github.com/bir3/gocompiler@v0.3.205/src/cmd/compile/internal/ssa/schedule.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import (
     8  	"github.com/bir3/gocompiler/src/cmd/compile/internal/types"
     9  	"container/heap"
    10  	"sort"
    11  )
    12  
    13  const (
    14  	ScorePhi = iota // towards top of block
    15  	ScoreArg
    16  	ScoreNilCheck
    17  	ScoreReadTuple
    18  	ScoreVarDef
    19  	ScoreCarryChainTail
    20  	ScoreMemory
    21  	ScoreReadFlags
    22  	ScoreDefault
    23  	ScoreFlags
    24  	ScoreControl // towards bottom of block
    25  )
    26  
    27  type ValHeap struct {
    28  	a     []*Value
    29  	score []int8
    30  }
    31  
    32  func (h ValHeap) Len() int      { return len(h.a) }
    33  func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }
    34  
    35  func (h *ValHeap) Push(x interface{}) {
    36  	// Push and Pop use pointer receivers because they modify the slice's length,
    37  	// not just its contents.
    38  	v := x.(*Value)
    39  	h.a = append(h.a, v)
    40  }
    41  func (h *ValHeap) Pop() interface{} {
    42  	old := h.a
    43  	n := len(old)
    44  	x := old[n-1]
    45  	h.a = old[0 : n-1]
    46  	return x
    47  }
    48  func (h ValHeap) Less(i, j int) bool {
    49  	x := h.a[i]
    50  	y := h.a[j]
    51  	sx := h.score[x.ID]
    52  	sy := h.score[y.ID]
    53  	if c := sx - sy; c != 0 {
    54  		return c > 0 // higher score comes later.
    55  	}
    56  	if x.Pos != y.Pos { // Favor in-order line stepping
    57  		return x.Pos.After(y.Pos)
    58  	}
    59  	if x.Op != OpPhi {
    60  		if c := len(x.Args) - len(y.Args); c != 0 {
    61  			return c < 0 // smaller args comes later
    62  		}
    63  	}
    64  	if c := x.Uses - y.Uses; c != 0 {
    65  		return c < 0 // smaller uses come later
    66  	}
    67  	// These comparisons are fairly arbitrary.
    68  	// The goal here is stability in the face
    69  	// of unrelated changes elsewhere in the compiler.
    70  	if c := x.AuxInt - y.AuxInt; c != 0 {
    71  		return c > 0
    72  	}
    73  	if cmp := x.Type.Compare(y.Type); cmp != types.CMPeq {
    74  		return cmp == types.CMPgt
    75  	}
    76  	return x.ID > y.ID
    77  }
    78  
    79  func (op Op) isLoweredGetClosurePtr() bool {
    80  	switch op {
    81  	case OpAMD64LoweredGetClosurePtr, OpPPC64LoweredGetClosurePtr, OpARMLoweredGetClosurePtr, OpARM64LoweredGetClosurePtr,
    82  		Op386LoweredGetClosurePtr, OpMIPS64LoweredGetClosurePtr, OpLOONG64LoweredGetClosurePtr, OpS390XLoweredGetClosurePtr, OpMIPSLoweredGetClosurePtr,
    83  		OpRISCV64LoweredGetClosurePtr, OpWasmLoweredGetClosurePtr:
    84  		return true
    85  	}
    86  	return false
    87  }
    88  
    89  // Schedule the Values in each Block. After this phase returns, the
    90  // order of b.Values matters and is the order in which those values
    91  // will appear in the assembly output. For now it generates a
    92  // reasonable valid schedule using a priority queue. TODO(khr):
    93  // schedule smarter.
    94  func schedule(f *Func) {
    95  	// For each value, the number of times it is used in the block
    96  	// by values that have not been scheduled yet.
    97  	uses := f.Cache.allocInt32Slice(f.NumValues())
    98  	defer f.Cache.freeInt32Slice(uses)
    99  
   100  	// reusable priority queue
   101  	priq := new(ValHeap)
   102  
   103  	// "priority" for a value
   104  	score := f.Cache.allocInt8Slice(f.NumValues())
   105  	defer f.Cache.freeInt8Slice(score)
   106  
   107  	// scheduling order. We queue values in this list in reverse order.
   108  	// A constant bound allows this to be stack-allocated. 64 is
   109  	// enough to cover almost every schedule call.
