github.com/bir3/gocompiler@v0.3.205/src/cmd/compile/internal/ssa/debug.go (about)

     1  // Copyright 2017 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import (
     8  	"github.com/bir3/gocompiler/src/cmd/compile/internal/abi"
     9  	"github.com/bir3/gocompiler/src/cmd/compile/internal/abt"
    10  	"github.com/bir3/gocompiler/src/cmd/compile/internal/ir"
    11  	"github.com/bir3/gocompiler/src/cmd/compile/internal/types"
    12  	"github.com/bir3/gocompiler/src/cmd/internal/dwarf"
    13  	"github.com/bir3/gocompiler/src/cmd/internal/obj"
    14  	"github.com/bir3/gocompiler/src/cmd/internal/src"
    15  	"encoding/hex"
    16  	"fmt"
    17  	"github.com/bir3/gocompiler/src/internal/buildcfg"
    18  	"math/bits"
    19  	"sort"
    20  	"strings"
    21  )
    22  
    23  type SlotID int32
    24  type VarID int32
    25  
    26  // A FuncDebug contains all the debug information for the variables in a
    27  // function. Variables are identified by their LocalSlot, which may be
    28  // the result of decomposing a larger variable.
    29  type FuncDebug struct {
    30  	// Slots is all the slots used in the debug info, indexed by their SlotID.
    31  	Slots []LocalSlot
    32  	// The user variables, indexed by VarID.
    33  	Vars []*ir.Name
    34  	// The slots that make up each variable, indexed by VarID.
    35  	VarSlots [][]SlotID
    36  	// The location list data, indexed by VarID. Must be processed by PutLocationList.
    37  	LocationLists [][]byte
    38  	// Register-resident output parameters for the function. This is filled in at
    39  	// SSA generation time.
    40  	RegOutputParams []*ir.Name
    41  	// Variable declarations that were removed during optimization
    42  	OptDcl []*ir.Name
    43  
    44  	// Filled in by the user. Translates Block and Value ID to PC.
    45  	GetPC func(ID, ID) int64
    46  }
    47  
    48  type BlockDebug struct {
    49  	// State at the start and end of the block. These are initialized,
    50  	// and updated from new information that flows on back edges.
    51  	startState, endState abt.T
    52  	// Use these to avoid excess work in the merge. If none of the
    53  	// predecessors has changed since the last check, the old answer is
    54  	// still good.
    55  	lastCheckedTime, lastChangedTime int32
    56  	// Whether the block had any changes to user variables at all.
    57  	relevant bool
    58  	// false until the block has been processed at least once. This
    59  	// affects how the merge is done; the goal is to maximize sharing
    60  	// and avoid allocation.
    61  	everProcessed bool
    62  }
    63  
    64  // A liveSlot is a slot that's live in loc at entry/exit of a block.
    65  type liveSlot struct {
    66  	VarLoc
    67  }
    68  
    69  func (ls *liveSlot) String() string {
    70  	return fmt.Sprintf("0x%x.%d.%d", ls.Registers, ls.stackOffsetValue(), int32(ls.StackOffset)&1)
    71  }
    72  
    73  func (loc liveSlot) absent() bool {
    74  	return loc.Registers == 0 && !loc.onStack()
    75  }
    76  
    77  // StackOffset encodes whether a value is on the stack and if so, where.
    78  // It is a 31-bit integer followed by a presence flag at the low-order
    79  // bit.
    80  type StackOffset int32
    81  
    82  func (s StackOffset) onStack() bool {
    83  	return s != 0
    84  }
    85  
    86  func (s StackOffset) stackOffsetValue() int32 {
    87  	return int32(s) >> 1
    88  }
    89  
    90  // stateAtPC is the current state of all variables at some point.
    91  type stateAtPC struct {
    92  	// The location of each known slot, indexed by SlotID.
    93  	slots []VarLoc
    94  	// The slots present in each register, indexed by register number.
    95  	registers [][]SlotID
    96  }
    97  
    98  // reset fills state with the live variables from live.
    99  func (state *stateAtPC) reset(live abt.T) {
   100  	slots, registers := state.slots, state.registers
   101  	for i := range slots {
   102  		slots[i] = VarLoc{}
   103  	}
   104  	for i := range registers {
   105  		registers[i] = registers[i][:0]
   106  	}
   107  	for it := live.Iterator(); !it.Done(); {
   108  		k, d := it.Next()
   109  		live := d.(*liveSlot)
   110  		slots[k] = live.VarLoc
   111  		if live.VarLoc.Registers == 0 {
   112  			continue
   113  		}
   114  
   115  		mask := uint64(live.VarLoc.Registers)
   116  		for {
   117  			if mask == 0 {
   118  				break
   119  			}
   120  			reg := uint8(bits.TrailingZeros64(mask))
   121  			mask &^= 1 << reg
   122  
   123  			registers[reg] = append(registers[reg], SlotID(k))
   124  		}
   125  	}
   126  	state.slots, state.registers = slots, registers
   127  }
   128  
   129  func (s *debugState) LocString(loc VarLoc) string {
   130  	if loc.absent() {
   131  		return "<nil>"
   132  	}
   133  
   134  	var storage []string
   135  	if loc.onStack() {
   136  		storage = append(storage, fmt.Sprintf("@%+d", loc.stackOffsetValue()))
   137  	}
   138  
   139  	mask := uint64(loc.Registers)
   140  	for {
   141  		if mask == 0 {
   142  			break
   143  		}
   144  		reg := uint8(bits.TrailingZeros64(mask))
   145  		mask &^= 1 << reg
   146  
   147  		storage = append(storage, s.registers[reg].String())
   148  	}
   149  	return strings.Join(storage, ",")
   150  }
   151  
   152  // A VarLoc describes the storage for part of a user variable.
   153  type VarLoc struct {
   154  	// The registers this variable is available in. There can be more than
   155  	// one in various situations, e.g. it's being moved between registers.
   156  	Registers RegisterSet
   157  
   158  	StackOffset
   159  }
   160  
   161  func (loc VarLoc) absent() bool {
   162  	return loc.Registers == 0 && !loc.onStack()
   163  }
   164  
   165  func (loc VarLoc) intersect(other VarLoc) VarLoc {
   166  	if !loc.onStack() || !other.onStack() || loc.StackOffset != other.StackOffset {
   167  		loc.StackOffset = 0
   168  	}
   169  	loc.Registers &= other.Registers
   170  	return loc
   171  }
   172  
   173  var BlockStart = &Value{
   174  	ID:  -10000,
   175  	Op:  OpInvalid,
   176  	Aux: StringToAux("BlockStart"),
   177  }
   178  
   179  var BlockEnd = &Value{
   180  	ID:  -20000,
   181  	Op:  OpInvalid,
   182  	Aux: StringToAux("BlockEnd"),
   183  }
   184  
   185  var FuncEnd = &Value{
   186  	ID:  -30000,
   187  	Op:  OpInvalid,
   188  	Aux: StringToAux("FuncEnd"),
   189  }
   190  
   191  // RegisterSet is a bitmap of registers, indexed by Register.num.
   192  type RegisterSet uint64
   193  
   194  // logf prints debug-specific logging to stdout (always stdout) if the
   195  // current function is tagged by GOSSAFUNC (for ssa output directed
   196  // either to stdout or html).
   197  func (s *debugState) logf(msg string, args ...interface{}) {
   198  	if s.f.PrintOrHtmlSSA {
   199  		fmt.Printf(msg, args...)
   200  	}
   201  }
   202  
   203  type debugState struct {
   204  	// See FuncDebug.
   205  	slots    []LocalSlot
   206  	vars     []*ir.Name
   207  	varSlots [][]SlotID
   208  	lists    [][]byte
   209  
   210  	// The user variable that each slot rolls up to, indexed by SlotID.
   211  	slotVars []VarID
   212  
   213  	f             *Func
   214  	loggingLevel  int
   215  	convergeCount int // testing; iterate over block debug state this many times
   216  	registers     []Register
   217  	stackOffset   func(LocalSlot) int32
   218  	ctxt          *obj.Link
   219  
   220  	// The names (slots) associated with each value, indexed by Value ID.
   221  	valueNames [][]SlotID
   222  
   223  	// The current state of whatever analysis is running.
   224  	currentState stateAtPC
   225  	changedVars  *sparseSet
   226  	changedSlots *sparseSet
   227  
   228  	// The pending location list entry for each user variable, indexed by VarID.
   229  	pendingEntries []pendingEntry
   230  
   231  	varParts         map[*ir.Name][]SlotID
   232  	blockDebug       []BlockDebug
   233  	pendingSlotLocs  []VarLoc
   234  	partsByVarOffset sort.Interface
   235  }
   236  
   237  func (state *debugState) initializeCache(f *Func, numVars, numSlots int) {
   238  	// One blockDebug per block. Initialized in allocBlock.
   239  	if cap(state.blockDebug) < f.NumBlocks() {
   240  		state.blockDebug = make([]BlockDebug, f.NumBlocks())
   241  	} else {
   242  		// This local variable, and the ones like it below, enable compiler
   243  		// optimizations. Don't inline them.
   244  		b := state.blockDebug[:f.NumBlocks()]
   245  		for i := range b {
   246  			b[i] = BlockDebug{}
   247  		}
   248  	}
   249  
   250  	// A list of slots per Value. Reuse the previous child slices.
   251  	if cap(state.valueNames) < f.NumValues() {
   252  		old := state.valueNames
   253  		state.valueNames = make([][]SlotID, f.NumValues())
   254  		copy(state.valueNames, old)
   255  	}
   256  	vn := state.valueNames[:f.NumValues()]
   257  	for i := range vn {
   258  		vn[i] = vn[i][:0]
   259  	}
   260  
   261  	// Slot and register contents for currentState. Cleared by reset().
   262  	if cap(state.currentState.slots) < numSlots {
   263  		state.currentState.slots = make([]VarLoc, numSlots)
   264  	} else {
   265  		state.currentState.slots = state.currentState.slots[:numSlots]
   266  	}
   267  	if cap(state.currentState.registers) < len(state.registers) {
   268  		state.currentState.registers = make([][]SlotID, len(state.registers))
   269  	} else {
   270  		state.currentState.registers = state.currentState.registers[:len(state.registers)]
   271  	}
   272  
   273  	// A relatively small slice, but used many times as the return from processValue.
