github.com/bir3/gocompiler@v0.3.205/src/cmd/compile/internal/ssagen/abi.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssagen
     6  
     7  import (
     8  	"fmt"
     9  	"github.com/bir3/gocompiler/src/internal/buildcfg"
    10  	"log"
    11  	"os"
    12  	"strings"
    13  
    14  	"github.com/bir3/gocompiler/src/cmd/compile/internal/base"
    15  	"github.com/bir3/gocompiler/src/cmd/compile/internal/ir"
    16  	"github.com/bir3/gocompiler/src/cmd/compile/internal/typecheck"
    17  	"github.com/bir3/gocompiler/src/cmd/compile/internal/types"
    18  	"github.com/bir3/gocompiler/src/cmd/internal/obj"
    19  )
    20  
    21  // SymABIs records information provided by the assembler about symbol
    22  // definition ABIs and reference ABIs.
    23  type SymABIs struct {
    24  	defs map[string]obj.ABI
    25  	refs map[string]obj.ABISet
    26  }
    27  
    28  func NewSymABIs() *SymABIs {
    29  	return &SymABIs{
    30  		defs: make(map[string]obj.ABI),
    31  		refs: make(map[string]obj.ABISet),
    32  	}
    33  }
    34  
    35  // canonicalize returns the canonical name used for a linker symbol in
    36  // s's maps. Symbols in this package may be written either as "".X or
    37  // with the package's import path already in the symbol. This rewrites
    38  // both to use the full path, which matches compiler-generated linker
    39  // symbol names.
    40  func (s *SymABIs) canonicalize(linksym string) string {
    41  	// If the symbol is already prefixed with "", rewrite it to start
    42  	// with LocalPkg.Prefix.
    43  	//
    44  	// TODO(mdempsky): Have cmd/asm stop writing out symbols like this.
    45  	if strings.HasPrefix(linksym, `"".`) {
    46  		return types.LocalPkg.Prefix + linksym[2:]
    47  	}
    48  	return linksym
    49  }
    50  
    51  // ReadSymABIs reads a symabis file that specifies definitions and
    52  // references of text symbols by ABI.
    53  //
    54  // The symabis format is a set of lines, where each line is a sequence
    55  // of whitespace-separated fields. The first field is a verb and is
    56  // either "def" for defining a symbol ABI or "ref" for referencing a
    57  // symbol using an ABI. For both "def" and "ref", the second field is
    58  // the symbol name and the third field is the ABI name, as one of the
    59  // named cmd/internal/obj.ABI constants.
    60  func (s *SymABIs) ReadSymABIs(file string) {
    61  	data, err := os.ReadFile(file)
    62  	if err != nil {
    63  		log.Fatalf("-symabis: %v", err)
    64  	}
    65  
    66  	for lineNum, line := range strings.Split(string(data), "\n") {
    67  		lineNum++ // 1-based
    68  		line = strings.TrimSpace(line)
    69  		if line == "" || strings.HasPrefix(line, "#") {
    70  			continue
    71  		}
    72  
    73  		parts := strings.Fields(line)
    74  		switch parts[0] {
    75  		case "def", "ref":
    76  			// Parse line.
    77  			if len(parts) != 3 {
    78  				log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0])
    79  			}
    80  			sym, abistr := parts[1], parts[2]
    81  			abi, valid := obj.ParseABI(abistr)
    82  			if !valid {
    83  				log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr)
    84  			}
    85  
    86  			sym = s.canonicalize(sym)
    87  
    88  			// Record for later.
    89  			if parts[0] == "def" {
    90  				s.defs[sym] = abi
    91  			} else {
    92  				s.refs[sym] |= obj.ABISetOf(abi)
    93  			}
    94  		default:
    95  			log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0])
    96  		}
    97  	}
    98  }
    99  
   100  // GenABIWrappers applies ABI information to Funcs and generates ABI
   101  // wrapper functions where necessary.
   102  func (s *SymABIs) GenABIWrappers() {
   103  	// For cgo exported symbols, we tell the linker to export the
   104  	// definition ABI to C. That also means that we don't want to
   105  	// create ABI wrappers even if there's a linkname.
   106  	//
   107  	// TODO(austin): Maybe we want to create the ABI wrappers, but
   108  	// ensure the linker exports the right ABI definition under
   109  	// the unmangled name?
   110  	cgoExports := make(map[string][]*[]string)
   111  	for i, prag := range typecheck.Target.CgoPragmas {
   112  		switch prag[0] {
   113  		case "cgo_export_static", "cgo_export_dynamic":
   114  			symName := s.canonicalize(prag[1])
   115  			pprag := &typecheck.Target.CgoPragmas[i]
   116  			cgoExports[symName] = append(cgoExports[symName], pprag)
   117  		}
   118  	}
   119  
   120  	// Apply ABI defs and refs to Funcs and generate wrappers.
   121  	//
   122  	// This may generate new decls for the wrappers, but we
   123  	// specifically *don't* want to visit those, lest we create
   124  	// wrappers for wrappers.