   110  	order := make([]*Value, 0, 64)
   111  
   112  	// maps mem values to the next live memory value
   113  	nextMem := f.Cache.allocValueSlice(f.NumValues())
   114  	defer f.Cache.freeValueSlice(nextMem)
   115  	// additional pretend arguments for each Value. Used to enforce load/store ordering.
   116  	additionalArgs := make([][]*Value, f.NumValues())
   117  
   118  	for _, b := range f.Blocks {
   119  		// Compute score. Larger numbers are scheduled closer to the end of the block.
   120  		for _, v := range b.Values {
   121  			switch {
   122  			case v.Op.isLoweredGetClosurePtr():
   123  				// We also score GetLoweredClosurePtr as early as possible to ensure that the
   124  				// context register is not stomped. GetLoweredClosurePtr should only appear
   125  				// in the entry block where there are no phi functions, so there is no
   126  				// conflict or ambiguity here.
   127  				if b != f.Entry {
   128  					f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String())
   129  				}
   130  				score[v.ID] = ScorePhi
   131  			case v.Op == OpAMD64LoweredNilCheck || v.Op == OpPPC64LoweredNilCheck ||
   132  				v.Op == OpARMLoweredNilCheck || v.Op == OpARM64LoweredNilCheck ||
   133  				v.Op == Op386LoweredNilCheck || v.Op == OpMIPS64LoweredNilCheck ||
   134  				v.Op == OpS390XLoweredNilCheck || v.Op == OpMIPSLoweredNilCheck ||
   135  				v.Op == OpRISCV64LoweredNilCheck || v.Op == OpWasmLoweredNilCheck ||
   136  				v.Op == OpLOONG64LoweredNilCheck:
   137  				// Nil checks must come before loads from the same address.
   138  				score[v.ID] = ScoreNilCheck
   139  			case v.Op == OpPhi:
   140  				// We want all the phis first.
   141  				score[v.ID] = ScorePhi
   142  			case v.Op == OpVarDef:
   143  				// We want all the vardefs next.
   144  				score[v.ID] = ScoreVarDef
   145  			case v.Op == OpArgIntReg || v.Op == OpArgFloatReg:
   146  				// In-register args must be scheduled as early as possible to ensure that the
   147  				// context register is not stomped. They should only appear in the entry block.
   148  				if b != f.Entry {
   149  					f.Fatalf("%s appeared outside of entry block, b=%s", v.Op, b.String())
   150  				}
   151  				score[v.ID] = ScorePhi
   152  			case v.Op == OpArg:
   153  				// We want all the args as early as possible, for better debugging.
   154  				score[v.ID] = ScoreArg
   155  			case v.Type.IsMemory():
   156  				// Schedule stores as early as possible. This tends to
   157  				// reduce register pressure. It also helps make sure
   158  				// VARDEF ops are scheduled before the corresponding LEA.
   159  				score[v.ID] = ScoreMemory
   160  			case v.Op == OpSelect0 || v.Op == OpSelect1 || v.Op == OpSelectN:
   161  				if (v.Op == OpSelect1 || v.Op == OpSelect0) && (v.Args[0].isCarry() || v.Type.IsFlags()) {
   162  					// When the Select pseudo op is being used for a carry or flag from
   163  					// a tuple then score it as ScoreFlags so it happens later. This
   164  					// prevents the bit from being clobbered before it is used.
   165  					score[v.ID] = ScoreFlags
   166  				} else {
   167  					score[v.ID] = ScoreReadTuple
   168  				}
   169  			case v.isCarry():
   170  				if w := v.getCarryInput(); w != nil && w.Block == b {
   171  					// The producing op is not the final user of the carry bit. Its
   172  					// current score is one of unscored, Flags, or CarryChainTail.
   173  					// These occur if the producer has not been scored, another user
   174  					// of the producers carry flag was scored (there are >1 users of
   175  					// the carry out flag), or it was visited earlier and already
   176  					// scored CarryChainTail (and prove w is not a tail).
   177  					score[w.ID] = ScoreFlags
   178  				}
   179  				// Verify v has not been scored. If v has not been visited, v may be
   180  				// the final (tail) operation in a carry chain. If v is not, v will be
   181  				// rescored above when v's carry-using op is scored. When scoring is done,
   182  				// only tail operations will retain the CarryChainTail score.