   274  	state.changedVars = newSparseSet(numVars)
   275  	state.changedSlots = newSparseSet(numSlots)
   276  
   277  	// A pending entry per user variable, with space to track each of its pieces.
   278  	numPieces := 0
   279  	for i := range state.varSlots {
   280  		numPieces += len(state.varSlots[i])
   281  	}
   282  	if cap(state.pendingSlotLocs) < numPieces {
   283  		state.pendingSlotLocs = make([]VarLoc, numPieces)
   284  	} else {
   285  		psl := state.pendingSlotLocs[:numPieces]
   286  		for i := range psl {
   287  			psl[i] = VarLoc{}
   288  		}
   289  	}
   290  	if cap(state.pendingEntries) < numVars {
   291  		state.pendingEntries = make([]pendingEntry, numVars)
   292  	}
   293  	pe := state.pendingEntries[:numVars]
   294  	freePieceIdx := 0
   295  	for varID, slots := range state.varSlots {
   296  		pe[varID] = pendingEntry{
   297  			pieces: state.pendingSlotLocs[freePieceIdx : freePieceIdx+len(slots)],
   298  		}
   299  		freePieceIdx += len(slots)
   300  	}
   301  	state.pendingEntries = pe
   302  
   303  	if cap(state.lists) < numVars {
   304  		state.lists = make([][]byte, numVars)
   305  	} else {
   306  		state.lists = state.lists[:numVars]
   307  		for i := range state.lists {
   308  			state.lists[i] = nil
   309  		}
   310  	}
   311  }
   312  
   313  func (state *debugState) allocBlock(b *Block) *BlockDebug {
   314  	return &state.blockDebug[b.ID]
   315  }
   316  
   317  func (s *debugState) blockEndStateString(b *BlockDebug) string {
   318  	endState := stateAtPC{slots: make([]VarLoc, len(s.slots)), registers: make([][]SlotID, len(s.registers))}
   319  	endState.reset(b.endState)
   320  	return s.stateString(endState)
   321  }
   322  
   323  func (s *debugState) stateString(state stateAtPC) string {
   324  	var strs []string
   325  	for slotID, loc := range state.slots {
   326  		if !loc.absent() {
   327  			strs = append(strs, fmt.Sprintf("\t%v = %v\n", s.slots[slotID], s.LocString(loc)))
   328  		}
   329  	}
   330  
   331  	strs = append(strs, "\n")
   332  	for reg, slots := range state.registers {
   333  		if len(slots) != 0 {
   334  			var slotStrs []string
   335  			for _, slot := range slots {
   336  				slotStrs = append(slotStrs, s.slots[slot].String())
   337  			}
   338  			strs = append(strs, fmt.Sprintf("\t%v = %v\n", &s.registers[reg], slotStrs))
   339  		}
   340  	}
   341  
   342  	if len(strs) == 1 {
   343  		return "(no vars)\n"
   344  	}
   345  	return strings.Join(strs, "")
   346  }
   347  
   348  // slotCanonicalizer is a table used to lookup and canonicalize
   349  // LocalSlot's in a type insensitive way (e.g. taking into account the
   350  // base name, offset, and width of the slot, but ignoring the slot
   351  // type).
   352  type slotCanonicalizer struct {
   353  	slmap  map[slotKey]SlKeyIdx
   354  	slkeys []LocalSlot
   355  }
   356  
   357  func newSlotCanonicalizer() *slotCanonicalizer {
   358  	return &slotCanonicalizer{
   359  		slmap:  make(map[slotKey]SlKeyIdx),
   360  		slkeys: []LocalSlot{LocalSlot{N: nil}},
   361  	}
   362  }
   363  
   364  type SlKeyIdx uint32
   365  
   366  const noSlot = SlKeyIdx(0)
   367  
   368  // slotKey is a type-insensitive encapsulation of a LocalSlot; it
   369  // is used to key a map within slotCanonicalizer.
   370  type slotKey struct {
   371  	name        *ir.Name
   372  	offset      int64
   373  	width       int64
   374  	splitOf     SlKeyIdx // idx in slkeys slice in slotCanonicalizer
   375  	splitOffset int64
   376  }
   377  
   378  // lookup looks up a LocalSlot in the slot canonicalizer "sc", returning
   379  // a canonical index for the slot, and adding it to the table if need
   380  // be. Return value is the canonical slot index, and a boolean indicating
   381  // whether the slot was found in the table already (TRUE => found).
   382  func (sc *slotCanonicalizer) lookup(ls LocalSlot) (SlKeyIdx, bool) {
   383  	split := noSlot
   384  	if ls.SplitOf != nil {
   385  		split, _ = sc.lookup(*ls.SplitOf)
   386  	}
   387  	k := slotKey{
   388  		name: ls.N, offset: ls.Off, width: ls.Type.Size(),
   389  		splitOf: split, splitOffset: ls.SplitOffset,
   390  	}
   391  	if idx, ok := sc.slmap[k]; ok {
   392  		return idx, true
   393  	}
   394  	rv := SlKeyIdx(len(sc.slkeys))
   395  	sc.slkeys = append(sc.slkeys, ls)
   396  	sc.slmap[k] = rv
   397  	return rv, false
   398  }
   399  
   400  func (sc *slotCanonicalizer) canonSlot(idx SlKeyIdx) LocalSlot {
   401  	return sc.slkeys[idx]
   402  }
   403  
   404  // PopulateABIInRegArgOps examines the entry block of the function
   405  // and looks for incoming parameters that have missing or partial
   406  // OpArg{Int,Float}Reg values, inserting additional values in
   407  // cases where they are missing. Example:
   408  //
   409  //	func foo(s string, used int, notused int) int {
   410  //	  return len(s) + used
   411  //	}
   412  //
   413  // In the function above, the incoming parameter "used" is fully live,
   414  // "notused" is not live, and "s" is partially live (only the length
   415  // field of the string is used). At the point where debug value
   416  // analysis runs, we might expect to see an entry block with:
   417  //
   418  //	b1:
   419  //	  v4 = ArgIntReg <uintptr> {s+8} [0] : BX
   420  //	  v5 = ArgIntReg <int> {used} [0] : CX
   421  //
   422  // While this is an accurate picture of the live incoming params,
   423  // we also want to have debug locations for non-live params (or
   424  // their non-live pieces), e.g. something like
   425  //
   426  //	b1:
   427  //	  v9 = ArgIntReg <*uint8> {s+0} [0] : AX
   428  //	  v4 = ArgIntReg <uintptr> {s+8} [0] : BX
   429  //	  v5 = ArgIntReg <int> {used} [0] : CX
   430  //	  v10 = ArgIntReg <int> {unused} [0] : DI
   431  //
   432  // This function examines the live OpArg{Int,Float}Reg values and
   433  // synthesizes new (dead) values for the non-live params or the
   434  // non-live pieces of partially live params.
   435  func PopulateABIInRegArgOps(f *Func) {
   436  	pri := f.ABISelf.ABIAnalyzeFuncType(f.Type.FuncType())
   437  
   438  	// When manufacturing new slots that correspond to splits of
   439  	// composite parameters, we want to avoid creating a new sub-slot
   440  	// that differs from some existing sub-slot only by type, since
   441  	// the debug location analysis will treat that slot as a separate
   442  	// entity. To achieve this, create a lookup table of existing
   443  	// slots that is type-insenstitive.
   444  	sc := newSlotCanonicalizer()
   445  	for _, sl := range f.Names {
   446  		sc.lookup(*sl)
   447  	}
   448  
   449  	// Add slot -> value entry to f.NamedValues if not already present.
   450  	addToNV := func(v *Value, sl LocalSlot) {
   451  		values, ok := f.NamedValues[sl]
   452  		if !ok {
   453  			// Haven't seen this slot yet.
   454  			sla := f.localSlotAddr(sl)
   455  			f.Names = append(f.Names, sla)
   456  		} else {
   457  			for _, ev := range values {
   458  				if v == ev {
   459  					return
   460  				}
   461  			}
   462  		}
   463  		values = append(values, v)
   464  		f.NamedValues[sl] = values
   465  	}
   466  
   467  	newValues := []*Value{}
   468  
   469  	abiRegIndexToRegister := func(reg abi.RegIndex) int8 {
   470  		i := f.ABISelf.FloatIndexFor(reg)
   471  		if i >= 0 { // float PR
   472  			return f.Config.floatParamRegs[i]
   473  		} else {
   474  			return f.Config.intParamRegs[reg]
   475  		}
   476  	}
   477  
   478  	// Helper to construct a new OpArg{Float,Int}Reg op value.
   479  	var pos src.XPos
   480  	if len(f.Entry.Values) != 0 {
   481  		pos = f.Entry.Values[0].Pos
   482  	}
   483  	synthesizeOpIntFloatArg := func(n *ir.Name, t *types.Type, reg abi.RegIndex, sl LocalSlot) *Value {
   484  		aux := &AuxNameOffset{n, sl.Off}
   485  		op, auxInt := ArgOpAndRegisterFor(reg, f.ABISelf)
   486  		v := f.newValueNoBlock(op, t, pos)
   487  		v.AuxInt = auxInt
   488  		v.Aux = aux
   489  		v.Args = nil
   490  		v.Block = f.Entry
   491  		newValues = append(newValues, v)
   492  		addToNV(v, sl)
   493  		f.setHome(v, &f.Config.registers[abiRegIndexToRegister(reg)])
   494  		return v
   495  	}
   496  
   497  	// Make a pass through the entry block looking for
   498  	// OpArg{Int,Float}Reg ops. Record the slots they use in a table
   499  	// ("sc"). We use a type-insensitive lookup for the slot table,
   500  	// since the type we get from the ABI analyzer won't always match
   501  	// what the compiler uses when creating OpArg{Int,Float}Reg ops.
