github.com/bir3/gocompiler@v0.3.205/src/cmd/link/internal/ld/deadcode.go (about) 1 // Copyright 2019 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ld 6 7 import ( 8 "github.com/bir3/gocompiler/src/cmd/internal/goobj" 9 "github.com/bir3/gocompiler/src/cmd/internal/objabi" 10 "github.com/bir3/gocompiler/src/cmd/internal/sys" 11 "github.com/bir3/gocompiler/src/cmd/link/internal/loader" 12 "github.com/bir3/gocompiler/src/cmd/link/internal/sym" 13 "fmt" 14 "github.com/bir3/gocompiler/src/internal/buildcfg" 15 "unicode" 16 ) 17 18 var _ = fmt.Print 19 20 type deadcodePass struct { 21 ctxt *Link 22 ldr *loader.Loader 23 wq heap // work queue, using min-heap for better locality 24 25 ifaceMethod map[methodsig]bool // methods called from reached interface call sites 26 genericIfaceMethod map[string]bool // names of methods called from reached generic interface call sites 27 markableMethods []methodref // methods of reached types 28 reflectSeen bool // whether we have seen a reflect method call 29 dynlink bool 30 31 methodsigstmp []methodsig // scratch buffer for decoding method signatures 32 } 33 34 func (d *deadcodePass) init() { 35 d.ldr.InitReachable() 36 d.ifaceMethod = make(map[methodsig]bool) 37 d.genericIfaceMethod = make(map[string]bool) 38 if buildcfg.Experiment.FieldTrack { 39 d.ldr.Reachparent = make([]loader.Sym, d.ldr.NSym()) 40 } 41 d.dynlink = d.ctxt.DynlinkingGo() 42 43 if d.ctxt.BuildMode == BuildModeShared { 44 // Mark all symbols defined in this library as reachable when 45 // building a shared library. 46 n := d.ldr.NDef() 47 for i := 1; i < n; i++ { 48 s := loader.Sym(i) 49 d.mark(s, 0) 50 } 51 return 52 } 53 54 var names []string 55 56 // In a normal binary, start at main.main and the init 57 // functions and mark what is reachable from there. 58 if d.ctxt.linkShared && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) { 59 names = append(names, "main.main", "main..inittask") 60 } else { 61 // The external linker refers main symbol directly. 62 if d.ctxt.LinkMode == LinkExternal && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) { 63 if d.ctxt.HeadType == objabi.Hwindows && d.ctxt.Arch.Family == sys.I386 { 64 *flagEntrySymbol = "_main" 65 } else { 66 *flagEntrySymbol = "main" 67 } 68 } 69 names = append(names, *flagEntrySymbol) 70 } 71 // runtime.unreachableMethod is a function that will throw if called. 72 // We redirect unreachable methods to it. 73 names = append(names, "runtime.unreachableMethod") 74 if d.ctxt.BuildMode == BuildModePlugin { 75 names = append(names, objabi.PathToPrefix(*flagPluginPath)+"..inittask", objabi.PathToPrefix(*flagPluginPath)+".main", "go:plugin.tabs") 76 77 // We don't keep the go.plugin.exports symbol, 78 // but we do keep the symbols it refers to. 79 exportsIdx := d.ldr.Lookup("go:plugin.exports", 0) 80 if exportsIdx != 0 { 81 relocs := d.ldr.Relocs(exportsIdx) 82 for i := 0; i < relocs.Count(); i++ { 83 d.mark(relocs.At(i).Sym(), 0) 84 } 85 } 86 } 87 88 if d.ctxt.Debugvlog > 1 { 89 d.ctxt.Logf("deadcode start names: %v\n", names) 90 } 91 92 for _, name := range names { 93 // Mark symbol as a data/ABI0 symbol. 94 d.mark(d.ldr.Lookup(name, 0), 0) 95 if abiInternalVer != 0 { 96 // Also mark any Go functions (internal ABI). 97 d.mark(d.ldr.Lookup(name, abiInternalVer), 0) 98 } 99 } 100 101 // All dynamic exports are roots. 102 for _, s := range d.ctxt.dynexp { 103 if d.ctxt.Debugvlog > 1 { 104 d.ctxt.Logf("deadcode start dynexp: %s<%d>\n", d.ldr.SymName(s), d.ldr.SymVersion(s)) 105 } 106 d.mark(s, 0) 107 } 108 } 109 110 func (d *deadcodePass) flood() { 111 var methods []methodref 112 for !d.wq.empty() { 113 symIdx := d.wq.pop() 114 115 d.reflectSeen = d.reflectSeen || d.ldr.IsReflectMethod(symIdx) 116 117 isgotype := d.ldr.IsGoType(symIdx) 118 relocs := d.ldr.Relocs(symIdx) 119 var usedInIface bool 120 121 if isgotype { 122 if d.dynlink { 123 // When dynamic linking, a type may be passed across DSO 124 // boundary and get converted to interface at the other side. 125 d.ldr.SetAttrUsedInIface(symIdx, true) 126 } 127 usedInIface = d.ldr.AttrUsedInIface(symIdx) 128 } 129 130 methods = methods[:0] 131 for i := 0; i < relocs.Count(); i++ { 132 r := relocs.At(i) 133 // When build with "-linkshared", we can't tell if the interface 134 // method in itab will be used or not. Ignore the weak attribute. 