   183  				if score[v.ID] != ScoreFlags {
   184  					// Score the tail of carry chain operations to a lower (earlier in the
   185  					// block) priority. This creates a priority inversion which allows only
   186  					// one chain to be scheduled, if possible.
   187  					score[v.ID] = ScoreCarryChainTail
   188  				}
   189  			case v.isFlagOp():
   190  				// Schedule flag register generation as late as possible.
   191  				// This makes sure that we only have one live flags
   192  				// value at a time.
   193  				score[v.ID] = ScoreFlags
   194  			default:
   195  				score[v.ID] = ScoreDefault
   196  				// If we're reading flags, schedule earlier to keep flag lifetime short.
   197  				for _, a := range v.Args {
   198  					if a.isFlagOp() {
   199  						score[v.ID] = ScoreReadFlags
   200  					}
   201  				}
   202  			}
   203  		}
   204  	}
   205  
   206  	for _, b := range f.Blocks {
   207  		// Find store chain for block.
   208  		// Store chains for different blocks overwrite each other, so
   209  		// the calculated store chain is good only for this block.
   210  		for _, v := range b.Values {
   211  			if v.Op != OpPhi && v.Type.IsMemory() {
   212  				for _, w := range v.Args {
   213  					if w.Type.IsMemory() {
   214  						nextMem[w.ID] = v
   215  					}
   216  				}
   217  			}
   218  		}
   219  
   220  		// Compute uses.
   221  		for _, v := range b.Values {
   222  			if v.Op == OpPhi {
   223  				// If a value is used by a phi, it does not induce
   224  				// a scheduling edge because that use is from the
   225  				// previous iteration.
   226  				continue
   227  			}
   228  			for _, w := range v.Args {
   229  				if w.Block == b {
   230  					uses[w.ID]++
   231  				}
   232  				// Any load must come before the following store.
   233  				if !v.Type.IsMemory() && w.Type.IsMemory() {
   234  					// v is a load.
   235  					s := nextMem[w.ID]
   236  					if s == nil || s.Block != b {
   237  						continue
   238  					}
   239  					additionalArgs[s.ID] = append(additionalArgs[s.ID], v)
   240  					uses[v.ID]++
   241  				}
   242  			}
   243  		}
   244  
   245  		for _, c := range b.ControlValues() {
   246  			// Force the control values to be scheduled at the end,
   247  			// unless they are phi values (which must be first).
   248  			// OpArg also goes first -- if it is stack it register allocates
   249  			// to a LoadReg, if it is register it is from the beginning anyway.
   250  			if score[c.ID] == ScorePhi || score[c.ID] == ScoreArg {
   251  				continue
   252  			}
   253  			score[c.ID] = ScoreControl
   254  
   255  			// Schedule values dependent on the control values at the end.
   256  			// This reduces the number of register spills. We don't find
   257  			// all values that depend on the controls, just values with a
   258  			// direct dependency. This is cheaper and in testing there
   259  			// was no difference in the number of spills.
   260  			for _, v := range b.Values {
   261  				if v.Op != OpPhi {
   262  					for _, a := range v.Args {
   263  						if a == c {
   264  							score[v.ID] = ScoreControl
   265  						}
   266  					}
   267  				}
   268  			}
   269  		}
   270  
   271  		// To put things into a priority queue
   272  		// The values that should come last are least.
   273  		priq.score = score
   274  		priq.a = priq.a[:0]
   275  
   276  		// Initialize priority queue with schedulable values.
   277  		for _, v := range b.Values {
   278  			if uses[v.ID] == 0 {
   279  				heap.Push(priq, v)
   280  			}
   281  		}
   282  
   283  		// Schedule highest priority value, update use counts, repeat.
   284  		order = order[:0]
   285  		tuples := make(map[ID][]*Value)
   286  		for priq.Len() > 0 {
   287  			// Find highest priority schedulable value.
   288  			// Note that schedule is assembled backwards.
   289  
   290  			v := heap.Pop(priq).(*Value)
   291  
   292  			if f.pass.debug > 1 && score[v.ID] == ScoreCarryChainTail && v.isCarry() {
   293  				// Add some debugging noise if the chain of carrying ops will not
   294  				// likely be scheduled without potential carry flag clobbers.
   295  				if !isCarryChainReady(v, uses) {
   296  					f.Warnl(v.Pos, "carry chain ending with %v not ready", v)
   297  				}
   298  			}
   299  
   300  			// Add it to the schedule.