   502  	for _, v := range f.Entry.Values {
   503  		if v.Op == OpArgIntReg || v.Op == OpArgFloatReg {
   504  			aux := v.Aux.(*AuxNameOffset)
   505  			sl := LocalSlot{N: aux.Name, Type: v.Type, Off: aux.Offset}
   506  			// install slot in lookup table
   507  			idx, _ := sc.lookup(sl)
   508  			// add to f.NamedValues if not already present
   509  			addToNV(v, sc.canonSlot(idx))
   510  		} else if v.Op.IsCall() {
   511  			// if we hit a call, we've gone too far.
   512  			break
   513  		}
   514  	}
   515  
   516  	// Now make a pass through the ABI in-params, looking for params
   517  	// or pieces of params that we didn't encounter in the loop above.
   518  	for _, inp := range pri.InParams() {
   519  		if !isNamedRegParam(inp) {
   520  			continue
   521  		}
   522  		n := inp.Name.(*ir.Name)
   523  
   524  		// Param is spread across one or more registers. Walk through
   525  		// each piece to see whether we've seen an arg reg op for it.
   526  		types, offsets := inp.RegisterTypesAndOffsets()
   527  		for k, t := range types {
   528  			// Note: this recipe for creating a LocalSlot is designed
   529  			// to be compatible with the one used in expand_calls.go
   530  			// as opposed to decompose.go. The expand calls code just
   531  			// takes the base name and creates an offset into it,
   532  			// without using the SplitOf/SplitOffset fields. The code
   533  			// in decompose.go does the opposite -- it creates a
   534  			// LocalSlot object with "Off" set to zero, but with
   535  			// SplitOf pointing to a parent slot, and SplitOffset
   536  			// holding the offset into the parent object.
   537  			pieceSlot := LocalSlot{N: n, Type: t, Off: offsets[k]}
   538  
   539  			// Look up this piece to see if we've seen a reg op
   540  			// for it. If not, create one.
   541  			_, found := sc.lookup(pieceSlot)
   542  			if !found {
   543  				// This slot doesn't appear in the map, meaning it
   544  				// corresponds to an in-param that is not live, or
   545  				// a portion of an in-param that is not live/used.
   546  				// Add a new dummy OpArg{Int,Float}Reg for it.
   547  				synthesizeOpIntFloatArg(n, t, inp.Registers[k],
   548  					pieceSlot)
   549  			}
   550  		}
   551  	}
   552  
   553  	// Insert the new values into the head of the block.
   554  	f.Entry.Values = append(newValues, f.Entry.Values...)
   555  }
   556  
   557  // BuildFuncDebug debug information for f, placing the results
   558  // in "rval". f must be fully processed, so that each Value is where it
   559  // will be when machine code is emitted.
   560  func BuildFuncDebug(ctxt *obj.Link, f *Func, loggingLevel int, stackOffset func(LocalSlot) int32, rval *FuncDebug) {
   561  	if f.RegAlloc == nil {
   562  		f.Fatalf("BuildFuncDebug on func %v that has not been fully processed", f)
   563  	}
   564  	state := &f.Cache.debugState
   565  	state.loggingLevel = loggingLevel % 1000
   566  
   567  	// A specific number demands exactly that many iterations. Under
   568  	// particular circumstances it make require more than the total of
   569  	// 2 passes implied by a single run through liveness and a single
   570  	// run through location list generation.
   571  	state.convergeCount = loggingLevel / 1000
   572  	state.f = f
   573  	state.registers = f.Config.registers
   574  	state.stackOffset = stackOffset
   575  	state.ctxt = ctxt
   576  
   577  	if buildcfg.Experiment.RegabiArgs {
   578  		PopulateABIInRegArgOps(f)
   579  	}
   580  
   581  	if state.loggingLevel > 0 {
   582  		state.logf("Generating location lists for function %q\n", f.Name)
   583  	}
   584  
   585  	if state.varParts == nil {
   586  		state.varParts = make(map[*ir.Name][]SlotID)
   587  	} else {
   588  		for n := range state.varParts {
   589  			delete(state.varParts, n)
   590  		}
   591  	}
   592  
   593  	// Recompose any decomposed variables, and establish the canonical
   594  	// IDs for each var and slot by filling out state.vars and state.slots.
   595  
   596  	state.slots = state.slots[:0]
   597  	state.vars = state.vars[:0]
   598  	for i, slot := range f.Names {
   599  		state.slots = append(state.slots, *slot)
   600  		if ir.IsSynthetic(slot.N) {
   601  			continue
   602  		}
   603  
   604  		topSlot := slot
   605  		for topSlot.SplitOf != nil {
   606  			topSlot = topSlot.SplitOf
   607  		}
   608  		if _, ok := state.varParts[topSlot.N]; !ok {
   609  			state.vars = append(state.vars, topSlot.N)
   610  		}
   611  		state.varParts[topSlot.N] = append(state.varParts[topSlot.N], SlotID(i))
   612  	}
   613  
   614  	// Recreate the LocalSlot for each stack-only variable.
   615  	// This would probably be better as an output from stackframe.
   616  	for _, b := range f.Blocks {
   617  		for _, v := range b.Values {
   618  			if v.Op == OpVarDef {
   619  				n := v.Aux.(*ir.Name)
   620  				if ir.IsSynthetic(n) {
   621  					continue
   622  				}
   623  
   624  				if _, ok := state.varParts[n]; !ok {
   625  					slot := LocalSlot{N: n, Type: v.Type, Off: 0}
   626  					state.slots = append(state.slots, slot)
   627  					state.varParts[n] = []SlotID{SlotID(len(state.slots) - 1)}
   628  					state.vars = append(state.vars, n)
   629  				}
   630  			}
   631  		}
   632  	}
   633  
   634  	// Fill in the var<->slot mappings.
   635  	if cap(state.varSlots) < len(state.vars) {
   636  		state.varSlots = make([][]SlotID, len(state.vars))
   637  	} else {
   638  		state.varSlots = state.varSlots[:len(state.vars)]
   639  		for i := range state.varSlots {
   640  			state.varSlots[i] = state.varSlots[i][:0]
   641  		}
   642  	}
   643  	if cap(state.slotVars) < len(state.slots) {
   644  		state.slotVars = make([]VarID, len(state.slots))
   645  	} else {
   646  		state.slotVars = state.slotVars[:len(state.slots)]
   647  	}
   648  
   649  	if state.partsByVarOffset == nil {
   650  		state.partsByVarOffset = &partsByVarOffset{}
   651  	}
   652  	for varID, n := range state.vars {
   653  		parts := state.varParts[n]
   654  		state.varSlots[varID] = parts
   655  		for _, slotID := range parts {
   656  			state.slotVars[slotID] = VarID(varID)
   657  		}
   658  		*state.partsByVarOffset.(*partsByVarOffset) = partsByVarOffset{parts, state.slots}
   659  		sort.Sort(state.partsByVarOffset)
   660  	}
   661  
   662  	state.initializeCache(f, len(state.varParts), len(state.slots))
   663  
   664  	for i, slot := range f.Names {
   665  		if ir.IsSynthetic(slot.N) {
   666  			continue
   667  		}
   668  		for _, value := range f.NamedValues[*slot] {
   669  			state.valueNames[value.ID] = append(state.valueNames[value.ID], SlotID(i))
   670  		}
   671  	}
   672  
   673  	blockLocs := state.liveness()
   674  	state.buildLocationLists(blockLocs)
   675  
   676  	// Populate "rval" with what we've computed.
   677  	rval.Slots = state.slots
   678  	rval.VarSlots = state.varSlots
   679  	rval.Vars = state.vars
   680  	rval.LocationLists = state.lists
   681  }
   682  
   683  // liveness walks the function in control flow order, calculating the start
   684  // and end state of each block.
   685  func (state *debugState) liveness() []*BlockDebug {
   686  	blockLocs := make([]*BlockDebug, state.f.NumBlocks())
   687  	counterTime := int32(1)
   688  
   689  	// Reverse postorder: visit a block after as many as possible of its
   690  	// predecessors have been visited.
   691  	po := state.f.Postorder()
   692  	converged := false
   693  
   694  	// The iteration rule is that by default, run until converged, but
   695  	// if a particular iteration count is specified, run that many
   696  	// iterations, no more, no less.  A count is specified as the
   697  	// thousands digit of the location lists debug flag,
   698  	// e.g. -d=locationlists=4000
   699  	keepGoing := func(k int) bool {
   700  		if state.convergeCount == 0 {
   701  			return !converged
   702  		}
   703  		return k < state.convergeCount
   704  	}
   705  	for k := 0; keepGoing(k); k++ {
   706  		if state.loggingLevel > 0 {
   707  			state.logf("Liveness pass %d\n", k)
   708  		}
   709  		converged = true
   710  		for i := len(po) - 1; i >= 0; i-- {
   711  			b := po[i]
   712  			locs := blockLocs[b.ID]
   713  			if locs == nil {
   714  				locs = state.allocBlock(b)
   715  				blockLocs[b.ID] = locs
   716  			}
   717  
   718  			// Build the starting state for the block from the final
   719  			// state of its predecessors.
   720  			startState, blockChanged := state.mergePredecessors(b, blockLocs, nil, false)
   721  			locs.lastCheckedTime = counterTime
   722  			counterTime++
   723  			if state.loggingLevel > 1 {
   724  				state.logf("Processing %v, block changed %v, initial state:\n%v", b, blockChanged, state.stateString(state.currentState))
   725  			}
   726  
   727  			if blockChanged {
   728  				// If the start did not change, then the old endState is good
   729  				converged = false
   730  				changed := false
   731  				state.changedSlots.clear()
   732  
   733  				// Update locs/registers with the effects of each Value.
   734  				for _, v := range b.Values {
   735  					slots := state.valueNames[v.ID]
   736  
   737  					// Loads and stores inherit the names of their sources.
   738  					var source *Value
   739  					switch v.Op {
   740  					case OpStoreReg:
   741  						source = v.Args[0]
   742  					case OpLoadReg:
   743  						switch a := v.Args[0]; a.Op {
   744  						case OpArg, OpPhi:
   745  							source = a
   746  						case OpStoreReg:
   747  							source = a.Args[0]
   748  						default:
   749  							if state.loggingLevel > 1 {
   750  								state.logf("at %v: load with unexpected source op: %v (%v)\n", v, a.Op, a)
   751  							}
   752  						}
   753  					}
   754  					// Update valueNames with the source so that later steps
   755  					// don't need special handling.