135 if r.Weak() && !(d.ctxt.linkShared && d.ldr.IsItab(symIdx)) { 136 continue 137 } 138 t := r.Type() 139 switch t { 140 case objabi.R_METHODOFF: 141 if i+2 >= relocs.Count() { 142 panic("expect three consecutive R_METHODOFF relocs") 143 } 144 if usedInIface { 145 methods = append(methods, methodref{src: symIdx, r: i}) 146 // The method descriptor is itself a type descriptor, and 147 // it can be used to reach other types, e.g. by using 148 // reflect.Type.Method(i).Type.In(j). We need to traverse 149 // its child types with UsedInIface set. (See also the 150 // comment below.) 151 rs := r.Sym() 152 if !d.ldr.AttrUsedInIface(rs) { 153 d.ldr.SetAttrUsedInIface(rs, true) 154 if d.ldr.AttrReachable(rs) { 155 d.ldr.SetAttrReachable(rs, false) 156 d.mark(rs, symIdx) 157 } 158 } 159 } 160 i += 2 161 continue 162 case objabi.R_USETYPE: 163 // type symbol used for DWARF. we need to load the symbol but it may not 164 // be otherwise reachable in the program. 165 // do nothing for now as we still load all type symbols. 166 continue 167 case objabi.R_USEIFACE: 168 // R_USEIFACE is a marker relocation that tells the linker the type is 169 // converted to an interface, i.e. should have UsedInIface set. See the 170 // comment below for why we need to unset the Reachable bit and re-mark it. 171 rs := r.Sym() 172 if !d.ldr.AttrUsedInIface(rs) { 173 d.ldr.SetAttrUsedInIface(rs, true) 174 if d.ldr.AttrReachable(rs) { 175 d.ldr.SetAttrReachable(rs, false) 176 d.mark(rs, symIdx) 177 } 178 } 179 continue 180 case objabi.R_USEIFACEMETHOD: 181 // R_USEIFACEMETHOD is a marker relocation that marks an interface 182 // method as used. 183 rs := r.Sym() 184 if d.ctxt.linkShared && (d.ldr.SymType(rs) == sym.SDYNIMPORT || d.ldr.SymType(rs) == sym.Sxxx) { 185 // Don't decode symbol from shared library (we'll mark all exported methods anyway). 186 // We check for both SDYNIMPORT and Sxxx because name-mangled symbols haven't 187 // been resolved at this point. 188 continue 189 } 190 m := d.decodeIfaceMethod(d.ldr, d.ctxt.Arch, rs, r.Add()) 191 if d.ctxt.Debugvlog > 1 { 192 d.ctxt.Logf("reached iface method: %v\n", m) 193 } 194 d.ifaceMethod[m] = true 195 continue 196 case objabi.R_USEGENERICIFACEMETHOD: 197 name := d.decodeGenericIfaceMethod(d.ldr, r.Sym()) 198 if d.ctxt.Debugvlog > 1 { 199 d.ctxt.Logf("reached generic iface method: %s\n", name) 200 } 201 d.genericIfaceMethod[name] = true 202 continue // don't mark referenced symbol - it is not needed in the final binary. 203 } 204 rs := r.Sym() 205 if isgotype && usedInIface && d.ldr.IsGoType(rs) && !d.ldr.AttrUsedInIface(rs) { 206 // If a type is converted to an interface, it is possible to obtain an 207 // interface with a "child" type of it using reflection (e.g. obtain an 208 // interface of T from []chan T). We need to traverse its "child" types 209 // with UsedInIface attribute set. 210 // When visiting the child type (chan T in the example above), it will 211 // have UsedInIface set, so it in turn will mark and (re)visit its children 212 // (e.g. T above). 213 // We unset the reachable bit here, so if the child type is already visited, 214 // it will be visited again. 215 // Note that a type symbol can be visited at most twice, one without 216 // UsedInIface and one with. So termination is still guaranteed. 