   301  			// Do not emit tuple-reading ops until we're ready to emit the tuple-generating op.
   302  			//TODO: maybe remove ReadTuple score above, if it does not help on performance
   303  			switch {
   304  			case v.Op == OpSelect0:
   305  				if tuples[v.Args[0].ID] == nil {
   306  					tuples[v.Args[0].ID] = make([]*Value, 2)
   307  				}
   308  				tuples[v.Args[0].ID][0] = v
   309  			case v.Op == OpSelect1:
   310  				if tuples[v.Args[0].ID] == nil {
   311  					tuples[v.Args[0].ID] = make([]*Value, 2)
   312  				}
   313  				tuples[v.Args[0].ID][1] = v
   314  			case v.Op == OpSelectN:
   315  				if tuples[v.Args[0].ID] == nil {
   316  					tuples[v.Args[0].ID] = make([]*Value, v.Args[0].Type.NumFields())
   317  				}
   318  				tuples[v.Args[0].ID][v.AuxInt] = v
   319  			case v.Type.IsResults() && tuples[v.ID] != nil:
   320  				tup := tuples[v.ID]
   321  				for i := len(tup) - 1; i >= 0; i-- {
   322  					if tup[i] != nil {
   323  						order = append(order, tup[i])
   324  					}
   325  				}
   326  				delete(tuples, v.ID)
   327  				order = append(order, v)
   328  			case v.Type.IsTuple() && tuples[v.ID] != nil:
   329  				if tuples[v.ID][1] != nil {
   330  					order = append(order, tuples[v.ID][1])
   331  				}
   332  				if tuples[v.ID][0] != nil {
   333  					order = append(order, tuples[v.ID][0])
   334  				}
   335  				delete(tuples, v.ID)
   336  				fallthrough
   337  			default:
   338  				order = append(order, v)
   339  			}
   340  
   341  			// Update use counts of arguments.
   342  			for _, w := range v.Args {
   343  				if w.Block != b {
   344  					continue
   345  				}
   346  				uses[w.ID]--
   347  				if uses[w.ID] == 0 {
   348  					// All uses scheduled, w is now schedulable.
   349  					heap.Push(priq, w)
   350  				}
   351  			}
   352  			for _, w := range additionalArgs[v.ID] {
   353  				uses[w.ID]--
   354  				if uses[w.ID] == 0 {
   355  					// All uses scheduled, w is now schedulable.
   356  					heap.Push(priq, w)
   357  				}
   358  			}
   359  		}
   360  		if len(order) != len(b.Values) {
   361  			f.Fatalf("schedule does not include all values in block %s", b)
   362  		}
   363  		for i := 0; i < len(b.Values); i++ {
   364  			b.Values[i] = order[len(b.Values)-1-i]
   365  		}
   366  	}
   367  
   368  	f.scheduled = true
   369  }
   370  
   371  // storeOrder orders values with respect to stores. That is,
   372  // if v transitively depends on store s, v is ordered after s,
   373  // otherwise v is ordered before s.
   374  // Specifically, values are ordered like
   375  //
   376  //	store1
   377  //	NilCheck that depends on store1
   378  //	other values that depends on store1
   379  //	store2
   380  //	NilCheck that depends on store2
   381  //	other values that depends on store2
   382  //	...
   383  //
   384  // The order of non-store and non-NilCheck values are undefined
   385  // (not necessarily dependency order). This should be cheaper
   386  // than a full scheduling as done above.
   387  // Note that simple dependency order won't work: there is no
   388  // dependency between NilChecks and values like IsNonNil.
   389  // Auxiliary data structures are passed in as arguments, so
   390  // that they can be allocated in the caller and be reused.
   391  // This function takes care of reset them.
   392  func storeOrder(values []*Value, sset *sparseSet, storeNumber []int32) []*Value {
   393  	if len(values) == 0 {
   394  		return values
   395  	}
   396  
   397  	f := values[0].Block.Func
   398  
   399  	// find all stores
   400  
   401  	// Members of values that are store values.
   402  	// A constant bound allows this to be stack-allocated. 64 is
   403  	// enough to cover almost every storeOrder call.