   125  	for _, fn := range typecheck.Target.Decls {
   126  		if fn.Op() != ir.ODCLFUNC {
   127  			continue
   128  		}
   129  		fn := fn.(*ir.Func)
   130  		nam := fn.Nname
   131  		if ir.IsBlank(nam) {
   132  			continue
   133  		}
   134  		sym := nam.Sym()
   135  
   136  		symName := sym.Linkname
   137  		if symName == "" {
   138  			symName = sym.Pkg.Prefix + "." + sym.Name
   139  		}
   140  		symName = s.canonicalize(symName)
   141  
   142  		// Apply definitions.
   143  		defABI, hasDefABI := s.defs[symName]
   144  		if hasDefABI {
   145  			if len(fn.Body) != 0 {
   146  				base.ErrorfAt(fn.Pos(), "%v defined in both Go and assembly", fn)
   147  			}
   148  			fn.ABI = defABI
   149  		}
   150  
   151  		if fn.Pragma&ir.CgoUnsafeArgs != 0 {
   152  			// CgoUnsafeArgs indicates the function (or its callee) uses
   153  			// offsets to dispatch arguments, which currently using ABI0
   154  			// frame layout. Pin it to ABI0.
   155  			fn.ABI = obj.ABI0
   156  		}
   157  
   158  		// If cgo-exported, add the definition ABI to the cgo
   159  		// pragmas.
   160  		cgoExport := cgoExports[symName]
   161  		for _, pprag := range cgoExport {
   162  			// The export pragmas have the form:
   163  			//
   164  			//   cgo_export_* <local> [<remote>]
   165  			//
   166  			// If <remote> is omitted, it's the same as
   167  			// <local>.
   168  			//
   169  			// Expand to
   170  			//
   171  			//   cgo_export_* <local> <remote> <ABI>
   172  			if len(*pprag) == 2 {
   173  				*pprag = append(*pprag, (*pprag)[1])
   174  			}
   175  			// Add the ABI argument.
   176  			*pprag = append(*pprag, fn.ABI.String())
   177  		}
   178  
   179  		// Apply references.
   180  		if abis, ok := s.refs[symName]; ok {
   181  			fn.ABIRefs |= abis
   182  		}
   183  		// Assume all functions are referenced at least as
   184  		// ABIInternal, since they may be referenced from
   185  		// other packages.
   186  		fn.ABIRefs.Set(obj.ABIInternal, true)
   187  
   188  		// If a symbol is defined in this package (either in
   189  		// Go or assembly) and given a linkname, it may be
   190  		// referenced from another package, so make it
   191  		// callable via any ABI. It's important that we know
   192  		// it's defined in this package since other packages
   193  		// may "pull" symbols using linkname and we don't want
   194  		// to create duplicate ABI wrappers.
   195  		//
   196  		// However, if it's given a linkname for exporting to
   197  		// C, then we don't make ABI wrappers because the cgo
   198  		// tool wants the original definition.
   199  		hasBody := len(fn.Body) != 0
   200  		if sym.Linkname != "" && (hasBody || hasDefABI) && len(cgoExport) == 0 {
   201  			fn.ABIRefs |= obj.ABISetCallable
   202  		}
   203  
   204  		// Double check that cgo-exported symbols don't get
   205  		// any wrappers.
   206  		if len(cgoExport) > 0 && fn.ABIRefs&^obj.ABISetOf(fn.ABI) != 0 {
   207  			base.Fatalf("cgo exported function %v cannot have ABI wrappers", fn)
   208  		}
   209  
   210  		if !buildcfg.Experiment.RegabiWrappers {
   211  			continue
   212  		}
   213  
   214  		forEachWrapperABI(fn, makeABIWrapper)
   215  	}
   216  }
   217  
   218  func forEachWrapperABI(fn *ir.Func, cb func(fn *ir.Func, wrapperABI obj.ABI)) {
   219  	need := fn.ABIRefs &^ obj.ABISetOf(fn.ABI)
   220  	if need == 0 {
   221  		return
   222  	}
   223  
   224  	for wrapperABI := obj.ABI(0); wrapperABI < obj.ABICount; wrapperABI++ {
   225  		if !need.Get(wrapperABI) {
   226  			continue
   227  		}
   228  		cb(fn, wrapperABI)
   229  	}
   230  }
   231  
   232  // makeABIWrapper creates a new function that will be called with
   233  // wrapperABI and calls "f" using f.ABI.
   234  func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) {
   235  	if base.Debug.ABIWrap != 0 {
   236  		fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %v\n", wrapperABI, f.ABI, f)
   237  	}
   238  
   239  	// Q: is this needed?
   240  	savepos := base.Pos
   241  	savedclcontext := typecheck.DeclContext
   242  	savedcurfn := ir.CurFunc
   243  
   244  	base.Pos = base.AutogeneratedPos
   245  	typecheck.DeclContext = ir.PEXTERN
   246  
   247  	// At the moment we don't support wrapping a method, we'd need machinery
   248  	// below to handle the receiver. Panic if we see this scenario.