217 d.ldr.SetAttrUsedInIface(rs, true) 218 d.ldr.SetAttrReachable(rs, false) 219 } 220 d.mark(rs, symIdx) 221 } 222 naux := d.ldr.NAux(symIdx) 223 for i := 0; i < naux; i++ { 224 a := d.ldr.Aux(symIdx, i) 225 if a.Type() == goobj.AuxGotype { 226 // A symbol being reachable doesn't imply we need its 227 // type descriptor. Don't mark it. 228 continue 229 } 230 d.mark(a.Sym(), symIdx) 231 } 232 // Some host object symbols have an outer object, which acts like a 233 // "carrier" symbol, or it holds all the symbols for a particular 234 // section. We need to mark all "referenced" symbols from that carrier, 235 // so we make sure we're pulling in all outer symbols, and their sub 236 // symbols. This is not ideal, and these carrier/section symbols could 237 // be removed. 238 if d.ldr.IsExternal(symIdx) { 239 d.mark(d.ldr.OuterSym(symIdx), symIdx) 240 d.mark(d.ldr.SubSym(symIdx), symIdx) 241 } 242 243 if len(methods) != 0 { 244 if !isgotype { 245 panic("method found on non-type symbol") 246 } 247 // Decode runtime type information for type methods 248 // to help work out which methods can be called 249 // dynamically via interfaces. 250 methodsigs := d.decodetypeMethods(d.ldr, d.ctxt.Arch, symIdx, &relocs) 251 if len(methods) != len(methodsigs) { 252 panic(fmt.Sprintf("%q has %d method relocations for %d methods", d.ldr.SymName(symIdx), len(methods), len(methodsigs))) 253 } 254 for i, m := range methodsigs { 255 methods[i].m = m 256 if d.ctxt.Debugvlog > 1 { 257 d.ctxt.Logf("markable method: %v of sym %v %s\n", m, symIdx, d.ldr.SymName(symIdx)) 258 } 259 } 260 d.markableMethods = append(d.markableMethods, methods...) 261 } 262 } 263 } 264 265 func (d *deadcodePass) mark(symIdx, parent loader.Sym) { 266 if symIdx != 0 && !d.ldr.AttrReachable(symIdx) { 267 d.wq.push(symIdx) 268 d.ldr.SetAttrReachable(symIdx, true) 269 if buildcfg.Experiment.FieldTrack && d.ldr.Reachparent[symIdx] == 0 { 270 d.ldr.Reachparent[symIdx] = parent 271 } 272 if *flagDumpDep { 273 to := d.ldr.SymName(symIdx) 274 if to != "" { 275 if d.ldr.AttrUsedInIface(symIdx) { 276 to += " <UsedInIface>" 277 } 278 from := "_" 279 if parent != 0 { 280 from = d.ldr.SymName(parent) 281 if d.ldr.AttrUsedInIface(parent) { 282 from += " <UsedInIface>" 283 } 284 } 285 fmt.Printf("%s -> %s\n", from, to) 286 } 287 } 288 } 289 } 290 291 func (d *deadcodePass) markMethod(m methodref) { 292 relocs := d.ldr.Relocs(m.src) 293 d.mark(relocs.At(m.r).Sym(), m.src) 294 d.mark(relocs.At(m.r+1).Sym(), m.src) 295 d.mark(relocs.At(m.r+2).Sym(), m.src) 296 } 297 298 // deadcode marks all reachable symbols. 299 // 300 // The basis of the dead code elimination is a flood fill of symbols, 301 // following their relocations, beginning at *flagEntrySymbol. 302 // 303 // This flood fill is wrapped in logic for pruning unused methods. 304 // All methods are mentioned by relocations on their receiver's *rtype. 305 // These relocations are specially defined as R_METHODOFF by the compiler 306 // so we can detect and manipulated them here. 307 // 308 // There are three ways a method of a reachable type can be invoked: 309 // 310 // 1. direct call 311 // 2. through a reachable interface type 312 // 3. reflect.Value.Method (or MethodByName), or reflect.Type.Method 313 // (or MethodByName) 314 // 315 // The first case is handled by the flood fill, a directly called method 316 // is marked as reachable. 317 // 318 // The second case is handled by decomposing all reachable interface 319 // types into method signatures. Each encountered method is compared 320 // against the interface method signatures, if it matches it is marked 321 // as reachable. This is extremely conservative, but easy and correct. 322 // 323 // The third case is handled by looking to see if any of: 324 // - reflect.Value.Method or MethodByName is reachable 325 // - reflect.Type.Method or MethodByName is called (through the 326 // REFLECTMETHOD attribute marked by the compiler). 