github.com/bir3/gocompiler@v0.3.205/src/cmd/compile/internal/walk/convert.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package walk
     6  
     7  import (
     8  	"encoding/binary"
     9  	"github.com/bir3/gocompiler/src/go/constant"
    10  
    11  	"github.com/bir3/gocompiler/src/cmd/compile/internal/base"
    12  	"github.com/bir3/gocompiler/src/cmd/compile/internal/ir"
    13  	"github.com/bir3/gocompiler/src/cmd/compile/internal/reflectdata"
    14  	"github.com/bir3/gocompiler/src/cmd/compile/internal/ssagen"
    15  	"github.com/bir3/gocompiler/src/cmd/compile/internal/typecheck"
    16  	"github.com/bir3/gocompiler/src/cmd/compile/internal/types"
    17  	"github.com/bir3/gocompiler/src/cmd/internal/sys"
    18  )
    19  
    20  // walkConv walks an OCONV or OCONVNOP (but not OCONVIFACE) node.
    21  func walkConv(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
    22  	n.X = walkExpr(n.X, init)
    23  	if n.Op() == ir.OCONVNOP && n.Type() == n.X.Type() {
    24  		return n.X
    25  	}
    26  	if n.Op() == ir.OCONVNOP && ir.ShouldCheckPtr(ir.CurFunc, 1) {
    27  		if n.Type().IsUnsafePtr() && n.X.Type().IsUintptr() { // uintptr to unsafe.Pointer
    28  			return walkCheckPtrArithmetic(n, init)
    29  		}
    30  	}
    31  	param, result := rtconvfn(n.X.Type(), n.Type())
    32  	if param == types.Txxx {
    33  		return n
    34  	}
    35  	fn := types.BasicTypeNames[param] + "to" + types.BasicTypeNames[result]
    36  	return typecheck.Conv(mkcall(fn, types.Types[result], init, typecheck.Conv(n.X, types.Types[param])), n.Type())
    37  }
    38  
    39  // walkConvInterface walks an OCONVIFACE node.
    40  func walkConvInterface(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
    41  
    42  	n.X = walkExpr(n.X, init)
    43  
    44  	fromType := n.X.Type()
    45  	toType := n.Type()
    46  	if !fromType.IsInterface() && !ir.IsBlank(ir.CurFunc.Nname) {
    47  		// skip unnamed functions (func _())
    48  		if base.Debug.Unified != 0 && fromType.HasShape() {
    49  			// Unified IR uses OCONVIFACE for converting all derived types
    50  			// to interface type. Avoid assertion failure in
    51  			// MarkTypeUsedInInterface, because we've marked used types
    52  			// separately anyway.
    53  		} else {
    54  			reflectdata.MarkTypeUsedInInterface(fromType, ir.CurFunc.LSym)
    55  		}
    56  	}
    57  
    58  	if !fromType.IsInterface() {
    59  		typeWord := reflectdata.ConvIfaceTypeWord(base.Pos, n)
    60  		l := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeWord, dataWord(n, init))
    61  		l.SetType(toType)
    62  		l.SetTypecheck(n.Typecheck())
    63  		return l
    64  	}
    65  	if fromType.IsEmptyInterface() {
    66  		base.Fatalf("OCONVIFACE can't operate on an empty interface")
    67  	}
    68  
    69  	// Evaluate the input interface.
    70  	c := typecheck.Temp(fromType)
    71  	init.Append(ir.NewAssignStmt(base.Pos, c, n.X))
    72  
    73  	// Grab its parts.
    74  	itab := ir.NewUnaryExpr(base.Pos, ir.OITAB, c)
    75  	itab.SetType(types.Types[types.TUINTPTR].PtrTo())
    76  	itab.SetTypecheck(1)
    77  	data := ir.NewUnaryExpr(n.Pos(), ir.OIDATA, c)
    78  	data.SetType(types.Types[types.TUINT8].PtrTo()) // Type is generic pointer - we're just passing it through.