   756  					if source != nil && k == 0 {
   757  						// limit to k == 0 otherwise there are duplicates.
   758  						slots = append(slots, state.valueNames[source.ID]...)
   759  						state.valueNames[v.ID] = slots
   760  					}
   761  
   762  					reg, _ := state.f.getHome(v.ID).(*Register)
   763  					c := state.processValue(v, slots, reg)
   764  					changed = changed || c
   765  				}
   766  
   767  				if state.loggingLevel > 1 {
   768  					state.logf("Block %v done, locs:\n%v", b, state.stateString(state.currentState))
   769  				}
   770  
   771  				locs.relevant = locs.relevant || changed
   772  				if !changed {
   773  					locs.endState = startState
   774  				} else {
   775  					for _, id := range state.changedSlots.contents() {
   776  						slotID := SlotID(id)
   777  						slotLoc := state.currentState.slots[slotID]
   778  						if slotLoc.absent() {
   779  							startState.Delete(int32(slotID))
   780  							continue
   781  						}
   782  						old := startState.Find(int32(slotID)) // do NOT replace existing values
   783  						if oldLS, ok := old.(*liveSlot); !ok || oldLS.VarLoc != slotLoc {
   784  							startState.Insert(int32(slotID),
   785  								&liveSlot{VarLoc: slotLoc})
   786  						}
   787  					}
   788  					locs.endState = startState
   789  				}
   790  				locs.lastChangedTime = counterTime
   791  			}
   792  			counterTime++
   793  		}
   794  	}
   795  	return blockLocs
   796  }
   797  
   798  // mergePredecessors takes the end state of each of b's predecessors and
   799  // intersects them to form the starting state for b. It puts that state
   800  // in blockLocs[b.ID].startState, and fills state.currentState with it.
   801  // It returns the start state and whether this is changed from the
   802  // previously approximated value of startState for this block.  After
   803  // the first call, subsequent calls can only shrink startState.
   804  //
   805  // Passing forLocationLists=true enables additional side-effects that
   806  // are necessary for building location lists but superflous while still
   807  // iterating to an answer.
   808  //
   809  // If previousBlock is non-nil, it registers changes vs. that block's
   810  // end state in state.changedVars. Note that previousBlock will often
   811  // not be a predecessor.
   812  //
   813  // Note that mergePredecessors behaves slightly differently between
   814  // first and subsequent calls for a block.  For the first call, the
   815  // starting state is approximated by taking the state from the
   816  // predecessor whose state is smallest, and removing any elements not
   817  // in all the other predecessors; this makes the smallest number of
   818  // changes and shares the most state.  On subsequent calls the old
   819  // value of startState is adjusted with new information; this is judged
   820  // to do the least amount of extra work.
   821  //
   822  // To improve performance, each block's state information is marked with
   823  // lastChanged and lastChecked "times" so unchanged predecessors can be
   824  // skipped on after-the-first iterations.  Doing this allows extra
   825  // iterations by the caller to be almost free.
   826  //
   827  // It is important to know that the set representation used for
   828  // startState, endState, and merges can share data for two sets where
   829  // one is a small delta from the other.  Doing this does require a
   830  // little care in how sets are updated, both in mergePredecessors, and
   831  // using its result.
   832  func (state *debugState) mergePredecessors(b *Block, blockLocs []*BlockDebug, previousBlock *Block, forLocationLists bool) (abt.T, bool) {
   833  	// Filter out back branches.
   834  	var predsBuf [10]*Block
   835  
   836  	preds := predsBuf[:0]
   837  	locs := blockLocs[b.ID]
   838  
   839  	blockChanged := !locs.everProcessed // the first time it always changes.
   840  	updating := locs.everProcessed
   841  
   842  	// For the first merge, exclude predecessors that have not been seen yet.
   843  	// I.e., backedges.
   844  	for _, pred := range b.Preds {
   845  		if bl := blockLocs[pred.b.ID]; bl != nil && bl.everProcessed {
   846  			// crucially, a self-edge has bl != nil, but bl.everProcessed is false the first time.
   847  			preds = append(preds, pred.b)
   848  		}
   849  	}
   850  
   851  	locs.everProcessed = true
   852  
   853  	if state.loggingLevel > 1 {
   854  		// The logf below would cause preds to be heap-allocated if
   855  		// it were passed directly.
   856  		preds2 := make([]*Block, len(preds))
   857  		copy(preds2, preds)
   858  		state.logf("Merging %v into %v (changed=%d, checked=%d)\n", preds2, b, locs.lastChangedTime, locs.lastCheckedTime)
   859  	}
   860  
   861  	state.changedVars.clear()
   862  
   863  	markChangedVars := func(slots, merged abt.T) {
   864  		if !forLocationLists {
   865  			return
   866  		}
   867  		// Fill changedVars with those that differ between the previous
   868  		// block (in the emit order, not necessarily a flow predecessor)
   869  		// and the start state for this block.
   870  		for it := slots.Iterator(); !it.Done(); {
   871  			k, v := it.Next()
   872  			m := merged.Find(k)
   873  			if m == nil || v.(*liveSlot).VarLoc != m.(*liveSlot).VarLoc {
   874  				state.changedVars.add(ID(state.slotVars[k]))
   875  			}
   876  		}
   877  	}
   878  
   879  	reset := func(ourStartState abt.T) {
   880  		if !(forLocationLists || blockChanged) {
   881  			// there is no change and this is not for location lists, do
   882  			// not bother to reset currentState because it will not be
   883  			// examined.
   884  			return
   885  		}
   886  		state.currentState.reset(ourStartState)
   887  	}
   888  
   889  	// Zero predecessors
   890  	if len(preds) == 0 {
   891  		if previousBlock != nil {
   892  			state.f.Fatalf("Function %v, block %s with no predecessors is not first block, has previous %s", state.f, b.String(), previousBlock.String())
   893  		}
   894  		// startState is empty
   895  		reset(abt.T{})
   896  		return abt.T{}, blockChanged
   897  	}
   898  
   899  	// One predecessor
   900  	l0 := blockLocs[preds[0].ID]
   901  	p0 := l0.endState
   902  	if len(preds) == 1 {
   903  		if previousBlock != nil && preds[0].ID != previousBlock.ID {
   904  			// Change from previous block is its endState minus the predecessor's endState
   905  			markChangedVars(blockLocs[previousBlock.ID].endState, p0)
   906  		}
   907  		locs.startState = p0
   908  		blockChanged = blockChanged || l0.lastChangedTime > locs.lastCheckedTime
   909  		reset(p0)
   910  		return p0, blockChanged
   911  	}
   912  
   913  	// More than one predecessor
   914  
   915  	if updating {
   916  		// After the first approximation, i.e., when updating, results
   917  		// can only get smaller, because initially backedge
   918  		// predecessors do not participate in the intersection.  This
   919  		// means that for the update, given the prior approximation of
   920  		// startState, there is no need to re-intersect with unchanged
   921  		// blocks.  Therefore remove unchanged blocks from the
   922  		// predecessor list.
   923  		for i := len(preds) - 1; i >= 0; i-- {
   924  			pred := preds[i]
   925  			if blockLocs[pred.ID].lastChangedTime > locs.lastCheckedTime {
   926  				continue // keep this predecessor
   927  			}
   928  			preds[i] = preds[len(preds)-1]
   929  			preds = preds[:len(preds)-1]
   930  			if state.loggingLevel > 2 {
   931  				state.logf("Pruned b%d, lastChanged was %d but b%d lastChecked is %d\n", pred.ID, blockLocs[pred.ID].lastChangedTime, b.ID, locs.lastCheckedTime)
   932  			}
   933  		}
   934  		// Check for an early out; this should always hit for the update
   935  		// if there are no cycles.
   936  		if len(preds) == 0 {
   937  			blockChanged = false
   938  
   939  			reset(locs.startState)
   940  			if state.loggingLevel > 2 {
   941  				state.logf("Early out, no predecessors changed since last check\n")
   942  			}
   943  			if previousBlock != nil {
   944  				markChangedVars(blockLocs[previousBlock.ID].endState, locs.startState)
   945  			}
   946  			return locs.startState, blockChanged
   947  		}
   948  	}
   949  
   950  	baseID := preds[0].ID
   951  	baseState := p0
   952  
   953  	// Choose the predecessor with the smallest endState for intersection work
   954  	for _, pred := range preds[1:] {
   955  		if blockLocs[pred.ID].endState.Size() < baseState.Size() {
   956  			baseState = blockLocs[pred.ID].endState
   957  			baseID = pred.ID
   958  		}
   959  	}
   960  
   961  	if state.loggingLevel > 2 {
   962  		state.logf("Starting %v with state from b%v:\n%v", b, baseID, state.blockEndStateString(blockLocs[baseID]))
   963  		for _, pred := range preds {
   964  			if pred.ID == baseID {
   965  				continue
   966  			}
   967  			state.logf("Merging in state from %v:\n%v", pred, state.blockEndStateString(blockLocs[pred.ID]))
   968  		}
   969  	}
   970  
   971  	state.currentState.reset(abt.T{})
   972  	// The normal logic of "reset" is incuded in the intersection loop below.
   973  
   974  	slotLocs := state.currentState.slots
   975  
   976  	// If this is the first call, do updates on the "baseState"; if this
   977  	// is a subsequent call, tweak the startState instead. Note that
   978  	// these "set" values are values; there are no side effects to
   979  	// other values as these are modified.
