul16 <typ.UInt16> 1353 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1354 x) 1355 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1356 ) 1357 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1358 ) 1359 1360 (Eq16 x (Mul16 (Const16 [c]) 1361 (Trunc32to16 1362 (Rsh32Ux64 1363 mul:(Mul32 1364 (Const32 [m]) 1365 (ZeroExt16to32 x)) 1366 (Const64 [s]))) 1367 ) 1368 ) 1369 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1370 && m == int32(1<<15+umagic16(c).m/2) && s == 16+umagic16(c).s-1 1371 && x.Op != OpConst16 && udivisibleOK16(c) 1372 => (Leq16U 1373 (RotateLeft16 <typ.UInt16> 1374 (Mul16 <typ.UInt16> 1375 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1376 x) 1377 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1378 ) 1379 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1380 ) 1381 1382 (Eq16 x (Mul16 (Const16 [c]) 1383 (Trunc32to16 1384 (Rsh32Ux64 1385 mul:(Mul32 1386 (Const32 [m]) 1387 (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1]))) 1388 (Const64 [s]))) 1389 ) 1390 ) 1391 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1392 && m == int32(1<<15+(umagic16(c).m+1)/2) && s == 16+umagic16(c).s-2 1393 && x.Op != OpConst16 && udivisibleOK16(c) 1394 => (Leq16U 1395 (RotateLeft16 <typ.UInt16> 1396 (Mul16 <typ.UInt16> 1397 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1398 x) 1399 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1400 ) 1401 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1402 ) 1403 1404 (Eq16 x (Mul16 (Const16 [c]) 1405 (Trunc32to16 1406 (Rsh32Ux64 1407 (Avg32u 1408 (Lsh32x64 (ZeroExt16to32 x) (Const64 [16])) 1409 mul:(Mul32 1410 (Const32 [m]) 1411 (ZeroExt16to32 x))) 1412 (Const64 [s]))) 1413 ) 1414 ) 1415 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1416 && m == int32(umagic16(c).m) && s == 16+umagic16(c).s-1 1417 && x.Op != OpConst16 && udivisibleOK16(c) 1418 => (Leq16U 1419 (RotateLeft16 <typ.UInt16> 1420 (Mul16 <typ.UInt16> 1421 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1422 x) 1423 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1424 ) 1425 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1426 ) 1427 1428 (Eq32 x (Mul32 (Const32 [c]) 1429 (Rsh32Ux64 1430 mul:(Hmul32u 1431 (Const32 [m]) 1432 x) 1433 (Const64 [s])) 1434 ) 1435 ) 1436 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1437 && m == int32(1<<31+umagic32(c).m/2) && s == umagic32(c).s-1 1438 && x.Op != OpConst32 && udivisibleOK32(c) 1439 => (Leq32U 1440 (RotateLeft32 <typ.UInt32> 1441 (Mul32 <typ.UInt32> 1442 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1443 x) 1444 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1445 ) 1446 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1447 ) 1448 1449 (Eq32 x (Mul32 (Const32 [c]) 1450 (Rsh32Ux64 1451 mul:(Hmul32u 1452 (Const32 <typ.UInt32> [m]) 1453 (Rsh32Ux64 x (Const64 [1]))) 1454 (Const64 [s])) 1455 ) 1456 ) 1457 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1458 && m == int32(1<<31+(umagic32(c).m+1)/2) && s == umagic32(c).s-2 1459 && x.Op != OpConst32 && udivisibleOK32(c) 1460 => (Leq32U 1461 (RotateLeft32 <typ.UInt32> 1462 (Mul32 <typ.UInt32> 1463 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1464 x) 1465 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1466 ) 1467 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1468 ) 1469 1470 (Eq32 x (Mul32 (Const32 [c]) 1471 (Rsh32Ux64 1472 (Avg32u 1473 x 1474 mul:(Hmul32u 1475 (Const32 [m]) 1476 x)) 1477 (Const64 [s])) 1478 ) 1479 ) 1480 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1481 && m == int32(umagic32(c).m) && s == umagic32(c).s-1 1482 && x.Op != OpConst32 && udivisibleOK32(c) 1483 => (Leq32U 1484 (RotateLeft32 <typ.UInt32> 1485 (Mul32 <typ.UInt32> 1486 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1487 x) 1488 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1489 ) 1490 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1491 ) 1492 1493 (Eq32 x (Mul32 (Const32 [c]) 1494 (Trunc64to32 1495 (Rsh64Ux64 1496 mul:(Mul64 1497 (Const64 [m]) 1498 (ZeroExt32to64 x)) 1499 (Const64 [s]))) 1500 ) 1501 ) 1502 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1503 && m == int64(1<<31+umagic32(c).m/2) && s == 32+umagic32(c).s-1 1504 && x.Op != OpConst32 && udivisibleOK32(c) 1505 => (Leq32U 1506 (RotateLeft32 <typ.UInt32> 1507 (Mul32 <typ.UInt32> 1508 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1509 x) 1510 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1511 ) 1512 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1513 ) 1514 1515 (Eq32 x (Mul32 (Const32 [c]) 1516 (Trunc64to32 1517 (Rsh64Ux64 1518 mul:(Mul64 1519 (Const64 [m]) 1520 (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1]))) 1521 (Const64 [s]))) 1522 ) 1523 ) 1524 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1525 && m == int64(1<<31+(umagic32(c).m+1)/2) && s == 32+umagic32(c).s-2 1526 && x.Op != OpConst32 && udivisibleOK32(c) 1527 => (Leq32U 1528 (RotateLeft32 <typ.UInt32> 1529 (Mul32 <typ.UInt32> 1530 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1531 x) 1532 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1533 ) 1534 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1535 ) 1536 1537 (Eq32 x (Mul32 (Const32 [c]) 1538 (Trunc64to32 1539 (Rsh64Ux64 1540 (Avg64u 1541 (Lsh64x64 (ZeroExt32to64 x) (Const64 [32])) 1542 mul:(Mul64 1543 (Const64 [m]) 1544 (ZeroExt32to64 x))) 1545 (Const64 [s]))) 1546 ) 1547 ) 1548 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1549 && m == int64(umagic32(c).m) && s == 32+umagic32(c).s-1 1550 && x.Op != OpConst32 && udivisibleOK32(c) 1551 => (Leq32U 1552 (RotateLeft32 <typ.UInt32> 1553 (Mul32 <typ.UInt32> 1554 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1555 x) 1556 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1557 ) 1558 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1559 ) 1560 1561 (Eq64 x (Mul64 (Const64 [c]) 1562 (Rsh64Ux64 1563 mul:(Hmul64u 1564 (Const64 [m]) 1565 x) 1566 (Const64 [s])) 1567 ) 1568 ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1569 && m == int64(1<<63+umagic64(c).m/2) && s == umagic64(c).s-1 1570 && x.Op != OpConst64 && udivisibleOK64(c) 1571 => (Leq64U 1572 (RotateLeft64 <typ.UInt64> 1573 (Mul64 <typ.UInt64> 1574 (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) 1575 x) 1576 (Const64 <typ.UInt64> [64-udivisible64(c).k]) 1577 ) 1578 (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) 1579 ) 1580 (Eq64 x (Mul64 (Const64 [c]) 1581 (Rsh64Ux64 1582 mul:(Hmul64u 1583 (Const64 [m]) 1584 (Rsh64Ux64 x (Const64 [1]))) 1585 (Const64 [s])) 1586 ) 1587 ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1588 && m == int64(1<<63+(umagic64(c).m+1)/2) && s == umagic64(c).s-2 1589 && x.Op != OpConst64 && udivisibleOK64(c) 1590 => (Leq64U 1591 (RotateLeft64 <typ.UInt64> 1592 (Mul64 <typ.UInt64> 1593 (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) 1594 x) 1595 (Const64 <typ.UInt64> [64-udivisible64(c).k]) 1596 ) 1597 (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) 1598 ) 1599 (Eq64 x (Mul64 (Const64 [c]) 1600 (Rsh64Ux64 1601 (Avg64u 1602 x 1603 mul:(Hmul64u 1604 (Const64 [m]) 1605 x)) 1606 (Const64 [s])) 1607 ) 1608 ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1609 && m == int64(umagic64(c).m) && s == umagic64(c).s-1 1610 && x.Op != OpConst64 && udivisibleOK64(c) 1611 => (Leq64U 1612 (RotateLeft64 <typ.UInt64> 1613 (Mul64 <typ.UInt64> 1614 (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) 1615 x) 1616 (Const64 <typ.UInt64> [64-udivisible64(c).k]) 1617 ) 1618 (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) 1619 ) 1620 1621 // Signed divisibility checks convert to multiply, add and rotate. 