    79  	data.SetTypecheck(1)
    80  
    81  	var typeWord ir.Node
    82  	if toType.IsEmptyInterface() {
    83  		// Implement interface to empty interface conversion:
    84  		//
    85  		// var res *uint8
    86  		// res = (*uint8)(unsafe.Pointer(itab))
    87  		// if res != nil {
    88  		//    res = res.type
    89  		// }
    90  		typeWord = typecheck.Temp(types.NewPtr(types.Types[types.TUINT8]))
    91  		init.Append(ir.NewAssignStmt(base.Pos, typeWord, typecheck.Conv(typecheck.Conv(itab, types.Types[types.TUNSAFEPTR]), typeWord.Type())))
    92  		nif := ir.NewIfStmt(base.Pos, typecheck.Expr(ir.NewBinaryExpr(base.Pos, ir.ONE, typeWord, typecheck.NodNil())), nil, nil)
    93  		nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, typeWord, itabType(typeWord))}
    94  		init.Append(nif)
    95  	} else {
    96  		// Must be converting I2I (more specific to less specific interface).
    97  		// res = convI2I(toType, itab)
    98  		fn := typecheck.LookupRuntime("convI2I")
    99  		types.CalcSize(fn.Type())
   100  		call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
   101  		call.Args = []ir.Node{reflectdata.ConvIfaceTypeWord(base.Pos, n), itab}
   102  		typeWord = walkExpr(typecheck.Expr(call), init)
   103  	}
   104  
   105  	// Build the result.
   106  	// e = iface{typeWord, data}
   107  	e := ir.NewBinaryExpr(base.Pos, ir.OEFACE, typeWord, data)
   108  	e.SetType(toType) // assign type manually, typecheck doesn't understand OEFACE.
   109  	e.SetTypecheck(1)
   110  	return e
   111  }
   112  
   113  // Returns the data word (the second word) used to represent conv.X in
   114  // an interface.
   115  func dataWord(conv *ir.ConvExpr, init *ir.Nodes) ir.Node {
   116  	pos, n := conv.Pos(), conv.X
   117  	fromType := n.Type()
   118  
   119  	// If it's a pointer, it is its own representation.
   120  	if types.IsDirectIface(fromType) {
   121  		return n
   122  	}
   123  
   124  	isInteger := fromType.IsInteger()
   125  	isBool := fromType.IsBoolean()
   126  	if sc := fromType.SoleComponent(); sc != nil {
   127  		isInteger = sc.IsInteger()
   128  		isBool = sc.IsBoolean()
   129  	}
   130  	// Try a bunch of cases to avoid an allocation.
   131  	var value ir.Node
   132  	switch {
   133  	case fromType.Size() == 0:
   134  		// n is zero-sized. Use zerobase.
   135  		cheapExpr(n, init) // Evaluate n for side-effects. See issue 19246.
   136  		value = ir.NewLinksymExpr(base.Pos, ir.Syms.Zerobase, types.Types[types.TUINTPTR])
   137  	case isBool || fromType.Size() == 1 && isInteger:
   138  		// n is a bool/byte. Use staticuint64s[n * 8] on little-endian
   139  		// and staticuint64s[n * 8 + 7] on big-endian.
   140  		n = cheapExpr(n, init)
   141  		n = soleComponent(init, n)
   142  		// byteindex widens n so that the multiplication doesn't overflow.
   143  		index := ir.NewBinaryExpr(base.Pos, ir.OLSH, byteindex(n), ir.NewInt(3))
   144  		if ssagen.Arch.LinkArch.ByteOrder == binary.BigEndian {
   145  			index = ir.NewBinaryExpr(base.Pos, ir.OADD, index, ir.NewInt(7))
   146  		}
   147  		// The actual type is [256]uint64, but we use [256*8]uint8 so we can address
   148  		// individual bytes.
   149  		staticuint64s := ir.NewLinksymExpr(base.Pos, ir.Syms.Staticuint64s, types.NewArray(types.Types[types.TUINT8], 256*8))
   150  		xe := ir.NewIndexExpr(base.Pos, staticuint64s, index)
   151  		xe.SetBounded(true)
   152  		value = xe
   153  	case n.Op() == ir.ONAME && n.(*ir.Name).Class == ir.PEXTERN && n.(*ir.Name).Readonly():
   154  		// n is a readonly global; use it directly.
   155  		value = n
   156  	case conv.Esc() == ir.EscNone && fromType.Size() <= 1024:
   157  		// n does not escape. Use a stack temporary initialized to n.
   158  		value = typecheck.Temp(fromType)
   159  		init.Append(typecheck.Stmt(ir.NewAssignStmt(base.Pos, value, n)))
   160  	}
   161  	if value != nil {
   162  		// The interface data word is &value.