   980  	newState := baseState
   981  	if updating {
   982  		newState = blockLocs[b.ID].startState
   983  	}
   984  
   985  	for it := newState.Iterator(); !it.Done(); {
   986  		k, d := it.Next()
   987  		thisSlot := d.(*liveSlot)
   988  		x := thisSlot.VarLoc
   989  		x0 := x // initial value in newState
   990  
   991  		// Intersect this slot with the slot in all the predecessors
   992  		for _, other := range preds {
   993  			if !updating && other.ID == baseID {
   994  				continue
   995  			}
   996  			otherSlot := blockLocs[other.ID].endState.Find(k)
   997  			if otherSlot == nil {
   998  				x = VarLoc{}
   999  				break
  1000  			}
  1001  			y := otherSlot.(*liveSlot).VarLoc
  1002  			x = x.intersect(y)
  1003  			if x.absent() {
  1004  				x = VarLoc{}
  1005  				break
  1006  			}
  1007  		}
  1008  
  1009  		// Delete if necessary, but not otherwise (in order to maximize sharing).
  1010  		if x.absent() {
  1011  			if !x0.absent() {
  1012  				blockChanged = true
  1013  				newState.Delete(k)
  1014  			}
  1015  			slotLocs[k] = VarLoc{}
  1016  			continue
  1017  		}
  1018  		if x != x0 {
  1019  			blockChanged = true
  1020  			newState.Insert(k, &liveSlot{VarLoc: x})
  1021  		}
  1022  
  1023  		slotLocs[k] = x
  1024  		mask := uint64(x.Registers)
  1025  		for {
  1026  			if mask == 0 {
  1027  				break
  1028  			}
  1029  			reg := uint8(bits.TrailingZeros64(mask))
  1030  			mask &^= 1 << reg
  1031  			state.currentState.registers[reg] = append(state.currentState.registers[reg], SlotID(k))
  1032  		}
  1033  	}
  1034  
  1035  	if previousBlock != nil {
  1036  		markChangedVars(blockLocs[previousBlock.ID].endState, newState)
  1037  	}
  1038  	locs.startState = newState
  1039  	return newState, blockChanged
  1040  }
  1041  
  1042  // processValue updates locs and state.registerContents to reflect v, a
  1043  // value with the names in vSlots and homed in vReg.  "v" becomes
  1044  // visible after execution of the instructions evaluating it. It
  1045  // returns which VarIDs were modified by the Value's execution.
  1046  func (state *debugState) processValue(v *Value, vSlots []SlotID, vReg *Register) bool {
  1047  	locs := state.currentState
  1048  	changed := false
  1049  	setSlot := func(slot SlotID, loc VarLoc) {
  1050  		changed = true
  1051  		state.changedVars.add(ID(state.slotVars[slot]))
  1052  		state.changedSlots.add(ID(slot))
  1053  		state.currentState.slots[slot] = loc
  1054  	}
  1055  
  1056  	// Handle any register clobbering. Call operations, for example,
  1057  	// clobber all registers even though they don't explicitly write to
  1058  	// them.
  1059  	clobbers := uint64(opcodeTable[v.Op].reg.clobbers)
  1060  	for {
  1061  		if clobbers == 0 {
  1062  			break
  1063  		}
  1064  		reg := uint8(bits.TrailingZeros64(clobbers))
  1065  		clobbers &^= 1 << reg
  1066  
  1067  		for _, slot := range locs.registers[reg] {
  1068  			if state.loggingLevel > 1 {
  1069  				state.logf("at %v: %v clobbered out of %v\n", v, state.slots[slot], &state.registers[reg])
  1070  			}
  1071  
  1072  			last := locs.slots[slot]
  1073  			if last.absent() {
  1074  				state.f.Fatalf("at %v: slot %v in register %v with no location entry", v, state.slots[slot], &state.registers[reg])
  1075  				continue
  1076  			}
  1077  			regs := last.Registers &^ (1 << reg)
  1078  			setSlot(slot, VarLoc{regs, last.StackOffset})
  1079  		}
  1080  
  1081  		locs.registers[reg] = locs.registers[reg][:0]
  1082  	}
  1083  
  1084  	switch {
  1085  	case v.Op == OpVarDef:
  1086  		n := v.Aux.(*ir.Name)
  1087  		if ir.IsSynthetic(n) {
  1088  			break
  1089  		}
  1090  
  1091  		slotID := state.varParts[n][0]
  1092  		var stackOffset StackOffset
  1093  		if v.Op == OpVarDef {
  1094  			stackOffset = StackOffset(state.stackOffset(state.slots[slotID])<<1 | 1)
  1095  		}
  1096  		setSlot(slotID, VarLoc{0, stackOffset})
  1097  		if state.loggingLevel > 1 {
  1098  			if v.Op == OpVarDef {
  1099  				state.logf("at %v: stack-only var %v now live\n", v, state.slots[slotID])
  1100  			} else {
  1101  				state.logf("at %v: stack-only var %v now dead\n", v, state.slots[slotID])
  1102  			}
  1103  		}
  1104  
  1105  	case v.Op == OpArg:
  1106  		home := state.f.getHome(v.ID).(LocalSlot)
  1107  		stackOffset := state.stackOffset(home)<<1 | 1
  1108  		for _, slot := range vSlots {
  1109  			if state.loggingLevel > 1 {
  1110  				state.logf("at %v: arg %v now on stack in location %v\n", v, state.slots[slot], home)
  1111  				if last := locs.slots[slot]; !last.absent() {
  1112  					state.logf("at %v: unexpected arg op on already-live slot %v\n", v, state.slots[slot])
  1113  				}
  1114  			}
  1115  
  1116  			setSlot(slot, VarLoc{0, StackOffset(stackOffset)})
  1117  		}
  1118  
  1119  	case v.Op == OpStoreReg:
  1120  		home := state.f.getHome(v.ID).(LocalSlot)
  1121  		stackOffset := state.stackOffset(home)<<1 | 1
  1122  		for _, slot := range vSlots {
  1123  			last := locs.slots[slot]
  1124  			if last.absent() {
  1125  				if state.loggingLevel > 1 {
  1126  					state.logf("at %v: unexpected spill of unnamed register %s\n", v, vReg)
  1127  				}
  1128  				break
  1129  			}
  1130  
  1131  			setSlot(slot, VarLoc{last.Registers, StackOffset(stackOffset)})
  1132  			if state.loggingLevel > 1 {
  1133  				state.logf("at %v: %v spilled to stack location %v@%d\n", v, state.slots[slot], home, state.stackOffset(home))
  1134  			}
  1135  		}
  1136  
  1137  	case vReg != nil:
  1138  		if state.loggingLevel > 1 {
  1139  			newSlots := make([]bool, len(state.slots))
  1140  			for _, slot := range vSlots {
  1141  				newSlots[slot] = true
  1142  			}
  1143  
  1144  			for _, slot := range locs.registers[vReg.num] {
  1145  				if !newSlots[slot] {
  1146  					state.logf("at %v: overwrote %v in register %v\n", v, state.slots[slot], vReg)
  1147  				}
  1148  			}
  1149  		}
  1150  
  1151  		for _, slot := range locs.registers[vReg.num] {
  1152  			last := locs.slots[slot]
  1153  			setSlot(slot, VarLoc{last.Registers &^ (1 << uint8(vReg.num)), last.StackOffset})
  1154  		}
  1155  		locs.registers[vReg.num] = locs.registers[vReg.num][:0]
  1156  		locs.registers[vReg.num] = append(locs.registers[vReg.num], vSlots...)
  1157  		for _, slot := range vSlots {
  1158  			if state.loggingLevel > 1 {
  1159  				state.logf("at %v: %v now in %s\n", v, state.slots[slot], vReg)
  1160  			}
  1161  
  1162  			last := locs.slots[slot]
  1163  			setSlot(slot, VarLoc{1<<uint8(vReg.num) | last.Registers, last.StackOffset})
  1164  		}
  1165  	}
  1166  	return changed
  1167  }
  1168  
  1169  // varOffset returns the offset of slot within the user variable it was
  1170  // decomposed from. This has nothing to do with its stack offset.
  1171  func varOffset(slot LocalSlot) int64 {
  1172  	offset := slot.Off
  1173  	s := &slot
  1174  	for ; s.SplitOf != nil; s = s.SplitOf {
  1175  		offset += s.SplitOffset
  1176  	}
  1177  	return offset
  1178  }
  1179  
  1180  type partsByVarOffset struct {
  1181  	slotIDs []SlotID
  1182  	slots   []LocalSlot
  1183  }
  1184  
  1185  func (a partsByVarOffset) Len() int { return len(a.slotIDs) }
  1186  func (a partsByVarOffset) Less(i, j int) bool {
  1187  	return varOffset(a.slots[a.slotIDs[i]]) < varOffset(a.slots[a.slotIDs[j]])
  1188  }
  1189  func (a partsByVarOffset) Swap(i, j int) { a.slotIDs[i], a.slotIDs[j] = a.slotIDs[j], a.slotIDs[i] }
  1190  
  1191  // A pendingEntry represents the beginning of a location list entry, missing
  1192  // only its end coordinate.
  1193  type pendingEntry struct {
  1194  	present                bool
  1195  	startBlock, startValue ID
  1196  	// The location of each piece of the variable, in the same order as the
  1197  	// SlotIDs in varParts.
  1198  	pieces []VarLoc
  1199  }
  1200  
  1201  func (e *pendingEntry) clear() {
  1202  	e.present = false
  1203  	e.startBlock = 0
  1204  	e.startValue = 0
  1205  	for i := range e.pieces {
  1206  		e.pieces[i] = VarLoc{}
  1207  	}
  1208  }
  1209  
  1210  // canMerge reports whether a new location description is a superset
  1211  // of the (non-empty) pending location description, if so, the two
  1212  // can be merged (i.e., pending is still a valid and useful location
  1213  // description).
  1214  func canMerge(pending, new VarLoc) bool {
  1215  	if pending.absent() && new.absent() {
  1216  		return true
  1217  	}
  1218  	if pending.absent() || new.absent() {
  1219  		return false
  1220  	}
  1221  	// pending is not absent, therefore it has either a stack mapping,
  1222  	// or registers, or both.
  1223  	if pending.onStack() && pending.StackOffset != new.StackOffset {
  1224  		// if pending has a stack offset, then new must also, and it
  1225  		// must be the same (StackOffset encodes onStack).