1622 (Eq8 x (Mul8 (Const8 [c]) 1623 (Sub8 1624 (Rsh32x64 1625 mul:(Mul32 1626 (Const32 [m]) 1627 (SignExt8to32 x)) 1628 (Const64 [s])) 1629 (Rsh32x64 1630 (SignExt8to32 x) 1631 (Const64 [31]))) 1632 ) 1633 ) 1634 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1635 && m == int32(smagic8(c).m) && s == 8+smagic8(c).s 1636 && x.Op != OpConst8 && sdivisibleOK8(c) 1637 => (Leq8U 1638 (RotateLeft8 <typ.UInt8> 1639 (Add8 <typ.UInt8> 1640 (Mul8 <typ.UInt8> 1641 (Const8 <typ.UInt8> [int8(sdivisible8(c).m)]) 1642 x) 1643 (Const8 <typ.UInt8> [int8(sdivisible8(c).a)]) 1644 ) 1645 (Const8 <typ.UInt8> [int8(8-sdivisible8(c).k)]) 1646 ) 1647 (Const8 <typ.UInt8> [int8(sdivisible8(c).max)]) 1648 ) 1649 1650 (Eq16 x (Mul16 (Const16 [c]) 1651 (Sub16 1652 (Rsh32x64 1653 mul:(Mul32 1654 (Const32 [m]) 1655 (SignExt16to32 x)) 1656 (Const64 [s])) 1657 (Rsh32x64 1658 (SignExt16to32 x) 1659 (Const64 [31]))) 1660 ) 1661 ) 1662 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1663 && m == int32(smagic16(c).m) && s == 16+smagic16(c).s 1664 && x.Op != OpConst16 && sdivisibleOK16(c) 1665 => (Leq16U 1666 (RotateLeft16 <typ.UInt16> 1667 (Add16 <typ.UInt16> 1668 (Mul16 <typ.UInt16> 1669 (Const16 <typ.UInt16> [int16(sdivisible16(c).m)]) 1670 x) 1671 (Const16 <typ.UInt16> [int16(sdivisible16(c).a)]) 1672 ) 1673 (Const16 <typ.UInt16> [int16(16-sdivisible16(c).k)]) 1674 ) 1675 (Const16 <typ.UInt16> [int16(sdivisible16(c).max)]) 1676 ) 1677 1678 (Eq32 x (Mul32 (Const32 [c]) 1679 (Sub32 1680 (Rsh64x64 1681 mul:(Mul64 1682 (Const64 [m]) 1683 (SignExt32to64 x)) 1684 (Const64 [s])) 1685 (Rsh64x64 1686 (SignExt32to64 x) 1687 (Const64 [63]))) 1688 ) 1689 ) 1690 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1691 && m == int64(smagic32(c).m) && s == 32+smagic32(c).s 1692 && x.Op != OpConst32 && sdivisibleOK32(c) 1693 => (Leq32U 1694 (RotateLeft32 <typ.UInt32> 1695 (Add32 <typ.UInt32> 1696 (Mul32 <typ.UInt32> 1697 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) 1698 x) 1699 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) 1700 ) 1701 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) 1702 ) 1703 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) 1704 ) 1705 1706 (Eq32 x (Mul32 (Const32 [c]) 1707 (Sub32 1708 (Rsh32x64 1709 mul:(Hmul32 1710 (Const32 [m]) 1711 x) 1712 (Const64 [s])) 1713 (Rsh32x64 1714 x 1715 (Const64 [31]))) 1716 ) 1717 ) 1718 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1719 && m == int32(smagic32(c).m/2) && s == smagic32(c).s-1 1720 && x.Op != OpConst32 && sdivisibleOK32(c) 1721 => (Leq32U 1722 (RotateLeft32 <typ.UInt32> 1723 (Add32 <typ.UInt32> 1724 (Mul32 <typ.UInt32> 1725 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) 1726 x) 1727 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) 1728 ) 1729 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) 1730 ) 1731 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) 1732 ) 1733 1734 (Eq32 x (Mul32 (Const32 [c]) 1735 (Sub32 1736 (Rsh32x64 1737 (Add32 1738 mul:(Hmul32 1739 (Const32 [m]) 1740 x) 1741 x) 1742 (Const64 [s])) 1743 (Rsh32x64 1744 x 1745 (Const64 [31]))) 1746 ) 1747 ) 1748 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1749 && m == int32(smagic32(c).m) && s == smagic32(c).s 1750 && x.Op != OpConst32 && sdivisibleOK32(c) 1751 => (Leq32U 1752 (RotateLeft32 <typ.UInt32> 1753 (Add32 <typ.UInt32> 1754 (Mul32 <typ.UInt32> 1755 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) 1756 x) 1757 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) 1758 ) 1759 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) 1760 ) 1761 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) 1762 ) 1763 1764 (Eq64 x (Mul64 (Const64 [c]) 1765 (Sub64 1766 (Rsh64x64 1767 mul:(Hmul64 1768 (Const64 [m]) 1769 x) 1770 (Const64 [s])) 1771 (Rsh64x64 1772 x 1773 (Const64 [63]))) 1774 ) 1775 ) 1776 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1777 && m == int64(smagic64(c).m/2) && s == smagic64(c).s-1 1778 && x.Op != OpConst64 && sdivisibleOK64(c) 1779 => (Leq64U 1780 (RotateLeft64 <typ.UInt64> 1781 (Add64 <typ.UInt64> 1782 (Mul64 <typ.UInt64> 1783 (Const64 <typ.UInt64> [int64(sdivisible64(c).m)]) 1784 x) 1785 (Const64 <typ.UInt64> [int64(sdivisible64(c).a)]) 1786 ) 1787 (Const64 <typ.UInt64> [64-sdivisible64(c).k]) 1788 ) 1789 (Const64 <typ.UInt64> [int64(sdivisible64(c).max)]) 1790 ) 1791 1792 (Eq64 x (Mul64 (Const64 [c]) 1793 (Sub64 1794 (Rsh64x64 1795 (Add64 1796 mul:(Hmul64 1797 (Const64 [m]) 1798 x) 1799 x) 1800 (Const64 [s])) 1801 (Rsh64x64 1802 x 1803 (Const64 [63]))) 1804 ) 1805 ) 1806 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1807 && m == int64(smagic64(c).m) && s == smagic64(c).s 1808 && x.Op != OpConst64 && sdivisibleOK64(c) 1809 => (Leq64U 1810 (RotateLeft64 <typ.UInt64> 1811 (Add64 <typ.UInt64> 1812 (Mul64 <typ.UInt64> 1813 (Const64 <typ.UInt64> [int64(sdivisible64(c).m)]) 1814 x) 1815 (Const64 <typ.UInt64> [int64(sdivisible64(c).a)]) 1816 ) 1817 (Const64 <typ.UInt64> [64-sdivisible64(c).k]) 1818 ) 1819 (Const64 <typ.UInt64> [int64(sdivisible64(c).max)]) 1820 ) 1821 1822 // Divisibility check for signed integers for power of two constant are simple mask. 1823 // However, we must match against the rewritten n%c == 0 -> n - c*(n/c) == 0 -> n == c*(n/c) 1824 // where n/c contains fixup code to handle signed n. 1825 ((Eq8|Neq8) n (Lsh8x64 1826 (Rsh8x64 1827 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [kbar]))) 1828 (Const64 <typ.UInt64> [k])) 1829 (Const64 <typ.UInt64> [k])) 1830 ) && k > 0 && k < 7 && kbar == 8 - k 1831 => ((Eq8|Neq8) (And8 <t> n (Const8 <t> [1<<uint(k)-1])) (Const8 <t> [0])) 1832 1833 ((Eq16|Neq16) n (Lsh16x64 1834 (Rsh16x64 1835 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [kbar]))) 1836 (Const64 <typ.UInt64> [k])) 1837 (Const64 <typ.UInt64> [k])) 1838 ) && k > 0 && k < 15 && kbar == 16 - k 1839 => ((Eq16|Neq16) (And16 <t> n (Const16 <t> [1<<uint(k)-1])) (Const16 <t> [0])) 1840 1841 ((Eq32|Neq32) n (Lsh32x64 1842 (Rsh32x64 1843 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [kbar]))) 1844 (Const64 <typ.UInt64> [k])) 1845 (Const64 <typ.UInt64> [k])) 1846 ) && k > 0 && k < 31 && kbar == 32 - k 1847 => ((Eq32|Neq32) (And32 <t> n (Const32 <t> [1<<uint(k)-1])) (Const32 <t> [0])) 1848 1849 ((Eq64|Neq64) n (Lsh64x64 1850 (Rsh64x64 1851 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [kbar]))) 1852 (Const64 <typ.UInt64> [k])) 1853 (Const64 <typ.UInt64> [k])) 1854 ) && k > 0 && k < 63 && kbar == 64 - k 1855 => ((Eq64|Neq64) (And64 <t> n (Const64 <t> [1<<uint(k)-1])) (Const64 <t> [0])) 1856 1857 (Eq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Eq(8|16|32|64) x y) 1858 (Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Neq(8|16|32|64) x y) 1859 1860 // Optimize