   163  		return typecheck.Expr(typecheck.NodAddr(value))
   164  	}
   165  
   166  	// Time to do an allocation. We'll call into the runtime for that.
   167  	fnname, argType, needsaddr := dataWordFuncName(fromType)
   168  	fn := typecheck.LookupRuntime(fnname)
   169  
   170  	var args []ir.Node
   171  	if needsaddr {
   172  		// Types of large or unknown size are passed by reference.
   173  		// Orderexpr arranged for n to be a temporary for all
   174  		// the conversions it could see. Comparison of an interface
   175  		// with a non-interface, especially in a switch on interface value
   176  		// with non-interface cases, is not visible to order.stmt, so we
   177  		// have to fall back on allocating a temp here.
   178  		if !ir.IsAddressable(n) {
   179  			n = copyExpr(n, fromType, init)
   180  		}
   181  		fn = typecheck.SubstArgTypes(fn, fromType)
   182  		args = []ir.Node{reflectdata.ConvIfaceSrcRType(base.Pos, conv), typecheck.NodAddr(n)}
   183  	} else {
   184  		// Use a specialized conversion routine that takes the type being
   185  		// converted by value, not by pointer.
   186  		var arg ir.Node
   187  		switch {
   188  		case fromType == argType:
   189  			// already in the right type, nothing to do
   190  			arg = n
   191  		case fromType.Kind() == argType.Kind(),
   192  			fromType.IsPtrShaped() && argType.IsPtrShaped():
   193  			// can directly convert (e.g. named type to underlying type, or one pointer to another)
   194  			// TODO: never happens because pointers are directIface?
   195  			arg = ir.NewConvExpr(pos, ir.OCONVNOP, argType, n)
   196  		case fromType.IsInteger() && argType.IsInteger():
   197  			// can directly convert (e.g. int32 to uint32)
   198  			arg = ir.NewConvExpr(pos, ir.OCONV, argType, n)
   199  		default:
   200  			// unsafe cast through memory
   201  			arg = copyExpr(n, fromType, init)
   202  			var addr ir.Node = typecheck.NodAddr(arg)
   203  			addr = ir.NewConvExpr(pos, ir.OCONVNOP, argType.PtrTo(), addr)
   204  			arg = ir.NewStarExpr(pos, addr)
   205  			arg.SetType(argType)
   206  		}
   207  		args = []ir.Node{arg}
   208  	}
   209  	call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
   210  	call.Args = args
   211  	return safeExpr(walkExpr(typecheck.Expr(call), init), init)
   212  }
   213  
   214  // walkConvIData walks an OCONVIDATA node.
   215  func walkConvIData(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
   216  	n.X = walkExpr(n.X, init)
   217  	return dataWord(n, init)
   218  }
   219  
   220  // walkBytesRunesToString walks an OBYTES2STR or ORUNES2STR node.
   221  func walkBytesRunesToString(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
   222  	a := typecheck.NodNil()
   223  	if n.Esc() == ir.EscNone {
   224  		// Create temporary buffer for string on stack.
   225  		a = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8])
   226  	}
   227  	if n.Op() == ir.ORUNES2STR {
   228  		// slicerunetostring(*[32]byte, []rune) string
   229  		return mkcall("slicerunetostring", n.Type(), init, a, n.X)
   230  	}
   231  	// slicebytetostring(*[32]byte, ptr *byte, n int) string
   232  	n.X = cheapExpr(n.X, init)
   233  	ptr, len := backingArrayPtrLen(n.X)
   234  	return mkcall("slicebytetostring", n.Type(), init, a, ptr, len)
   235  }
   236  
   237  // walkBytesToStringTemp walks an OBYTES2STRTMP node.
   238  func walkBytesToStringTemp(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
   239  	n.X = walkExpr(n.X, init)
   240  	if !base.Flag.Cfg.Instrumenting {
   241  		// Let the backend handle OBYTES2STRTMP directly
   242  		// to avoid a function call to slicebytetostringtmp.
   243  		return n
   244  	}
   245  	// slicebytetostringtmp(ptr *byte, n int) string
   246  	n.X = cheapExpr(n.X, init)
   247  	ptr, len := backingArrayPtrLen(n.X)
   248  	return mkcall("slicebytetostringtmp", n.Type(), init, ptr, len)
   249  }
   250  
   251  // walkRuneToString walks an ORUNESTR node.