  1226  		return false
  1227  	}
  1228  	if pending.Registers&new.Registers != pending.Registers {
  1229  		// There is at least one register in pending not mentioned in new.
  1230  		return false
  1231  	}
  1232  	return true
  1233  }
  1234  
  1235  // firstReg returns the first register in set that is present.
  1236  func firstReg(set RegisterSet) uint8 {
  1237  	if set == 0 {
  1238  		// This is wrong, but there seem to be some situations where we
  1239  		// produce locations with no storage.
  1240  		return 0
  1241  	}
  1242  	return uint8(bits.TrailingZeros64(uint64(set)))
  1243  }
  1244  
  1245  // buildLocationLists builds location lists for all the user variables
  1246  // in state.f, using the information about block state in blockLocs.
  1247  // The returned location lists are not fully complete. They are in
  1248  // terms of SSA values rather than PCs, and have no base address/end
  1249  // entries. They will be finished by PutLocationList.
  1250  func (state *debugState) buildLocationLists(blockLocs []*BlockDebug) {
  1251  	// Run through the function in program text order, building up location
  1252  	// lists as we go. The heavy lifting has mostly already been done.
  1253  
  1254  	var prevBlock *Block
  1255  	for _, b := range state.f.Blocks {
  1256  		state.mergePredecessors(b, blockLocs, prevBlock, true)
  1257  
  1258  		// Handle any differences among predecessor blocks and previous block (perhaps not a predecessor)
  1259  		for _, varID := range state.changedVars.contents() {
  1260  			state.updateVar(VarID(varID), b, BlockStart)
  1261  		}
  1262  		state.changedVars.clear()
  1263  
  1264  		if !blockLocs[b.ID].relevant {
  1265  			continue
  1266  		}
  1267  
  1268  		mustBeFirst := func(v *Value) bool {
  1269  			return v.Op == OpPhi || v.Op.isLoweredGetClosurePtr() ||
  1270  				v.Op == OpArgIntReg || v.Op == OpArgFloatReg
  1271  		}
  1272  
  1273  		blockPrologComplete := func(v *Value) bool {
  1274  			if b.ID != state.f.Entry.ID {
  1275  				return !opcodeTable[v.Op].zeroWidth
  1276  			} else {
  1277  				return v.Op == OpInitMem
  1278  			}
  1279  		}
  1280  
  1281  		// Examine the prolog portion of the block to process special
  1282  		// zero-width ops such as Arg, Phi, LoweredGetClosurePtr (etc)
  1283  		// whose lifetimes begin at the block starting point. In an
  1284  		// entry block, allow for the possibility that we may see Arg
  1285  		// ops that appear _after_ other non-zero-width operations.
  1286  		// Example:
  1287  		//
  1288  		//   v33 = ArgIntReg <uintptr> {foo+0} [0] : AX (foo)
  1289  		//   v34 = ArgIntReg <uintptr> {bar+0} [0] : BX (bar)
  1290  		//   ...
  1291  		//   v77 = StoreReg <unsafe.Pointer> v67 : ctx+8[unsafe.Pointer]
  1292  		//   v78 = StoreReg <unsafe.Pointer> v68 : ctx[unsafe.Pointer]
  1293  		//   v79 = Arg <*uint8> {args} : args[*uint8] (args[*uint8])
  1294  		//   v80 = Arg <int> {args} [8] : args+8[int] (args+8[int])
  1295  		//   ...
  1296  		//   v1 = InitMem <mem>
  1297  		//
  1298  		// We can stop scanning the initial portion of the block when
  1299  		// we either see the InitMem op (for entry blocks) or the
  1300  		// first non-zero-width op (for other blocks).
  1301  		for idx := 0; idx < len(b.Values); idx++ {
  1302  			v := b.Values[idx]
  1303  			if blockPrologComplete(v) {
  1304  				break
  1305  			}
  1306  			// Consider only "lifetime begins at block start" ops.
  1307  			if !mustBeFirst(v) && v.Op != OpArg {
  1308  				continue
  1309  			}
  1310  			slots := state.valueNames[v.ID]
  1311  			reg, _ := state.f.getHome(v.ID).(*Register)
  1312  			changed := state.processValue(v, slots, reg) // changed == added to state.changedVars
  1313  			if changed {
  1314  				for _, varID := range state.changedVars.contents() {
  1315  					state.updateVar(VarID(varID), v.Block, BlockStart)
  1316  				}
  1317  				state.changedVars.clear()
  1318  			}
  1319  		}
  1320  
  1321  		// Now examine the block again, handling things other than the
  1322  		// "begins at block start" lifetimes.
  1323  		zeroWidthPending := false
  1324  		prologComplete := false
  1325  		// expect to see values in pattern (apc)* (zerowidth|real)*
  1326  		for _, v := range b.Values {
  1327  			if blockPrologComplete(v) {
  1328  				prologComplete = true
  1329  			}
  1330  			slots := state.valueNames[v.ID]
  1331  			reg, _ := state.f.getHome(v.ID).(*Register)
  1332  			changed := state.processValue(v, slots, reg) // changed == added to state.changedVars
  1333  
  1334  			if opcodeTable[v.Op].zeroWidth {
  1335  				if prologComplete && mustBeFirst(v) {
  1336  					panic(fmt.Errorf("Unexpected placement of op '%s' appearing after non-pseudo-op at beginning of block %s in %s\n%s", v.LongString(), b, b.Func.Name, b.Func))
  1337  				}
  1338  				if changed {
  1339  					if mustBeFirst(v) || v.Op == OpArg {
  1340  						// already taken care of above
  1341  						continue
  1342  					}
  1343  					zeroWidthPending = true
  1344  				}
  1345  				continue
  1346  			}
  1347  			if !changed && !zeroWidthPending {
  1348  				continue
  1349  			}
  1350  
  1351  			// Not zero-width; i.e., a "real" instruction.
  1352  			zeroWidthPending = false
  1353  			for _, varID := range state.changedVars.contents() {
  1354  				state.updateVar(VarID(varID), v.Block, v)
  1355  			}
  1356  			state.changedVars.clear()
  1357  		}
  1358  		for _, varID := range state.changedVars.contents() {
  1359  			state.updateVar(VarID(varID), b, BlockEnd)
  1360  		}
  1361  
  1362  		prevBlock = b
  1363  	}
  1364  
  1365  	if state.loggingLevel > 0 {
  1366  		state.logf("location lists:\n")
  1367  	}
  1368  
  1369  	// Flush any leftover entries live at the end of the last block.
  1370  	for varID := range state.lists {
  1371  		state.writePendingEntry(VarID(varID), state.f.Blocks[len(state.f.Blocks)-1].ID, FuncEnd.ID)
  1372  		list := state.lists[varID]
  1373  		if state.loggingLevel > 0 {
  1374  			if len(list) == 0 {
  1375  				state.logf("\t%v : empty list\n", state.vars[varID])
  1376  			} else {
  1377  				state.logf("\t%v : %q\n", state.vars[varID], hex.EncodeToString(state.lists[varID]))
  1378  			}
  1379  		}
  1380  	}
  1381  }
  1382  
  1383  // updateVar updates the pending location list entry for varID to
  1384  // reflect the new locations in curLoc, beginning at v in block b.
  1385  // v may be one of the special values indicating block start or end.
  1386  func (state *debugState) updateVar(varID VarID, b *Block, v *Value) {
  1387  	curLoc := state.currentState.slots
  1388  	// Assemble the location list entry with whatever's live.
  1389  	empty := true
  1390  	for _, slotID := range state.varSlots[varID] {
  1391  		if !curLoc[slotID].absent() {
  1392  			empty = false
  1393  			break
  1394  		}
  1395  	}
  1396  	pending := &state.pendingEntries[varID]
  1397  	if empty {
  1398  		state.writePendingEntry(varID, b.ID, v.ID)
  1399  		pending.clear()
  1400  		return
  1401  	}
  1402  
  1403  	// Extend the previous entry if possible.
  1404  	if pending.present {
  1405  		merge := true
  1406  		for i, slotID := range state.varSlots[varID] {
  1407  			if !canMerge(pending.pieces[i], curLoc[slotID]) {
  1408  				merge = false
  1409  				break
  1410  			}
  1411  		}
  1412  		if merge {
  1413  			return
  1414  		}
  1415  	}
  1416  
  1417  	state.writePendingEntry(varID, b.ID, v.ID)
  1418  	pending.present = true
  1419  	pending.startBlock = b.ID
  1420  	pending.startValue = v.ID
  1421  	for i, slot := range state.varSlots[varID] {
  1422  		pending.pieces[i] = curLoc[slot]
  1423  	}
  1424  }
  1425  
  1426  // writePendingEntry writes out the pending entry for varID, if any,
  1427  // terminated at endBlock/Value.
  1428  func (state *debugState) writePendingEntry(varID VarID, endBlock, endValue ID) {
  1429  	pending := state.pendingEntries[varID]
  1430  	if !pending.present {
  1431  		return
  1432  	}
  1433  
  1434  	// Pack the start/end coordinates into the start/end addresses
  1435  	// of the entry, for decoding by PutLocationList.
  1436  	start, startOK := encodeValue(state.ctxt, pending.startBlock, pending.startValue)
  1437  	end, endOK := encodeValue(state.ctxt, endBlock, endValue)
  1438  	if !startOK || !endOK {
  1439  		// If someone writes a function that uses >65K values,
  1440  		// they get incomplete debug info on 32-bit platforms.
  1441  		return
  1442  	}
  1443  	if start == end {
  1444  		if state.loggingLevel > 1 {
  1445  			// Printf not logf so not gated by GOSSAFUNC; this should fire very rarely.
  1446  			// TODO this fires a lot, need to figure out why.
  1447  			state.logf("Skipping empty location list for %v in %s\n", state.vars[varID], state.f.Name)
  1448  		}
  1449  		return
  1450  	}
  1451  
  1452  	list := state.lists[varID]
  1453  	list = appendPtr(state.ctxt, list, start)
  1454  	list = appendPtr(state.ctxt, list, end)
  1455  	// Where to write the length of the location description once
  1456  	// we know how big it is.