bitsets 1861 (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y) 1862 => (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0])) 1863 (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y) 1864 => (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0])) 1865 (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y) 1866 => (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0])) 1867 (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y) 1868 => (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0])) 1869 (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y) 1870 => (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0])) 1871 (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y) 1872 => (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0])) 1873 (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y) 1874 => (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0])) 1875 (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y) 1876 => (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0])) 1877 1878 // Reassociate expressions involving 1879 // constants such that constants come first, 1880 // exposing obvious constant-folding opportunities. 1881 // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C 1882 // is constant, which pushes constants to the outside 1883 // of the expression. At that point, any constant-folding 1884 // opportunities should be obvious. 1885 // Note: don't include AddPtr here! In order to maintain the 1886 // invariant that pointers must stay within the pointed-to object, 1887 // we can't pull part of a pointer computation above the AddPtr. 1888 // See issue 37881. 1889 // Note: we don't need to handle any (x-C) cases because we already rewrite 1890 // (x-C) to (x+(-C)). 1891 1892 // x + (C + z) -> C + (x + z) 1893 (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Add64 <t> z x)) 1894 (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Add32 <t> z x)) 1895 (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Add16 <t> z x)) 1896 (Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Add8 <t> z x)) 1897 1898 // x + (C - z) -> C + (x - z) 1899 (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> x z)) 1900 (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> x z)) 1901 (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> x z)) 1902 (Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> x z)) 1903 1904 // x - (C - z) -> x + (z - C) -> (x + z) - C 1905 (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Add64 <t> x z) i) 1906 (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Add32 <t> x z) i) 1907 (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Add16 <t> x z) i) 1908 (Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Add8 <t> x z) i) 1909 1910 // x - (z + C) -> x + (-z - C) -> (x - z) - C 1911 (Sub64 x (Add64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Sub64 <t> x z) i) 1912 (Sub32 x (Add32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Sub32 <t> x z) i) 1913 (Sub16 x (Add16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Sub16 <t> x z) i) 1914 (Sub8 x (Add8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Sub8 <t> x z) i) 1915 1916 // (C - z) - x -> C - (z + x) 1917 (Sub64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 i (Add64 <t> z x)) 1918 (Sub32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 i (Add32 <t> z x)) 1919 (Sub16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 i (Add16 <t> z x)) 1920 (Sub8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 i (Add8 <t> z x)) 1921 1922 // (z + C) -x -> C + (z - x) 1923 (Sub64 (Add64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> z x)) 1924 (Sub32 (Add32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> z x)) 1925 (Sub16 (Add16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> z x)) 1926 (Sub8 (Add8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> z x)) 1927 1928 // x & (C & z) -> C & (x & z) 1929 (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (And64 i (And64 <t> z x)) 1930 (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (And32 i (And32 <t> z x)) 1931 (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (And16 i (And16 <t> z x)) 1932 (And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (And8 i (And8 <t> z x)) 1933 1934 // x | (C | z) -> C | (x | z) 1935 (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Or64 i (Or64 <t> z x)) 1936 (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Or32 i (Or32 <t> z x)) 1937 (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Or16 i (Or16 <t> z x)) 1938 (Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Or8 i (Or8 <t> z x)) 1939 1940 // x ^ (C ^ z) -> C ^ (x ^ z) 1941 (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Xor64 i (Xor64 <t> z x)) 1942 (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Xor32 i (Xor32 <t> z x)) 1943 (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Xor16 i (Xor16 <t> z x)) 1944 (Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Xor8 i (Xor8 <t> z x)) 1945 1946 // x * (D * z) = D * (x * z) 1947 (Mul64 (Mul64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Mul64 i (Mul64 <t> x z)) 1948 (Mul32 (Mul32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Mul32 i (Mul32 <t> x z)) 1949 (Mul16 (Mul16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Mul16 i (Mul16 <t> x z)) 1950 (Mul8 (Mul8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Mul8 i (Mul8 <t> x z)) 1951 1952 // C + (D + x) -> (C + D) + x 1953 (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c+d]) x) 1954 (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c+d]) x) 1955 (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c+d]) x) 1956 (Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c+d]) x) 1957 1958 // C + (D - x) -> (C + D) - x 1959 (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c+d]) x) 1960 (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c+d]) x) 1961 (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c+d]) x) 1962 (Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c+d]) x) 1963 1964 // C - (D - x) -> (C - D) + x 1965 (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c-d]) x) 1966 (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c-d]) x) 1967 (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c-d]) x) 1968 (Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c-d]) x) 1969 1970 // C - (D + x) -> (C - D) - x 1971 (Sub64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c-d]) x) 1972 (Sub32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c-d]) x) 1973 (Sub16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c-d]) x) 1974 (Sub8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c-d]) x) 1975 1976 // C & (D & x) -> (C & D) & x 1977 (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) => (And64 (Const64 <t> [c&d]) x) 1978 (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) => (And32 (Const32 <t> [c&d]) x) 1979 (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) => (And16 (Const16 <t> [c&d]) x) 1980 (And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) => (And8 (Const8 <t> [c&d]) x) 1981 1982 // C | (D | x) -> (C | D) | x 1983 (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) => (Or64 (Const64 <t> [c|d]) x) 1984 (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) => (Or32 (Const32 <t> [c|d]) x) 1985 (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) => (Or16 (Const16 <t> [c|d]) x) 1986 (Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) => (Or8 (Const8 <t> [c|d]) x) 1987 1988 // C ^ (D ^ x) -> (C ^ D) ^ x 1989 (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) => (Xor64 (Const64 <t> [c^d]) x) 1990 (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) => (Xor32 (Const32 <t> [c^d]) x) 1991 (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) => (Xor16 (Const16 <t> [c^d]) x) 1992 (Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) => (Xor8 (Const8 <t> [c^d]) x) 1993 1994 // C * (D * x) = (C * D) * x 1995 (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) => (Mul64 (Const64 <t> [c*d]) x) 1996 (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) => (Mul32 (Const32 <t> [c*d]) x) 1997 (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) => (Mul16 (Const16 <t> [c*d]) x) 1998 (Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) => (Mul8 (Const8 <t> [c*d]) x) 1999 2000 // floating point optimizations 2001 (Mul(32|64)F x (Const(32|64)F [1])) => x 2002 (Mul32F x (Const32F [-1])) => (Neg32F x) 2003 (Mul64F x (Const64F [-1])) => (Neg64F x) 2004 (Mul32F x (Const32F [2])) => (Add32F x x) 2005 (Mul64F x (Const64F [2])) => (Add64F x x) 2006 2007 (Div32F x (Const32F <t> [c])) && reciprocalExact32(c) => (Mul32F x (Const32F <t> [1/c])) 2008 (Div64F x (Const64F <t> [c])) && reciprocalExact64(c) => (Mul64F x (Const64F <t> [1/c])) 2009 2010 // rewrite single-precision sqrt expression "float32(math.Sqrt(float64(x)))" 2011 (Cvt64Fto32F sqrt0:(Sqrt (Cvt32Fto64F x))) && sqrt0.Uses==1 => (Sqrt32 x) 2012 2013 (Sqrt (Const64F [c])) && !math.IsNaN(math.Sqrt(c)) => (Const64F [math.Sqrt(c)]) 2014 2015 // for rewriting results of some late-expanded rewrites (below) 2016 (SelectN [0] (MakeResult x ___)) => x 2017 (SelectN [1] (MakeResult x y ___)) => y 2018 (SelectN [2] (MakeResult x y z ___)) => z 2019 2020 // for late-expanded calls, recognize newobject and remove zeroing and nilchecks 2021 (Zero (SelectN [0] call:(StaticLECall _ _)) mem:(SelectN [1] call)) 2022 && isSameCall(call.Aux, "runtime.newobject") 2023 => mem 2024 2025 (Store (SelectN [0] call:(StaticLECall _ _)) x mem:(SelectN [1] call)) 2026 && isConstZero(x) 2027 && isSameCall(call.Aux, "runtime.newobject") 2028 => mem 2029 2030 (Store (OffPtr (SelectN [0] call:(StaticLECall _ _))) x mem:(SelectN [1] call)) 2031 && isConstZero(x) 2032 && isSameCall(call.Aux, "runtime.newobject") 2033 => mem 2034 2035 (NilCheck (SelectN [0] call:(StaticLECall _ _)) _) 2036 && isSameCall(call.Aux, "runtime.newobject") 2037 && warnRule(fe.Debug_checknil(), v, "removed nil check") 2038 => (Invalid) 2039 2040 (NilCheck (OffPtr (SelectN [0] call:(StaticLECall _ _))) _) 2041 && isSameCall(call.Aux, "runtime.newobject") 2042 && warnRule(fe.Debug_checknil(), v, "removed nil check") 2043 => (Invalid) 2044 2045 // for late-expanded calls, recognize memequal applied to a single constant byte 2046 // Support is limited by 1, 2, 4, 8 byte sizes 2047 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [1]) mem) 2048 && isSameCall(callAux, "runtime.memequal") 2049 && symIsRO(scon) 2050 => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem) 2051 2052 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [2]) mem) 2053 && isSameCall(callAux, "runtime.memequal") 2054 && symIsRO(scon) 2055 && canLoadUnaligned(config) 2056 => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2057 2058 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [4]) mem) 2059 && isSameCall(callAux, "runtime.memequal") 2060 && symIsRO(scon) 2061 && canLoadUnaligned(config) 2062 => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2063 2064 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [8]) mem) 2065 && isSameCall(callAux, "runtime.memequal") 2066 && symIsRO(scon) 2067 && canLoadUnaligned(config) && config.PtrSize == 8 2068 => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2069 2070 // Evaluate constant address comparisons. 2071 (EqPtr x x) => (ConstBool [true]) 2072 (NeqPtr x x) => (ConstBool [false]) 2073 (EqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x == y]) 2074 (EqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x == y && o == 0]) 2075 (EqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x == y && o1 == o2]) 2076 (NeqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x != y]) 2077 (NeqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x != y || o != 0]) 2078 (NeqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x != y || o1 != o2]) 2079 (EqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x == y]) 2080 (EqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x == y && o == 0]) 2081 (EqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x == y && o1 == o2]) 2082 (NeqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x != y]) 2083 (NeqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x != y || o != 0]) 2084 (NeqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x != y || o1 != o2]) 2085 (EqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 == 0]) 2086 (NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 != 0]) 2087 (EqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 == o2]) 2088 (NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 != o2]) 2089 (EqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c == d]) 2090 (NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c != d]) 2091 2092 (EqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [false]) 2093 (EqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [false]) 2094 (EqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [false]) 2095 (EqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [false]) 2096 (NeqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [true]) 2097 (NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [true]) 2098 (NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [true]) 2099 (NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [true]) 2100 2101 // Simplify address comparisons. 2102 (EqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (Not (IsNonNil o1)) 2103 (NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (IsNonNil o1) 2104 (EqPtr (Const(32|64) [0]) p) => (Not (IsNonNil p)) 2105 (NeqPtr (Const(32|64) [0]) p) => (IsNonNil p) 2106 (EqPtr (ConstNil) p) => (Not (IsNonNil p)) 2107 (NeqPtr (ConstNil) p) => (IsNonNil p) 2108 2109 // Evaluate constant user nil checks. 2110 (IsNonNil (ConstNil)) => (ConstBool [false]) 2111 (IsNonNil (Const(32|64) [c])) => (ConstBool [c != 0]) 2112 (IsNonNil (Addr _)) => (ConstBool [true]) 2113 (IsNonNil (LocalAddr _ _)) => (ConstBool [true]) 2114 2115 // Inline small or disjoint runtime.memmove calls with constant length. 2116 // See the comment in op Move in genericOps.go for discussion of the type. 2117 // 2118 // Note that we've lost any knowledge of the type and alignment requirements 2119 // of the source and destination. We only know the size, and that the type 2120 // contains no pointers. 