   252  func walkRuneToString(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
   253  	a := typecheck.NodNil()
   254  	if n.Esc() == ir.EscNone {
   255  		a = stackBufAddr(4, types.Types[types.TUINT8])
   256  	}
   257  	// intstring(*[4]byte, rune)
   258  	return mkcall("intstring", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TINT64]))
   259  }
   260  
   261  // walkStringToBytes walks an OSTR2BYTES node.
   262  func walkStringToBytes(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
   263  	s := n.X
   264  	if ir.IsConst(s, constant.String) {
   265  		sc := ir.StringVal(s)
   266  
   267  		// Allocate a [n]byte of the right size.
   268  		t := types.NewArray(types.Types[types.TUINT8], int64(len(sc)))
   269  		var a ir.Node
   270  		if n.Esc() == ir.EscNone && len(sc) <= int(ir.MaxImplicitStackVarSize) {
   271  			a = stackBufAddr(t.NumElem(), t.Elem())
   272  		} else {
   273  			types.CalcSize(t)
   274  			a = ir.NewUnaryExpr(base.Pos, ir.ONEW, nil)
   275  			a.SetType(types.NewPtr(t))
   276  			a.SetTypecheck(1)
   277  			a.MarkNonNil()
   278  		}
   279  		p := typecheck.Temp(t.PtrTo()) // *[n]byte
   280  		init.Append(typecheck.Stmt(ir.NewAssignStmt(base.Pos, p, a)))
   281  
   282  		// Copy from the static string data to the [n]byte.
   283  		if len(sc) > 0 {
   284  			sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, s)
   285  			sptr.SetBounded(true)
   286  			as := ir.NewAssignStmt(base.Pos, ir.NewStarExpr(base.Pos, p), ir.NewStarExpr(base.Pos, typecheck.ConvNop(sptr, t.PtrTo())))
   287  			appendWalkStmt(init, as)
   288  		}
   289  
   290  		// Slice the [n]byte to a []byte.
   291  		slice := ir.NewSliceExpr(n.Pos(), ir.OSLICEARR, p, nil, nil, nil)
   292  		slice.SetType(n.Type())
   293  		slice.SetTypecheck(1)
   294  		return walkExpr(slice, init)
   295  	}
   296  
   297  	a := typecheck.NodNil()
   298  	if n.Esc() == ir.EscNone {
   299  		// Create temporary buffer for slice on stack.
   300  		a = stackBufAddr(tmpstringbufsize, types.Types[types.TUINT8])
   301  	}
   302  	// stringtoslicebyte(*32[byte], string) []byte
   303  	return mkcall("stringtoslicebyte", n.Type(), init, a, typecheck.Conv(s, types.Types[types.TSTRING]))
   304  }
   305  
   306  // walkStringToBytesTemp walks an OSTR2BYTESTMP node.
   307  func walkStringToBytesTemp(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
   308  	// []byte(string) conversion that creates a slice
   309  	// referring to the actual string bytes.
   310  	// This conversion is handled later by the backend and
   311  	// is only for use by internal compiler optimizations
   312  	// that know that the slice won't be mutated.
   313  	// The only such case today is:
   314  	// for i, c := range []byte(string)
   315  	n.X = walkExpr(n.X, init)
   316  	return n
   317  }
   318  
   319  // walkStringToRunes walks an OSTR2RUNES node.
   320  func walkStringToRunes(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
   321  	a := typecheck.NodNil()
   322  	if n.Esc() == ir.EscNone {
   323  		// Create temporary buffer for slice on stack.
   324  		a = stackBufAddr(tmpstringbufsize, types.Types[types.TINT32])
   325  	}
   326  	// stringtoslicerune(*[32]rune, string) []rune
   327  	return mkcall("stringtoslicerune", n.Type(), init, a, typecheck.Conv(n.X, types.Types[types.TSTRING]))
   328  }
   329  
   330  // dataWordFuncName returns the name of the function used to convert a value of type "from"
   331  // to the data word of an interface.
   332  // argType is the type the argument needs to be coerced to.
   333  // needsaddr reports whether the value should be passed (needaddr==false) or its address (needsaddr==true).