  1457  	sizeIdx := len(list)
  1458  	list = list[:len(list)+2]
  1459  
  1460  	if state.loggingLevel > 1 {
  1461  		var partStrs []string
  1462  		for i, slot := range state.varSlots[varID] {
  1463  			partStrs = append(partStrs, fmt.Sprintf("%v@%v", state.slots[slot], state.LocString(pending.pieces[i])))
  1464  		}
  1465  		state.logf("Add entry for %v: \tb%vv%v-b%vv%v = \t%v\n", state.vars[varID], pending.startBlock, pending.startValue, endBlock, endValue, strings.Join(partStrs, " "))
  1466  	}
  1467  
  1468  	for i, slotID := range state.varSlots[varID] {
  1469  		loc := pending.pieces[i]
  1470  		slot := state.slots[slotID]
  1471  
  1472  		if !loc.absent() {
  1473  			if loc.onStack() {
  1474  				if loc.stackOffsetValue() == 0 {
  1475  					list = append(list, dwarf.DW_OP_call_frame_cfa)
  1476  				} else {
  1477  					list = append(list, dwarf.DW_OP_fbreg)
  1478  					list = dwarf.AppendSleb128(list, int64(loc.stackOffsetValue()))
  1479  				}
  1480  			} else {
  1481  				regnum := state.ctxt.Arch.DWARFRegisters[state.registers[firstReg(loc.Registers)].ObjNum()]
  1482  				if regnum < 32 {
  1483  					list = append(list, dwarf.DW_OP_reg0+byte(regnum))
  1484  				} else {
  1485  					list = append(list, dwarf.DW_OP_regx)
  1486  					list = dwarf.AppendUleb128(list, uint64(regnum))
  1487  				}
  1488  			}
  1489  		}
  1490  
  1491  		if len(state.varSlots[varID]) > 1 {
  1492  			list = append(list, dwarf.DW_OP_piece)
  1493  			list = dwarf.AppendUleb128(list, uint64(slot.Type.Size()))
  1494  		}
  1495  	}
  1496  	state.ctxt.Arch.ByteOrder.PutUint16(list[sizeIdx:], uint16(len(list)-sizeIdx-2))
  1497  	state.lists[varID] = list
  1498  }
  1499  
  1500  // PutLocationList adds list (a location list in its intermediate representation) to listSym.
  1501  func (debugInfo *FuncDebug) PutLocationList(list []byte, ctxt *obj.Link, listSym, startPC *obj.LSym) {
  1502  	getPC := debugInfo.GetPC
  1503  
  1504  	if ctxt.UseBASEntries {
  1505  		listSym.WriteInt(ctxt, listSym.Size, ctxt.Arch.PtrSize, ^0)
  1506  		listSym.WriteAddr(ctxt, listSym.Size, ctxt.Arch.PtrSize, startPC, 0)
  1507  	}
  1508  
  1509  	// Re-read list, translating its address from block/value ID to PC.
  1510  	for i := 0; i < len(list); {
  1511  		begin := getPC(decodeValue(ctxt, readPtr(ctxt, list[i:])))
  1512  		end := getPC(decodeValue(ctxt, readPtr(ctxt, list[i+ctxt.Arch.PtrSize:])))
  1513  
  1514  		// Horrible hack. If a range contains only zero-width
  1515  		// instructions, e.g. an Arg, and it's at the beginning of the
  1516  		// function, this would be indistinguishable from an
  1517  		// end entry. Fudge it.
  1518  		if begin == 0 && end == 0 {
  1519  			end = 1
  1520  		}
  1521  
  1522  		if ctxt.UseBASEntries {
  1523  			listSym.WriteInt(ctxt, listSym.Size, ctxt.Arch.PtrSize, int64(begin))
  1524  			listSym.WriteInt(ctxt, listSym.Size, ctxt.Arch.PtrSize, int64(end))
  1525  		} else {
  1526  			listSym.WriteCURelativeAddr(ctxt, listSym.Size, startPC, int64(begin))
  1527  			listSym.WriteCURelativeAddr(ctxt, listSym.Size, startPC, int64(end))
  1528  		}
  1529  
  1530  		i += 2 * ctxt.Arch.PtrSize
  1531  		datalen := 2 + int(ctxt.Arch.ByteOrder.Uint16(list[i:]))
  1532  		listSym.WriteBytes(ctxt, listSym.Size, list[i:i+datalen]) // copy datalen and location encoding
  1533  		i += datalen
  1534  	}
  1535  
  1536  	// Location list contents, now with real PCs.
  1537  	// End entry.
  1538  	listSym.WriteInt(ctxt, listSym.Size, ctxt.Arch.PtrSize, 0)
  1539  	listSym.WriteInt(ctxt, listSym.Size, ctxt.Arch.PtrSize, 0)
  1540  }
  1541  
  1542  // Pack a value and block ID into an address-sized uint, returning
  1543  // encoded value and boolean indicating whether the encoding succeeded.
  1544  // For 32-bit architectures the process may fail for very large
  1545  // procedures(the theory being that it's ok to have degraded debug
  1546  // quality in this case).
  1547  func encodeValue(ctxt *obj.Link, b, v ID) (uint64, bool) {
  1548  	if ctxt.Arch.PtrSize == 8 {
  1549  		result := uint64(b)<<32 | uint64(uint32(v))
  1550  		//ctxt.Logf("b %#x (%d) v %#x (%d) -> %#x\n", b, b, v, v, result)
  1551  		return result, true
  1552  	}
  1553  	if ctxt.Arch.PtrSize != 4 {
  1554  		panic("unexpected pointer size")
  1555  	}
  1556  	if ID(int16(b)) != b || ID(int16(v)) != v {
  1557  		return 0, false
  1558  	}
  1559  	return uint64(b)<<16 | uint64(uint16(v)), true
  1560  }
  1561  
  1562  // Unpack a value and block ID encoded by encodeValue.
  1563  func decodeValue(ctxt *obj.Link, word uint64) (ID, ID) {
  1564  	if ctxt.Arch.PtrSize == 8 {
  1565  		b, v := ID(word>>32), ID(word)
  1566  		//ctxt.Logf("%#x -> b %#x (%d) v %#x (%d)\n", word, b, b, v, v)
  1567  		return b, v
  1568  	}
  1569  	if ctxt.Arch.PtrSize != 4 {
  1570  		panic("unexpected pointer size")
  1571  	}
  1572  	return ID(word >> 16), ID(int16(word))
  1573  }
  1574  
  1575  // Append a pointer-sized uint to buf.
  1576  func appendPtr(ctxt *obj.Link, buf []byte, word uint64) []byte {
  1577  	if cap(buf) < len(buf)+20 {
  1578  		b := make([]byte, len(buf), 20+cap(buf)*2)
  1579  		copy(b, buf)
  1580  		buf = b
  1581  	}
  1582  	writeAt := len(buf)
  1583  	buf = buf[0 : len(buf)+ctxt.Arch.PtrSize]
  1584  	writePtr(ctxt, buf[writeAt:], word)
  1585  	return buf
  1586  }
  1587  
  1588  // Write a pointer-sized uint to the beginning of buf.
  1589  func writePtr(ctxt *obj.Link, buf []byte, word uint64) {
  1590  	switch ctxt.Arch.PtrSize {
  1591  	case 4:
  1592  		ctxt.Arch.ByteOrder.PutUint32(buf, uint32(word))
  1593  	case 8:
  1594  		ctxt.Arch.ByteOrder.PutUint64(buf, word)
  1595  	default:
  1596  		panic("unexpected pointer size")
  1597  	}
  1598  
  1599  }
  1600  
  1601  // Read a pointer-sized uint from the beginning of buf.
  1602  func readPtr(ctxt *obj.Link, buf []byte) uint64 {
  1603  	switch ctxt.Arch.PtrSize {
  1604  	case 4:
  1605  		return uint64(ctxt.Arch.ByteOrder.Uint32(buf))
  1606  	case 8:
  1607  		return ctxt.Arch.ByteOrder.Uint64(buf)
  1608  	default:
  1609  		panic("unexpected pointer size")
  1610  	}
  1611  
  1612  }
  1613  
  1614  // setupLocList creates the initial portion of a location list for a
  1615  // user variable. It emits the encoded start/end of the range and a
  1616  // placeholder for the size. Return value is the new list plus the
  1617  // slot in the list holding the size (to be updated later).
  1618  func setupLocList(ctxt *obj.Link, f *Func, list []byte, st, en ID) ([]byte, int) {
  1619  	start, startOK := encodeValue(ctxt, f.Entry.ID, st)
  1620  	end, endOK := encodeValue(ctxt, f.Entry.ID, en)
  1621  	if !startOK || !endOK {
  1622  		// This could happen if someone writes a function that uses
  1623  		// >65K values on a 32-bit platform. Hopefully a degraded debugging
  1624  		// experience is ok in that case.
  1625  		return nil, 0
  1626  	}
  1627  	list = appendPtr(ctxt, list, start)
  1628  	list = appendPtr(ctxt, list, end)
  1629  
  1630  	// Where to write the length of the location description once
  1631  	// we know how big it is.
  1632  	sizeIdx := len(list)
  1633  	list = list[:len(list)+2]
  1634  	return list, sizeIdx
  1635  }
  1636  
  1637  // locatePrologEnd walks the entry block of a function with incoming
  1638  // register arguments and locates the last instruction in the prolog
  1639  // that spills a register arg. It returns the ID of that instruction
  1640  // Example:
  1641  //
  1642  //	b1:
  1643  //	    v3 = ArgIntReg <int> {p1+0} [0] : AX
  1644  //	    ... more arg regs ..
  1645  //	    v4 = ArgFloatReg <float32> {f1+0} [0] : X0
  1646  //	    v52 = MOVQstore <mem> {p1} v2 v3 v1
  1647  //	    ... more stores ...
  1648  //	    v68 = MOVSSstore <mem> {f4} v2 v67 v66
  1649  //	    v38 = MOVQstoreconst <mem> {blob} [val=0,off=0] v2 v32
  1650  //
  1651  // Important: locatePrologEnd is expected to work properly only with
  1652  // optimization turned off (e.g. "-N"). If optimization is enabled
  1653  // we can't be assured of finding all input arguments spilled in the
  1654  // entry block prolog.