   249  	ft := f.Nname.Type()
   250  	if ft.NumRecvs() != 0 {
   251  		base.ErrorfAt(f.Pos(), "makeABIWrapper support for wrapping methods not implemented")
   252  		return
   253  	}
   254  
   255  	// Reuse f's types.Sym to create a new ODCLFUNC/function.
   256  	fn := typecheck.DeclFunc(f.Nname.Sym(), nil,
   257  		typecheck.NewFuncParams(ft.Params(), true),
   258  		typecheck.NewFuncParams(ft.Results(), false))
   259  	fn.ABI = wrapperABI
   260  
   261  	fn.SetABIWrapper(true)
   262  	fn.SetDupok(true)
   263  
   264  	// ABI0-to-ABIInternal wrappers will be mainly loading params from
   265  	// stack into registers (and/or storing stack locations back to
   266  	// registers after the wrapped call); in most cases they won't
   267  	// need to allocate stack space, so it should be OK to mark them
   268  	// as NOSPLIT in these cases. In addition, my assumption is that
   269  	// functions written in assembly are NOSPLIT in most (but not all)
   270  	// cases. In the case of an ABIInternal target that has too many
   271  	// parameters to fit into registers, the wrapper would need to
   272  	// allocate stack space, but this seems like an unlikely scenario.
   273  	// Hence: mark these wrappers NOSPLIT.
   274  	//
   275  	// ABIInternal-to-ABI0 wrappers on the other hand will be taking
   276  	// things in registers and pushing them onto the stack prior to
   277  	// the ABI0 call, meaning that they will always need to allocate
   278  	// stack space. If the compiler marks them as NOSPLIT this seems
   279  	// as though it could lead to situations where the linker's
   280  	// nosplit-overflow analysis would trigger a link failure. On the
   281  	// other hand if they not tagged NOSPLIT then this could cause
   282  	// problems when building the runtime (since there may be calls to
   283  	// asm routine in cases where it's not safe to grow the stack). In
   284  	// most cases the wrapper would be (in effect) inlined, but are
   285  	// there (perhaps) indirect calls from the runtime that could run
   286  	// into trouble here.
   287  	// FIXME: at the moment all.bash does not pass when I leave out
   288  	// NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT.
   289  	fn.Pragma |= ir.Nosplit
   290  
   291  	// Generate call. Use tail call if no params and no returns,
   292  	// but a regular call otherwise.
   293  	//
   294  	// Note: ideally we would be using a tail call in cases where
   295  	// there are params but no returns for ABI0->ABIInternal wrappers,
   296  	// provided that all params fit into registers (e.g. we don't have
   297  	// to allocate any stack space). Doing this will require some
   298  	// extra work in typecheck/walk/ssa, might want to add a new node
   299  	// OTAILCALL or something to this effect.
   300  	tailcall := fn.Type().NumResults() == 0 && fn.Type().NumParams() == 0 && fn.Type().NumRecvs() == 0
   301  	if base.Ctxt.Arch.Name == "ppc64le" && base.Ctxt.Flag_dynlink {
   302  		// cannot tailcall on PPC64 with dynamic linking, as we need
   303  		// to restore R2 after call.
   304  		tailcall = false
   305  	}
   306  	if base.Ctxt.Arch.Name == "amd64" && wrapperABI == obj.ABIInternal {
   307  		// cannot tailcall from ABIInternal to ABI0 on AMD64, as we need
   308  		// to special registers (X15) when returning to ABIInternal.
   309  		tailcall = false
   310  	}
   311  
   312  	var tail ir.Node
   313  	call := ir.NewCallExpr(base.Pos, ir.OCALL, f.Nname, nil)
   314  	call.Args = ir.ParamNames(fn.Type())
   315  	call.IsDDD = fn.Type().IsVariadic()
   316  	tail = call
   317  	if tailcall {
   318  		tail = ir.NewTailCallStmt(base.Pos, call)
   319  	} else if fn.Type().NumResults() > 0 {
   320  		n := ir.NewReturnStmt(base.Pos, nil)
   321  		n.Results = []ir.Node{call}
   322  		tail = n
   323  	}
   324  	fn.Body.Append(tail)
   325  
   326  	typecheck.FinishFuncBody()
   327  	if base.Debug.DclStack != 0 {
   328  		types.CheckDclstack()
   329  	}
   330  
   331  	typecheck.Func(fn)
   332  	ir.CurFunc = fn
   333  	typecheck.Stmts(fn.Body)
   334  
   335  	typecheck.Target.Decls = append(typecheck.Target.Decls, fn)
   336  
   337  	// Restore previous context.
   338  	base.Pos = savepos
   339  	typecheck.DeclContext = savedclcontext
   340  	ir.CurFunc = savedcurfn
   341  }