   334  func dataWordFuncName(from *types.Type) (fnname string, argType *types.Type, needsaddr bool) {
   335  	if from.IsInterface() {
   336  		base.Fatalf("can only handle non-interfaces")
   337  	}
   338  	switch {
   339  	case from.Size() == 2 && uint8(from.Alignment()) == 2:
   340  		return "convT16", types.Types[types.TUINT16], false
   341  	case from.Size() == 4 && uint8(from.Alignment()) == 4 && !from.HasPointers():
   342  		return "convT32", types.Types[types.TUINT32], false
   343  	case from.Size() == 8 && uint8(from.Alignment()) == uint8(types.Types[types.TUINT64].Alignment()) && !from.HasPointers():
   344  		return "convT64", types.Types[types.TUINT64], false
   345  	}
   346  	if sc := from.SoleComponent(); sc != nil {
   347  		switch {
   348  		case sc.IsString():
   349  			return "convTstring", types.Types[types.TSTRING], false
   350  		case sc.IsSlice():
   351  			return "convTslice", types.NewSlice(types.Types[types.TUINT8]), false // the element type doesn't matter
   352  		}
   353  	}
   354  
   355  	if from.HasPointers() {
   356  		return "convT", types.Types[types.TUNSAFEPTR], true
   357  	}
   358  	return "convTnoptr", types.Types[types.TUNSAFEPTR], true
   359  }
   360  
   361  // rtconvfn returns the parameter and result types that will be used by a
   362  // runtime function to convert from type src to type dst. The runtime function
   363  // name can be derived from the names of the returned types.
   364  //
   365  // If no such function is necessary, it returns (Txxx, Txxx).
   366  func rtconvfn(src, dst *types.Type) (param, result types.Kind) {
   367  	if ssagen.Arch.SoftFloat {
   368  		return types.Txxx, types.Txxx
   369  	}
   370  
   371  	switch ssagen.Arch.LinkArch.Family {
   372  	case sys.ARM, sys.MIPS:
   373  		if src.IsFloat() {
   374  			switch dst.Kind() {
   375  			case types.TINT64, types.TUINT64:
   376  				return types.TFLOAT64, dst.Kind()
   377  			}
   378  		}
   379  		if dst.IsFloat() {
   380  			switch src.Kind() {
   381  			case types.TINT64, types.TUINT64:
   382  				return src.Kind(), dst.Kind()
   383  			}
   384  		}
   385  
   386  	case sys.I386:
   387  		if src.IsFloat() {
   388  			switch dst.Kind() {
   389  			case types.TINT64, types.TUINT64:
   390  				return types.TFLOAT64, dst.Kind()
   391  			case types.TUINT32, types.TUINT, types.TUINTPTR:
   392  				return types.TFLOAT64, types.TUINT32
   393  			}
   394  		}
   395  		if dst.IsFloat() {
   396  			switch src.Kind() {
   397  			case types.TINT64, types.TUINT64:
   398  				return src.Kind(), dst.Kind()
   399  			case types.TUINT32, types.TUINT, types.TUINTPTR:
   400  				return types.TUINT32, types.TFLOAT64
   401  			}
   402  		}
   403  	}
   404  	return types.Txxx, types.Txxx
   405  }
   406  
   407  func soleComponent(init *ir.Nodes, n ir.Node) ir.Node {
   408  	if n.Type().SoleComponent() == nil {
   409  		return n
   410  	}
   411  	// Keep in sync with cmd/compile/internal/types/type.go:Type.SoleComponent.
   412  	for {
   413  		switch {
   414  		case n.Type().IsStruct():
   415  			if n.Type().Field(0).Sym.IsBlank() {
   416  				// Treat blank fields as the zero value as the Go language requires.
   417  				n = typecheck.Temp(n.Type().Field(0).Type)
   418  				appendWalkStmt(init, ir.NewAssignStmt(base.Pos, n, nil))
   419  				continue
   420  			}
   421  			n = typecheck.Expr(ir.NewSelectorExpr(n.Pos(), ir.OXDOT, n, n.Type().Field(0).Sym))
   422  		case n.Type().IsArray():
   423  			n = typecheck.Expr(ir.NewIndexExpr(n.Pos(), n, ir.NewInt(0)))
   424  		default:
   425  			return n
   426  		}
   427  	}
   428  }
   429  
   430  // byteindex converts n, which is byte-sized, to an int used to index into an array.
   431  // We cannot use conv, because we allow converting bool to int here,
   432  // which is forbidden in user code.
   433  func byteindex(n ir.Node) ir.Node {
   434  	// We cannot convert from bool to int directly.
   435  	// While converting from int8 to int is possible, it would yield
   436  	// the wrong result for negative values.