2121 // The type of the move is not necessarily v.Args[0].Type().Elem()! 2122 // See issue 55122 for details. 2123 // 2124 // Because expand calls runs after prove, constants useful to this pattern may not appear. 2125 // Both versions need to exist; the memory and register variants. 2126 // 2127 // Match post-expansion calls, memory version. 2128 (SelectN [0] call:(StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store _ src s3:(Store {t} _ dst mem))))) 2129 && sz >= 0 2130 && isSameCall(sym, "runtime.memmove") 2131 && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 2132 && isInlinableMemmove(dst, src, int64(sz), config) 2133 && clobber(s1, s2, s3, call) 2134 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) 2135 2136 // Match post-expansion calls, register version. 2137 (SelectN [0] call:(StaticCall {sym} dst src (Const(64|32) [sz]) mem)) 2138 && sz >= 0 2139 && call.Uses == 1 // this will exclude all calls with results 2140 && isSameCall(sym, "runtime.memmove") 2141 && isInlinableMemmove(dst, src, int64(sz), config) 2142 && clobber(call) 2143 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) 2144 2145 // Match pre-expansion calls. 2146 (SelectN [0] call:(StaticLECall {sym} dst src (Const(64|32) [sz]) mem)) 2147 && sz >= 0 2148 && call.Uses == 1 // this will exclude all calls with results 2149 && isSameCall(sym, "runtime.memmove") 2150 && isInlinableMemmove(dst, src, int64(sz), config) 2151 && clobber(call) 2152 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) 2153 2154 // De-virtualize late-expanded interface calls into late-expanded static calls. 2155 // Note that (ITab (IMake)) doesn't get rewritten until after the first opt pass, 2156 // so this rule should trigger reliably. 2157 // devirtLECall removes the first argument, adds the devirtualized symbol to the AuxCall, and changes the opcode 2158 (InterLECall [argsize] {auxCall} (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) ___) && devirtLESym(v, auxCall, itab, off) != 2159 nil => devirtLECall(v, devirtLESym(v, auxCall, itab, off)) 2160 2161 // Move and Zero optimizations. 2162 // Move source and destination may overlap. 2163 2164 // Convert Moves into Zeros when the source is known to be zeros. 2165 (Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2) 2166 => (Zero {t} [n] dst1 mem) 2167 (Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0) 2168 => (Zero {t} [n] dst1 mem) 2169 (Move {t} [n] dst (Addr {sym} (SB)) mem) && symIsROZero(sym) => (Zero {t} [n] dst mem) 2170 2171 // Don't Store to variables that are about to be overwritten by Move/Zero. 2172 (Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem)) 2173 && isSamePtr(p1, p2) && store.Uses == 1 2174 && n >= o2 + t2.Size() 2175 && clobber(store) 2176 => (Zero {t1} [n] p1 mem) 2177 (Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem)) 2178 && isSamePtr(dst1, dst2) && store.Uses == 1 2179 && n >= o2 + t2.Size() 2180 && disjoint(src1, n, op, t2.Size()) 2181 && clobber(store) 2182 => (Move {t1} [n] dst1 src1 mem) 2183 2184 // Don't Move to variables that are immediately completely overwritten. 2185 (Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem)) 2186 && move.Uses == 1 2187 && isSamePtr(dst1, dst2) 2188 && clobber(move) 2189 => (Zero {t} [n] dst1 mem) 2190 (Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem)) 2191 && move.Uses == 1 2192 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2193 && clobber(move) 2194 => (Move {t} [n] dst1 src1 mem) 2195 (Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) 2196 && move.Uses == 1 && vardef.Uses == 1 2197 && isSamePtr(dst1, dst2) 2198 && clobber(move, vardef) 2199 => (Zero {t} [n] dst1 (VarDef {x} mem)) 2200 (Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) 2201 && move.Uses == 1 && vardef.Uses == 1 2202 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2203 && clobber(move, vardef) 2204 => (Move {t} [n] dst1 src1 (VarDef {x} mem)) 2205 (Store {t1} op1:(OffPtr [o1] p1) d1 2206 m2:(Store {t2} op2:(OffPtr [0] p2) d2 2207 m3:(Move [n] p3 _ mem))) 2208 && m2.Uses == 1 && m3.Uses == 1 2209 && o1 == t2.Size() 2210 && n == t2.Size() + t1.Size() 2211 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2212 && clobber(m2, m3) 2213 => (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) 2214 (Store {t1} op1:(OffPtr [o1] p1) d1 2215 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2216 m3:(Store {t3} op3:(OffPtr [0] p3) d3 2217 m4:(Move [n] p4 _ mem)))) 2218 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 2219 && o2 == t3.Size() 2220 && o1-o2 == t2.Size() 2221 && n == t3.Size() + t2.Size() + t1.Size() 2222 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2223 && clobber(m2, m3, m4) 2224 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) 2225 (Store {t1} op1:(OffPtr [o1] p1) d1 2226 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2227 m3:(Store {t3} op3:(OffPtr [o3] p3) d3 2228 m4:(Store {t4} op4:(OffPtr [0] p4) d4 2229 m5:(Move [n] p5 _ mem))))) 2230 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 2231 && o3 == t4.Size() 2232 && o2-o3 == t3.Size() 2233 && o1-o2 == t2.Size() 2234 && n == t4.Size() + t3.Size() + t2.Size() + t1.Size() 2235 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2236 && clobber(m2, m3, m4, m5) 2237 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) 2238 2239 // Don't Zero variables that are immediately completely overwritten 2240 // before being accessed. 2241 (Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem)) 2242 && zero.Uses == 1 2243 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2244 && clobber(zero) 2245 => (Move {t} [n] dst1 src1 mem) 2246 (Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem))) 2247 && zero.Uses == 1 && vardef.Uses == 1 2248 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2249 && clobber(zero, vardef) 2250 => (Move {t} [n] dst1 src1 (VarDef {x} mem)) 2251 (Store {t1} op1:(OffPtr [o1] p1) d1 2252 m2:(Store {t2} op2:(OffPtr [0] p2) d2 2253 m3:(Zero [n] p3 mem))) 2254 && m2.Uses == 1 && m3.Uses == 1 2255 && o1 == t2.Size() 2256 && n == t2.Size() + t1.Size() 2257 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2258 && clobber(m2, m3) 2259 => (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) 2260 (Store {t1} op1:(OffPtr [o1] p1) d1 2261 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2262 m3:(Store {t3} op3:(OffPtr [0] p3) d3 2263 m4:(Zero [n] p4 mem)))) 2264 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 2265 && o2 == t3.Size() 2266 && o1-o2 == t2.Size() 2267 && n == t3.Size() + t2.Size() + t1.Size() 2268 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2269 && clobber(m2, m3, m4) 2270 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) 2271 (Store {t1} op1:(OffPtr [o1] p1) d1 2272 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2273 m3:(Store {t3} op3:(OffPtr [o3] p3) d3 2274 m4:(Store {t4} op4:(OffPtr [0] p4) d4 2275 m5:(Zero [n] p5 mem))))) 2276 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 2277 && o3 == t4.Size() 2278 && o2-o3 == t3.Size() 2279 && o1-o2 == t2.Size() 2280 && n == t4.Size() + t3.Size() + t2.Size() + t1.Size() 2281 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2282 && clobber(m2, m3, m4, m5) 2283 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) 2284 2285 // Don't Move from memory if the values are likely to already be 2286 // in registers. 