   404  	stores := make([]*Value, 0, 64)
   405  	hasNilCheck := false
   406  	sset.clear() // sset is the set of stores that are used in other values
   407  	for _, v := range values {
   408  		if v.Type.IsMemory() {
   409  			stores = append(stores, v)
   410  			if v.Op == OpInitMem || v.Op == OpPhi {
   411  				continue
   412  			}
   413  			sset.add(v.MemoryArg().ID) // record that v's memory arg is used
   414  		}
   415  		if v.Op == OpNilCheck {
   416  			hasNilCheck = true
   417  		}
   418  	}
   419  	if len(stores) == 0 || !hasNilCheck && f.pass.name == "nilcheckelim" {
   420  		// there is no store, the order does not matter
   421  		return values
   422  	}
   423  
   424  	// find last store, which is the one that is not used by other stores
   425  	var last *Value
   426  	for _, v := range stores {
   427  		if !sset.contains(v.ID) {
   428  			if last != nil {
   429  				f.Fatalf("two stores live simultaneously: %v and %v", v, last)
   430  			}
   431  			last = v
   432  		}
   433  	}
   434  
   435  	// We assign a store number to each value. Store number is the
   436  	// index of the latest store that this value transitively depends.
   437  	// The i-th store in the current block gets store number 3*i. A nil
   438  	// check that depends on the i-th store gets store number 3*i+1.
   439  	// Other values that depends on the i-th store gets store number 3*i+2.
   440  	// Special case: 0 -- unassigned, 1 or 2 -- the latest store it depends
   441  	// is in the previous block (or no store at all, e.g. value is Const).
   442  	// First we assign the number to all stores by walking back the store chain,
   443  	// then assign the number to other values in DFS order.
   444  	count := make([]int32, 3*(len(stores)+1))
   445  	sset.clear() // reuse sparse set to ensure that a value is pushed to stack only once
   446  	for n, w := len(stores), last; n > 0; n-- {
   447  		storeNumber[w.ID] = int32(3 * n)
   448  		count[3*n]++
   449  		sset.add(w.ID)
   450  		if w.Op == OpInitMem || w.Op == OpPhi {
   451  			if n != 1 {
   452  				f.Fatalf("store order is wrong: there are stores before %v", w)
   453  			}
   454  			break
   455  		}
   456  		w = w.MemoryArg()
   457  	}
   458  	var stack []*Value
   459  	for _, v := range values {
   460  		if sset.contains(v.ID) {
   461  			// in sset means v is a store, or already pushed to stack, or already assigned a store number
   462  			continue
   463  		}
   464  		stack = append(stack, v)
   465  		sset.add(v.ID)
   466  
   467  		for len(stack) > 0 {
   468  			w := stack[len(stack)-1]
   469  			if storeNumber[w.ID] != 0 {
   470  				stack = stack[:len(stack)-1]
   471  				continue
   472  			}
   473  			if w.Op == OpPhi {
   474  				// Phi value doesn't depend on store in the current block.
   475  				// Do this early to avoid dependency cycle.
   476  				storeNumber[w.ID] = 2
   477  				count[2]++
   478  				stack = stack[:len(stack)-1]
   479  				continue
   480  			}
   481  
   482  			max := int32(0) // latest store dependency
   483  			argsdone := true
   484  			for _, a := range w.Args {
   485  				if a.Block != w.Block {
   486  					continue
   487  				}
   488  				if !sset.contains(a.ID) {
   489  					stack = append(stack, a)
   490  					sset.add(a.ID)
   491  					argsdone = false
   492  					break
   493  				}
   494  				if storeNumber[a.ID]/3 > max {
   495  					max = storeNumber[a.ID] / 3
   496  				}
   497  			}
   498  			if !argsdone {
   499  				continue
   500  			}
   501  
   502  			n := 3*max + 2
   503  			if w.Op == OpNilCheck {
   504  				n = 3*max + 1
   505  			}
   506  			storeNumber[w.ID] = n
   507  			count[n]++
   508  			stack = stack[:len(stack)-1]
   509  		}
   510  	}
   511  
   512  	// convert count to prefix sum of counts: count'[i] = sum_{j<=i} count[i]
   513  	for i := range count {
   514  		if i == 0 {
   515  			continue
   516  		}
   517  		count[i] += count[i-1]
   518  	}
   519  	if count[len(count)-1] != int32(len(values)) {
   520  		f.Fatalf("storeOrder: value is missing, total count = %d, values = %v", count[len(count)-1], values)
   521  	}
   522  
   523  	// place values in count-indexed bins, which are in the desired store order
   524  	order := make([]*Value, len(values))
   525  	for _, v := range values {
   526  		s := storeNumber[v.ID]
   527  		order[count[s-1]] = v
   528  		count[s-1]++
   529  	}
   530  
   531  	// Order nil checks in source order. We want the first in source order to trigger.