   437  	// Reinterpreting the value as an unsigned byte solves both cases.
   438  	if !types.Identical(n.Type(), types.Types[types.TUINT8]) {
   439  		n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
   440  		n.SetType(types.Types[types.TUINT8])
   441  		n.SetTypecheck(1)
   442  	}
   443  	n = ir.NewConvExpr(base.Pos, ir.OCONV, nil, n)
   444  	n.SetType(types.Types[types.TINT])
   445  	n.SetTypecheck(1)
   446  	return n
   447  }
   448  
   449  func walkCheckPtrArithmetic(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
   450  	// Calling cheapExpr(n, init) below leads to a recursive call to
   451  	// walkExpr, which leads us back here again. Use n.Checkptr to
   452  	// prevent infinite loops.
   453  	if n.CheckPtr() {
   454  		return n
   455  	}
   456  	n.SetCheckPtr(true)
   457  	defer n.SetCheckPtr(false)
   458  
   459  	// TODO(mdempsky): Make stricter. We only need to exempt
   460  	// reflect.Value.Pointer and reflect.Value.UnsafeAddr.
   461  	switch n.X.Op() {
   462  	case ir.OCALLMETH:
   463  		base.FatalfAt(n.X.Pos(), "OCALLMETH missed by typecheck")
   464  	case ir.OCALLFUNC, ir.OCALLINTER:
   465  		return n
   466  	}
   467  
   468  	if n.X.Op() == ir.ODOTPTR && ir.IsReflectHeaderDataField(n.X) {
   469  		return n
   470  	}
   471  
   472  	// Find original unsafe.Pointer operands involved in this
   473  	// arithmetic expression.
   474  	//
   475  	// "It is valid both to add and to subtract offsets from a
   476  	// pointer in this way. It is also valid to use &^ to round
   477  	// pointers, usually for alignment."
   478  	var originals []ir.Node
   479  	var walk func(n ir.Node)
   480  	walk = func(n ir.Node) {
   481  		switch n.Op() {
   482  		case ir.OADD:
   483  			n := n.(*ir.BinaryExpr)
   484  			walk(n.X)
   485  			walk(n.Y)
   486  		case ir.OSUB, ir.OANDNOT:
   487  			n := n.(*ir.BinaryExpr)
   488  			walk(n.X)
   489  		case ir.OCONVNOP:
   490  			n := n.(*ir.ConvExpr)
   491  			if n.X.Type().IsUnsafePtr() {
   492  				n.X = cheapExpr(n.X, init)
   493  				originals = append(originals, typecheck.ConvNop(n.X, types.Types[types.TUNSAFEPTR]))
   494  			}
   495  		}
   496  	}
   497  	walk(n.X)
   498  
   499  	cheap := cheapExpr(n, init)
   500  
   501  	slice := typecheck.MakeDotArgs(base.Pos, types.NewSlice(types.Types[types.TUNSAFEPTR]), originals)
   502  	slice.SetEsc(ir.EscNone)
   503  
   504  	init.Append(mkcall("checkptrArithmetic", nil, init, typecheck.ConvNop(cheap, types.Types[types.TUNSAFEPTR]), slice))
   505  	// TODO(khr): Mark backing store of slice as dead. This will allow us to reuse
   506  	// the backing store for multiple calls to checkptrArithmetic.
   507  
   508  	return cheap
   509  }
   510  
   511  // walkSliceToArray walks an OSLICE2ARR expression.
   512  func walkSliceToArray(n *ir.ConvExpr, init *ir.Nodes) ir.Node {
   513  	// Replace T(x) with *(*T)(x).
   514  	conv := typecheck.Expr(ir.NewConvExpr(base.Pos, ir.OCONV, types.NewPtr(n.Type()), n.X)).(*ir.ConvExpr)
   515  	deref := typecheck.Expr(ir.NewStarExpr(base.Pos, conv)).(*ir.StarExpr)
   516  
   517  	// The OSLICE2ARRPTR conversion handles checking the slice length,
   518  	// so the dereference can't fail.
   519  	//
   520  	// However, this is more than just an optimization: if T is a
   521  	// zero-length array, then x (and thus (*T)(x)) can be nil, but T(x)
   522  	// should *not* panic. So suppressing the nil check here is
   523  	// necessary for correctness in that case.
   524  	deref.SetBounded(true)
   525  
   526  	return walkExpr(deref, init)
   527  }