2287 (Move {t1} [n] dst p1 2288 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2289 (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _))) 2290 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2291 && t2.Alignment() <= t1.Alignment() 2292 && t3.Alignment() <= t1.Alignment() 2293 && registerizable(b, t2) 2294 && registerizable(b, t3) 2295 && o2 == t3.Size() 2296 && n == t2.Size() + t3.Size() 2297 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2298 (Store {t3} (OffPtr <tt3> [0] dst) d2 mem)) 2299 (Move {t1} [n] dst p1 2300 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2301 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2302 (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _)))) 2303 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2304 && t2.Alignment() <= t1.Alignment() 2305 && t3.Alignment() <= t1.Alignment() 2306 && t4.Alignment() <= t1.Alignment() 2307 && registerizable(b, t2) 2308 && registerizable(b, t3) 2309 && registerizable(b, t4) 2310 && o3 == t4.Size() 2311 && o2-o3 == t3.Size() 2312 && n == t2.Size() + t3.Size() + t4.Size() 2313 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2314 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2315 (Store {t4} (OffPtr <tt4> [0] dst) d3 mem))) 2316 (Move {t1} [n] dst p1 2317 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2318 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2319 (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3 2320 (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _))))) 2321 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2322 && t2.Alignment() <= t1.Alignment() 2323 && t3.Alignment() <= t1.Alignment() 2324 && t4.Alignment() <= t1.Alignment() 2325 && t5.Alignment() <= t1.Alignment() 2326 && registerizable(b, t2) 2327 && registerizable(b, t3) 2328 && registerizable(b, t4) 2329 && registerizable(b, t5) 2330 && o4 == t5.Size() 2331 && o3-o4 == t4.Size() 2332 && o2-o3 == t3.Size() 2333 && n == t2.Size() + t3.Size() + t4.Size() + t5.Size() 2334 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2335 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2336 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2337 (Store {t5} (OffPtr <tt5> [0] dst) d4 mem)))) 2338 2339 // Same thing but with VarDef in the middle. 2340 (Move {t1} [n] dst p1 2341 mem:(VarDef 2342 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2343 (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _)))) 2344 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2345 && t2.Alignment() <= t1.Alignment() 2346 && t3.Alignment() <= t1.Alignment() 2347 && registerizable(b, t2) 2348 && registerizable(b, t3) 2349 && o2 == t3.Size() 2350 && n == t2.Size() + t3.Size() 2351 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2352 (Store {t3} (OffPtr <tt3> [0] dst) d2 mem)) 2353 (Move {t1} [n] dst p1 2354 mem:(VarDef 2355 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2356 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2357 (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _))))) 2358 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2359 && t2.Alignment() <= t1.Alignment() 2360 && t3.Alignment() <= t1.Alignment() 2361 && t4.Alignment() <= t1.Alignment() 2362 && registerizable(b, t2) 2363 && registerizable(b, t3) 2364 && registerizable(b, t4) 2365 && o3 == t4.Size() 2366 && o2-o3 == t3.Size() 2367 && n == t2.Size() + t3.Size() + t4.Size() 2368 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2369 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2370 (Store {t4} (OffPtr <tt4> [0] dst) d3 mem))) 2371 (Move {t1} [n] dst p1 2372 mem:(VarDef 2373 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2374 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2375 (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3 2376 (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _)))))) 2377 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2378 && t2.Alignment() <= t1.Alignment() 2379 && t3.Alignment() <= t1.Alignment() 2380 && t4.Alignment() <= t1.Alignment() 2381 && t5.Alignment() <= t1.Alignment() 2382 && registerizable(b, t2) 2383 && registerizable(b, t3) 2384 && registerizable(b, t4) 2385 && registerizable(b, t5) 2386 && o4 == t5.Size() 2387 && o3-o4 == t4.Size() 2388 && o2-o3 == t3.Size() 2389 && n == t2.Size() + t3.Size() + t4.Size() + t5.Size() 2390 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2391 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2392 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2393 (Store {t5} (OffPtr <tt5> [0] dst) d4 mem)))) 2394 2395 // Prefer to Zero and Store than to Move. 2396 (Move {t1} [n] dst p1 2397 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2398 (Zero {t3} [n] p3 _))) 2399 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2400 && t2.Alignment() <= t1.Alignment() 2401 && t3.Alignment() <= t1.Alignment() 2402 && registerizable(b, t2) 2403 && n >= o2 + t2.Size() 2404 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2405 (Zero {t1} [n] dst mem)) 2406 (Move {t1} [n] dst p1 2407 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 2408 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2409 (Zero {t4} [n] p4 _)))) 2410 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2411 && t2.Alignment() <= t1.Alignment() 2412 && t3.Alignment() <= t1.Alignment() 2413 && t4.Alignment() <= t1.Alignment() 2414 && registerizable(b, t2) 2415 && registerizable(b, t3) 2416 && n >= o2 + t2.Size() 2417 && n >= o3 + t3.Size() 2418 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2419 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2420 (Zero {t1} [n] dst mem))) 2421 (Move {t1} [n] dst p1 2422 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 2423 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2424 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2425 (Zero {t5} [n] p5 _))))) 2426 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2427 && t2.Alignment() <= t1.Alignment() 2428 && t3.Alignment() <= t1.Alignment() 2429 && t4.Alignment() <= t1.Alignment() 2430 && t5.Alignment() <= t1.Alignment() 2431 && registerizable(b, t2) 2432 && registerizable(b, t3) 2433 && registerizable(b, t4) 2434 && n >= o2 + t2.Size() 2435 && n >= o3 + t3.Size() 2436 && n >= o4 + t4.Size() 2437 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2438 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2439 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2440 (Zero {t1} [n] dst mem)))) 2441 (Move {t1} [n] dst p1 2442 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 2443 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2444 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2445 (Store {t5} (OffPtr <tt5> [o5] p5) d4 2446 (Zero {t6} [n] p6 _)))))) 2447 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) 2448 && t2.Alignment() <= t1.Alignment() 2449 && t3.Alignment() <= t1.Alignment() 2450 && t4.Alignment() <= t1.Alignment() 2451 && t5.Alignment() <= t1.Alignment() 2452 && t6.Alignment() <= t1.Alignment() 2453 && registerizable(b, t2) 2454 && registerizable(b, t3) 2455 && registerizable(b, t4) 2456 && registerizable(b, t5) 2457 && n >= o2 + t2.Size() 2458 && n >= o3 + t3.Size() 2459 && n >= o4 + t4.Size() 2460 && n >= o5 + t5.Size() 2461 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2462 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2463 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2464 (Store {t5} (OffPtr <tt5> [o5] dst) d4 2465 (Zero {t1} [n] dst mem))))) 2466 (Move {t1} [n] dst p1 2467 mem:(VarDef 2468 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2469 (Zero {t3} [n] p3 _)))) 2470 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2471 && t2.Alignment() <= t1.Alignment() 2472 && t3.Alignment() <= t1.Alignment() 2473 && registerizable(b, t2) 2474 && n >= o2 + t2.Size() 2475 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2476 (Zero {t1} [n] dst mem)) 2477 (Move {t1} [n] dst p1 2478 mem:(VarDef 2479 (Store {t2} (OffPtr <tt2> [o2] p2) d1 2480 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2481 (Zero {t4} [n] p4 _))))) 2482 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2483 && t2.Alignment() <= t1.Alignment() 2484 && t3.Alignment() <= t1.Alignment() 2485 && t4.Alignment() <= t1.Alignment() 2486 && registerizable(b, t2) 2487 && registerizable(b, t3) 2488 && n >= o2 + t2.Size() 2489 && n >= o3 + t3.Size() 2490 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2491 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2492 (Zero {t1} [n] dst mem))) 2493 (Move {t1} [n] dst p1 2494 mem:(VarDef 2495 (Store {t2} (OffPtr <tt2> [o2] p2) d1 2496 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2497 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2498 (Zero {t5} [n] p5 _)))))) 2499 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2500 && t2.Alignment() <= t1.Alignment() 2501 && t3.Alignment() <= t1.Alignment() 2502 && t4.Alignment() <= t1.Alignment() 2503 && t5.Alignment() <= t1.Alignment() 2504 && registerizable(b, t2) 2505 && registerizable(b, t3) 2506 && registerizable(b, t4) 2507 && n >= o2 + t2.Size() 2508 && n >= o3 + t3.Size() 2509 && n >= o4 + t4.Size() 2510 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2511 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2512 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2513 (Zero {t1} [n] dst mem)))) 2514 (Move {t1} [n] dst p1 2515 mem:(VarDef 2516 (Store {t2} (OffPtr <tt2> [o2] p2) d1 2517 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2518 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2519 (Store {t5} (OffPtr <tt5> [o5] p5) d4 2520 (Zero {t6} [n] p6 _))))))) 2521 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) 2522 && t2.Alignment() <= t1.Alignment() 2523 && t3.Alignment() <= t1.Alignment() 2524 && t4.Alignment() <= t1.Alignment() 2525 && t5.Alignment() <= t1.Alignment() 2526 && t6.Alignment() <= t1.Alignment() 2527 && registerizable(b, t2) 2528 && registerizable(b, t3) 2529 && registerizable(b, t4) 2530 && registerizable(b, t5) 2531 && n >= o2 + t2.Size() 2532 && n >= o3 + t3.Size() 2533 && n >= o4 + t4.Size() 2534 && n >= o5 + t5.Size() 2535 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2536 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2537 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2538 (Store {t5} (OffPtr <tt5> [o5] dst) d4 2539 (Zero {t1} [n] dst mem))))) 2540 2541 (SelectN [0] call:(StaticLECall {sym} a x)) && needRaceCleanup(sym, call) && clobber(call) => x 2542 (SelectN [0] call:(StaticLECall {sym} x)) && needRaceCleanup(sym, call) && clobber(call) => x 2543 2544 // When rewriting append to growslice, we use as the the new length the result of 2545 // growslice so that we don't have to spill/restore the new length around the growslice call. 2546 // The exception here is that if the new length is a constant, avoiding spilling it 2547 // is pointless and its constantness is sometimes useful for subsequent optimizations. 2548 // See issue 56440. 2549 // Note there are 2 rules here, one for the pre-decomposed []T result and one for 2550 // the post-decomposed (*T,int,int) result. (The latter is generated after call expansion.) 2551 (SliceLen (SelectN [0] (StaticLECall {sym} _ newLen:(Const(64|32)) _ _ _ _))) && isSameCall(sym, "runtime.growslice") => newLen 2552 (SelectN [1] (StaticCall {sym} _ newLen:(Const(64|32)) _ _ _ _)) && v.Type.IsInteger() && isSameCall(sym, "runtime.growslice") => newLen 2553 2554 // Collapse moving A -> B -> C into just A -> C. 2555 // Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible. 2556 // This happens most commonly when B is an autotmp inserted earlier 2557 // during compilation to ensure correctness. 2558 // Take care that overlapping moves are preserved. 2559 // Restrict this optimization to the stack, to avoid duplicating loads from the heap; 2560 // see CL 145208 for discussion. 2561 (Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _)) 2562 && t1.Compare(t2) == types.CMPeq 2563 && isSamePtr(tmp1, tmp2) 2564 && isStackPtr(src) && !isVolatile(src) 2565 && disjoint(src, s, tmp2, s) 2566 && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) 2567 => (Move {t1} [s] dst src midmem) 2568 2569 // Same, but for large types that require VarDefs. 2570 (Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _))) 2571 && t1.Compare(t2) == types.CMPeq 2572 && isSamePtr(tmp1, tmp2) 2573 && isStackPtr(src) && !isVolatile(src) 2574 && disjoint(src, s, tmp2, s) 2575 && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) 2576 => (Move {t1} [s] dst src midmem) 2577 2578 // Don't zero the same bits twice. 2579 (Zero {t} [s] dst1 zero:(Zero {t} [s] dst2 _)) && isSamePtr(dst1, dst2) => zero 2580 (Zero {t} [s] dst1 vardef:(VarDef (Zero {t} [s] dst2 _))) && isSamePtr(dst1, dst2) => vardef 2581 2582 // Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go). 2583 // However, this rule is needed to prevent the previous rule from looping forever in such cases. 2584 (Move dst src mem) && isSamePtr(dst, src) => mem 2585 2586 // Constant rotate detection. 2587 ((Add64|Or64|Xor64) (Lsh64x64 x z:(Const64 <t> [c])) (Rsh64Ux64 x (Const64 [d]))) && c < 64 && d == 64-c && canRotate(config, 64) => (RotateLeft64 x z) 2588 ((Add32|Or32|Xor32) (Lsh32x64 x z:(Const64 <t> [c])) (Rsh32Ux64 x (Const64 [d]))) && c < 32 && d == 32-c && canRotate(config, 32) => (RotateLeft32 x z) 2589 ((Add16|Or16|Xor16) (Lsh16x64 x z:(Const64 <t> [c])) (Rsh16Ux64 x (Const64 [d]))) && c < 16 && d == 16-c && canRotate(config, 16) => (RotateLeft16 x z) 2590 ((Add8|Or8|Xor8) (Lsh8x64 x z:(Const64 <t> [c])) (Rsh8Ux64 x (Const64 [d]))) && c < 8 && d == 8-c && canRotate(config, 8) => (RotateLeft8 x z) 2591 2592 // Non-constant rotate detection. 2593 // We use shiftIsBounded to make sure that neither of the shifts are >64. 