  1655  func locatePrologEnd(f *Func) ID {
  1656  
  1657  	// returns true if this instruction looks like it moves an ABI
  1658  	// register to the stack, along with the value being stored.
  1659  	isRegMoveLike := func(v *Value) (bool, ID) {
  1660  		n, ok := v.Aux.(*ir.Name)
  1661  		var r ID
  1662  		if !ok || n.Class != ir.PPARAM {
  1663  			return false, r
  1664  		}
  1665  		regInputs, memInputs, spInputs := 0, 0, 0
  1666  		for _, a := range v.Args {
  1667  			if a.Op == OpArgIntReg || a.Op == OpArgFloatReg {
  1668  				regInputs++
  1669  				r = a.ID
  1670  			} else if a.Type.IsMemory() {
  1671  				memInputs++
  1672  			} else if a.Op == OpSP {
  1673  				spInputs++
  1674  			} else {
  1675  				return false, r
  1676  			}
  1677  		}
  1678  		return v.Type.IsMemory() && memInputs == 1 &&
  1679  			regInputs == 1 && spInputs == 1, r
  1680  	}
  1681  
  1682  	// OpArg*Reg values we've seen so far on our forward walk,
  1683  	// for which we have not yet seen a corresponding spill.
  1684  	regArgs := make([]ID, 0, 32)
  1685  
  1686  	// removeReg tries to remove a value from regArgs, returning true
  1687  	// if found and removed, or false otherwise.
  1688  	removeReg := func(r ID) bool {
  1689  		for i := 0; i < len(regArgs); i++ {
  1690  			if regArgs[i] == r {
  1691  				regArgs = append(regArgs[:i], regArgs[i+1:]...)
  1692  				return true
  1693  			}
  1694  		}
  1695  		return false
  1696  	}
  1697  
  1698  	// Walk forwards through the block. When we see OpArg*Reg, record
  1699  	// the value it produces in the regArgs list. When see a store that uses
  1700  	// the value, remove the entry. When we hit the last store (use)
  1701  	// then we've arrived at the end of the prolog.
  1702  	for k, v := range f.Entry.Values {
  1703  		if v.Op == OpArgIntReg || v.Op == OpArgFloatReg {
  1704  			regArgs = append(regArgs, v.ID)
  1705  			continue
  1706  		}
  1707  		if ok, r := isRegMoveLike(v); ok {
  1708  			if removed := removeReg(r); removed {
  1709  				if len(regArgs) == 0 {
  1710  					// Found our last spill; return the value after
  1711  					// it. Note that it is possible that this spill is
  1712  					// the last instruction in the block. If so, then
  1713  					// return the "end of block" sentinel.
  1714  					if k < len(f.Entry.Values)-1 {
  1715  						return f.Entry.Values[k+1].ID
  1716  					}
  1717  					return BlockEnd.ID
  1718  				}
  1719  			}
  1720  		}
  1721  		if v.Op.IsCall() {
  1722  			// if we hit a call, we've gone too far.
  1723  			return v.ID
  1724  		}
  1725  	}
  1726  	// nothing found
  1727  	return ID(-1)
  1728  }
  1729  
  1730  // isNamedRegParam returns true if the param corresponding to "p"
  1731  // is a named, non-blank input parameter assigned to one or more
  1732  // registers.
  1733  func isNamedRegParam(p abi.ABIParamAssignment) bool {
  1734  	if p.Name == nil {
  1735  		return false
  1736  	}
  1737  	n := p.Name.(*ir.Name)
  1738  	if n.Sym() == nil || n.Sym().IsBlank() {
  1739  		return false
  1740  	}
  1741  	if len(p.Registers) == 0 {
  1742  		return false
  1743  	}
  1744  	return true
  1745  }
  1746  
  1747  // BuildFuncDebugNoOptimized populates a FuncDebug object "rval" with
  1748  // entries corresponding to the register-resident input parameters for
  1749  // the function "f"; it is used when we are compiling without
  1750  // optimization but the register ABI is enabled. For each reg param,
  1751  // it constructs a 2-element location list: the first element holds
  1752  // the input register, and the second element holds the stack location
  1753  // of the param (the assumption being that when optimization is off,
  1754  // each input param reg will be spilled in the prolog.
  1755  func BuildFuncDebugNoOptimized(ctxt *obj.Link, f *Func, loggingEnabled bool, stackOffset func(LocalSlot) int32, rval *FuncDebug) {
  1756  
  1757  	pri := f.ABISelf.ABIAnalyzeFuncType(f.Type.FuncType())
  1758  
  1759  	// Look to see if we have any named register-promoted parameters.
  1760  	// If there are none, bail early and let the caller sort things
  1761  	// out for the remainder of the params/locals.
  1762  	numRegParams := 0
  1763  	for _, inp := range pri.InParams() {
  1764  		if isNamedRegParam(inp) {
  1765  			numRegParams++
  1766  		}
  1767  	}
  1768  	if numRegParams == 0 {
  1769  		return
  1770  	}
  1771  
  1772  	state := debugState{f: f}
  1773  
  1774  	if loggingEnabled {
  1775  		state.logf("generating -N reg param loc lists for func %q\n", f.Name)
  1776  	}
  1777  
  1778  	// Allocate location lists.
  1779  	rval.LocationLists = make([][]byte, numRegParams)
  1780  
  1781  	// Locate the value corresponding to the last spill of
  1782  	// an input register.
  1783  	afterPrologVal := locatePrologEnd(f)
  1784  
  1785  	// Walk the input params again and process the register-resident elements.
  1786  	pidx := 0
  1787  	for _, inp := range pri.InParams() {
  1788  		if !isNamedRegParam(inp) {
  1789  			// will be sorted out elsewhere
  1790  			continue
  1791  		}
  1792  
  1793  		n := inp.Name.(*ir.Name)
  1794  		sl := LocalSlot{N: n, Type: inp.Type, Off: 0}
  1795  		rval.Vars = append(rval.Vars, n)
  1796  		rval.Slots = append(rval.Slots, sl)
  1797  		slid := len(rval.VarSlots)
  1798  		rval.VarSlots = append(rval.VarSlots, []SlotID{SlotID(slid)})
  1799  
  1800  		if afterPrologVal == ID(-1) {
  1801  			// This can happen for degenerate functions with infinite
  1802  			// loops such as that in issue 45948. In such cases, leave
  1803  			// the var/slot set up for the param, but don't try to
  1804  			// emit a location list.
  1805  			if loggingEnabled {
  1806  				state.logf("locatePrologEnd failed, skipping %v\n", n)
  1807  			}
  1808  			pidx++
  1809  			continue
  1810  		}
  1811  
  1812  		// Param is arriving in one or more registers. We need a 2-element
  1813  		// location expression for it. First entry in location list
  1814  		// will correspond to lifetime in input registers.
  1815  		list, sizeIdx := setupLocList(ctxt, f, rval.LocationLists[pidx],
  1816  			BlockStart.ID, afterPrologVal)
  1817  		if list == nil {
  1818  			pidx++
  1819  			continue
  1820  		}
  1821  		if loggingEnabled {
  1822  			state.logf("param %v:\n  [<entry>, %d]:\n", n, afterPrologVal)
  1823  		}
  1824  		rtypes, _ := inp.RegisterTypesAndOffsets()
  1825  		padding := make([]uint64, 0, 32)
  1826  		padding = inp.ComputePadding(padding)
  1827  		for k, r := range inp.Registers {
  1828  			reg := ObjRegForAbiReg(r, f.Config)
  1829  			dwreg := ctxt.Arch.DWARFRegisters[reg]
  1830  			if dwreg < 32 {
  1831  				list = append(list, dwarf.DW_OP_reg0+byte(dwreg))
  1832  			} else {
  1833  				list = append(list, dwarf.DW_OP_regx)
  1834  				list = dwarf.AppendUleb128(list, uint64(dwreg))
  1835  			}
  1836  			if loggingEnabled {
  1837  				state.logf("    piece %d -> dwreg %d", k, dwreg)
  1838  			}
  1839  			if len(inp.Registers) > 1 {
  1840  				list = append(list, dwarf.DW_OP_piece)
  1841  				ts := rtypes[k].Size()
  1842  				list = dwarf.AppendUleb128(list, uint64(ts))
  1843  				if padding[k] > 0 {
  1844  					if loggingEnabled {
  1845  						state.logf(" [pad %d bytes]", padding[k])
  1846  					}
  1847  					list = append(list, dwarf.DW_OP_piece)
  1848  					list = dwarf.AppendUleb128(list, padding[k])
  1849  				}
  1850  			}
  1851  			if loggingEnabled {
  1852  				state.logf("\n")
  1853  			}
  1854  		}
  1855  		// fill in length of location expression element
  1856  		ctxt.Arch.ByteOrder.PutUint16(list[sizeIdx:], uint16(len(list)-sizeIdx-2))
  1857  
  1858  		// Second entry in the location list will be the stack home
  1859  		// of the param, once it has been spilled.  Emit that now.
  1860  		list, sizeIdx = setupLocList(ctxt, f, list,
  1861  			afterPrologVal, FuncEnd.ID)
  1862  		if list == nil {
  1863  			pidx++
  1864  			continue
  1865  		}
  1866  		soff := stackOffset(sl)
  1867  		if soff == 0 {
  1868  			list = append(list, dwarf.DW_OP_call_frame_cfa)
  1869  		} else {
  1870  			list = append(list, dwarf.DW_OP_fbreg)
  1871  			list = dwarf.AppendSleb128(list, int64(soff))
  1872  		}
  1873  		if loggingEnabled {
  1874  			state.logf("  [%d, <end>): stackOffset=%d\n", afterPrologVal, soff)
  1875  		}
  1876  
  1877  		// fill in size
  1878  		ctxt.Arch.ByteOrder.PutUint16(list[sizeIdx:], uint16(len(list)-sizeIdx-2))
  1879  
  1880  		rval.LocationLists[pidx] = list
  1881  		pidx++
  1882  	}
  1883  }