   532  	// If two are on the same line, we don't really care which happens first.
   533  	// See issue 18169.
   534  	if hasNilCheck {
   535  		start := -1
   536  		for i, v := range order {
   537  			if v.Op == OpNilCheck {
   538  				if start == -1 {
   539  					start = i
   540  				}
   541  			} else {
   542  				if start != -1 {
   543  					sort.Sort(bySourcePos(order[start:i]))
   544  					start = -1
   545  				}
   546  			}
   547  		}
   548  		if start != -1 {
   549  			sort.Sort(bySourcePos(order[start:]))
   550  		}
   551  	}
   552  
   553  	return order
   554  }
   555  
   556  // isFlagOp reports if v is an OP with the flag type.
   557  func (v *Value) isFlagOp() bool {
   558  	return v.Type.IsFlags() || v.Type.IsTuple() && v.Type.FieldType(1).IsFlags()
   559  }
   560  
   561  // isCarryChainReady reports whether all dependent carry ops can be scheduled after this.
   562  func isCarryChainReady(v *Value, uses []int32) bool {
   563  	// A chain can be scheduled in it's entirety if
   564  	// the use count of each dependent op is 1. If none,
   565  	// schedule the first.
   566  	j := 1 // The first op uses[k.ID] == 0. Dependent ops are always >= 1.
   567  	for k := v; k != nil; k = k.getCarryInput() {
   568  		j += int(uses[k.ID]) - 1
   569  	}
   570  	return j == 0
   571  }
   572  
   573  // isCarryInput reports whether v accepts a carry value as input.
   574  func (v *Value) isCarryInput() bool {
   575  	return v.getCarryInput() != nil
   576  }
   577  
   578  // isCarryOutput reports whether v generates a carry as output.
   579  func (v *Value) isCarryOutput() bool {
   580  	// special cases for PPC64 which put their carry values in XER instead of flags
   581  	switch v.Block.Func.Config.arch {
   582  	case "ppc64", "ppc64le":
   583  		switch v.Op {
   584  		case OpPPC64SUBC, OpPPC64ADDC, OpPPC64SUBCconst, OpPPC64ADDCconst:
   585  			return true
   586  		}
   587  		return false
   588  	}
   589  	return v.isFlagOp() && v.Op != OpSelect1
   590  }
   591  
   592  // isCarryCreator reports whether op is an operation which produces a carry bit value,
   593  // but does not consume it.
   594  func (v *Value) isCarryCreator() bool {
   595  	return v.isCarryOutput() && !v.isCarryInput()
   596  }
   597  
   598  // isCarry reports whether op consumes or creates a carry a bit value.
   599  func (v *Value) isCarry() bool {
   600  	return v.isCarryOutput() || v.isCarryInput()
   601  }
   602  
   603  // getCarryInput returns the producing *Value of the carry bit of this op, or nil if none.
   604  func (v *Value) getCarryInput() *Value {
   605  	// special cases for PPC64 which put their carry values in XER instead of flags
   606  	switch v.Block.Func.Config.arch {
   607  	case "ppc64", "ppc64le":
   608  		switch v.Op {
   609  		case OpPPC64SUBE, OpPPC64ADDE, OpPPC64SUBZEzero, OpPPC64ADDZEzero:
   610  			// PPC64 carry dependencies are conveyed through their final argument.
   611  			// Likewise, there is always an OpSelect1 between them.
   612  			return v.Args[len(v.Args)-1].Args[0]
   613  		}
   614  		return nil
   615  	}
   616  	for _, a := range v.Args {
   617  		if !a.isFlagOp() {
   618  			continue
   619  		}
   620  		if a.Op == OpSelect1 {
   621  			a = a.Args[0]
   622  		}
   623  		return a
   624  	}
   625  	return nil
   626  }
   627  
   628  type bySourcePos []*Value
   629  
   630  func (s bySourcePos) Len() int           { return len(s) }
   631  func (s bySourcePos) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
   632  func (s bySourcePos) Less(i, j int) bool { return s[i].Pos.Before(s[j].Pos) }