2594 // Note: these rules are subtle when the shift amounts are 0/64, as Go shifts 2595 // are different from most native shifts. But it works out. 2596 ((Add64|Or64|Xor64) left:(Lsh64x64 x y) right:(Rsh64Ux64 x (Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2597 ((Add64|Or64|Xor64) left:(Lsh64x32 x y) right:(Rsh64Ux32 x (Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2598 ((Add64|Or64|Xor64) left:(Lsh64x16 x y) right:(Rsh64Ux16 x (Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2599 ((Add64|Or64|Xor64) left:(Lsh64x8 x y) right:(Rsh64Ux8 x (Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2600 2601 ((Add64|Or64|Xor64) right:(Rsh64Ux64 x y) left:(Lsh64x64 x z:(Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2602 ((Add64|Or64|Xor64) right:(Rsh64Ux32 x y) left:(Lsh64x32 x z:(Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2603 ((Add64|Or64|Xor64) right:(Rsh64Ux16 x y) left:(Lsh64x16 x z:(Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2604 ((Add64|Or64|Xor64) right:(Rsh64Ux8 x y) left:(Lsh64x8 x z:(Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2605 2606 ((Add32|Or32|Xor32) left:(Lsh32x64 x y) right:(Rsh32Ux64 x (Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2607 ((Add32|Or32|Xor32) left:(Lsh32x32 x y) right:(Rsh32Ux32 x (Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2608 ((Add32|Or32|Xor32) left:(Lsh32x16 x y) right:(Rsh32Ux16 x (Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2609 ((Add32|Or32|Xor32) left:(Lsh32x8 x y) right:(Rsh32Ux8 x (Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2610 2611 ((Add32|Or32|Xor32) right:(Rsh32Ux64 x y) left:(Lsh32x64 x z:(Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2612 ((Add32|Or32|Xor32) right:(Rsh32Ux32 x y) left:(Lsh32x32 x z:(Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2613 ((Add32|Or32|Xor32) right:(Rsh32Ux16 x y) left:(Lsh32x16 x z:(Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2614 ((Add32|Or32|Xor32) right:(Rsh32Ux8 x y) left:(Lsh32x8 x z:(Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2615 2616 ((Add16|Or16|Xor16) left:(Lsh16x64 x y) right:(Rsh16Ux64 x (Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2617 ((Add16|Or16|Xor16) left:(Lsh16x32 x y) right:(Rsh16Ux32 x (Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2618 ((Add16|Or16|Xor16) left:(Lsh16x16 x y) right:(Rsh16Ux16 x (Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2619 ((Add16|Or16|Xor16) left:(Lsh16x8 x y) right:(Rsh16Ux8 x (Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2620 2621 ((Add16|Or16|Xor16) right:(Rsh16Ux64 x y) left:(Lsh16x64 x z:(Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2622 ((Add16|Or16|Xor16) right:(Rsh16Ux32 x y) left:(Lsh16x32 x z:(Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2623 ((Add16|Or16|Xor16) right:(Rsh16Ux16 x y) left:(Lsh16x16 x z:(Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2624 ((Add16|Or16|Xor16) right:(Rsh16Ux8 x y) left:(Lsh16x8 x z:(Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2625 2626 ((Add8|Or8|Xor8) left:(Lsh8x64 x y) right:(Rsh8Ux64 x (Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2627 ((Add8|Or8|Xor8) left:(Lsh8x32 x y) right:(Rsh8Ux32 x (Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2628 ((Add8|Or8|Xor8) left:(Lsh8x16 x y) right:(Rsh8Ux16 x (Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2629 ((Add8|Or8|Xor8) left:(Lsh8x8 x y) right:(Rsh8Ux8 x (Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2630 2631 ((Add8|Or8|Xor8) right:(Rsh8Ux64 x y) left:(Lsh8x64 x z:(Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2632 ((Add8|Or8|Xor8) right:(Rsh8Ux32 x y) left:(Lsh8x32 x z:(Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2633 ((Add8|Or8|Xor8) right:(Rsh8Ux16 x y) left:(Lsh8x16 x z:(Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2634 ((Add8|Or8|Xor8) right:(Rsh8Ux8 x y) left:(Lsh8x8 x z:(Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2635 2636 // Rotating by y&c, with c a mask that doesn't change the bottom bits, is the same as rotating by y. 2637 (RotateLeft64 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 63 => (RotateLeft64 x y) 2638 (RotateLeft32 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 31 => (RotateLeft32 x y) 2639 (RotateLeft16 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 15 => (RotateLeft16 x y) 2640 (RotateLeft8 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 7 => (RotateLeft8 x y) 2641 2642 // Rotating by -(y&c), with c a mask that doesn't change the bottom bits, is the same as rotating by -y. 2643 (RotateLeft64 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&63 == 63 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y)) 2644 (RotateLeft32 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&31 == 31 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y)) 2645 (RotateLeft16 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&15 == 15 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y)) 2646 (RotateLeft8 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&7 == 7 => (RotateLeft8 x (Neg(64|32|16|8) <y.Type> y)) 2647 2648 // Rotating by y+c, with c a multiple of the value width, is the same as rotating by y. 2649 (RotateLeft64 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 0 => (RotateLeft64 x y) 2650 (RotateLeft32 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 0 => (RotateLeft32 x y) 2651 (RotateLeft16 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 0 => (RotateLeft16 x y) 2652 (RotateLeft8 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 0 => (RotateLeft8 x y) 2653 2654 // Rotating by c-y, with c a multiple of the value width, is the same as rotating by -y. 2655 (RotateLeft64 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&63 == 0 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y)) 2656 (RotateLeft32 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&31 == 0 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y)) 2657 (RotateLeft16 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&15 == 0 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y)) 2658 (RotateLeft8 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&7 == 0 => (RotateLeft8 x (Neg(64|32|16|8) <y.Type> y)) 2659 2660 // Ensure we don't do Const64 rotates in a 32-bit system. 2661 (RotateLeft64 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft64 x (Const32 <t> [int32(c)])) 2662 (RotateLeft32 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft32 x (Const32 <t> [int32(c)])) 2663 (RotateLeft16 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft16 x (Const32 <t> [int32(c)])) 2664 (RotateLeft8 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft8 x (Const32 <t> [int32(c)])) 2665 2666 // Rotating by c, then by d, is the same as rotating by c+d. 2667 // We're trading a rotate for an add, which seems generally a good choice. It is especially good when c and d are constants. 2668 // This rule is a bit tricky as c and d might be different widths. We handle only cases where they are the same width. 2669 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 8 && d.Type.Size() == 8 => (RotateLeft(64|32|16|8) x (Add64 <c.Type> c d)) 2670 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 4 && d.Type.Size() == 4 => (RotateLeft(64|32|16|8) x (Add32 <c.Type> c d)) 2671 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 2 && d.Type.Size() == 2 => (RotateLeft(64|32|16|8) x (Add16 <c.Type> c d)) 2672 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 1 && d.Type.Size() == 1 => (RotateLeft(64|32|16|8) x (Add8 <c.Type> c d))