327 // 328 // If any of these happen, all bets are off and all exported methods 329 // of reachable types are marked reachable. 330 // 331 // Any unreached text symbols are removed from ctxt.Textp. 332 func deadcode(ctxt *Link) { 333 ldr := ctxt.loader 334 d := deadcodePass{ctxt: ctxt, ldr: ldr} 335 d.init() 336 d.flood() 337 338 methSym := ldr.Lookup("reflect.Value.Method", abiInternalVer) 339 methByNameSym := ldr.Lookup("reflect.Value.MethodByName", abiInternalVer) 340 341 if ctxt.DynlinkingGo() { 342 // Exported methods may satisfy interfaces we don't know 343 // about yet when dynamically linking. 344 d.reflectSeen = true 345 } 346 347 for { 348 // Methods might be called via reflection. Give up on 349 // static analysis, mark all exported methods of 350 // all reachable types as reachable. 351 d.reflectSeen = d.reflectSeen || (methSym != 0 && ldr.AttrReachable(methSym)) || (methByNameSym != 0 && ldr.AttrReachable(methByNameSym)) 352 353 // Mark all methods that could satisfy a discovered 354 // interface as reachable. We recheck old marked interfaces 355 // as new types (with new methods) may have been discovered 356 // in the last pass. 357 rem := d.markableMethods[:0] 358 for _, m := range d.markableMethods { 359 if (d.reflectSeen && (m.isExported() || d.dynlink)) || d.ifaceMethod[m.m] || d.genericIfaceMethod[m.m.name] { 360 d.markMethod(m) 361 } else { 362 rem = append(rem, m) 363 } 364 } 365 d.markableMethods = rem 366 367 if d.wq.empty() { 368 // No new work was discovered. Done. 369 break 370 } 371 d.flood() 372 } 373 } 374 375 // methodsig is a typed method signature (name + type). 376 type methodsig struct { 377 name string 378 typ loader.Sym // type descriptor symbol of the function 379 } 380 381 // methodref holds the relocations from a receiver type symbol to its 382 // method. There are three relocations, one for each of the fields in 383 // the reflect.method struct: mtyp, ifn, and tfn. 384 type methodref struct { 385 m methodsig 386 src loader.Sym // receiver type symbol 387 r int // the index of R_METHODOFF relocations 388 } 389 390 func (m methodref) isExported() bool { 391 for _, r := range m.m.name { 392 return unicode.IsUpper(r) 393 } 394 panic("methodref has no signature") 395 } 396 397 // decodeMethodSig decodes an array of method signature information. 398 // Each element of the array is size bytes. The first 4 bytes is a 399 // nameOff for the method name, and the next 4 bytes is a typeOff for 400 // the function type. 401 // 402 // Conveniently this is the layout of both runtime.method and runtime.imethod. 403 func (d *deadcodePass) decodeMethodSig(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs, off, size, count int) []methodsig { 404 if cap(d.methodsigstmp) < count { 405 d.methodsigstmp = append(d.methodsigstmp[:0], make([]methodsig, count)...) 406 } 407 var methods = d.methodsigstmp[:count] 408 for i := 0; i < count; i++ { 409 methods[i].name = decodetypeName(ldr, symIdx, relocs, off) 410 methods[i].typ = decodeRelocSym(ldr, symIdx, relocs, int32(off+4)) 411 off += size 412 } 413 return methods 414 } 415 416 // Decode the method of interface type symbol symIdx at offset off. 417 func (d *deadcodePass) decodeIfaceMethod(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, off int64) methodsig { 418 p := ldr.Data(symIdx) 419 if p == nil { 420 panic(fmt.Sprintf("missing symbol %q", ldr.SymName(symIdx))) 421 } 422 if decodetypeKind(arch, p)&kindMask != kindInterface { 423 panic(fmt.Sprintf("symbol %q is not an interface", ldr.SymName(symIdx))) 424 } 425 relocs := ldr.Relocs(symIdx) 426 var m methodsig 427 m.name = decodetypeName(ldr, symIdx, &relocs, int(off)) 428 m.typ = decodeRelocSym(ldr, symIdx, &relocs, int32(off+4)) 429 return m 430 } 431 432 // Decode the method name stored in symbol symIdx. The symbol should contain just the bytes of a method name. 433 func (d *deadcodePass) decodeGenericIfaceMethod(ldr *loader.Loader, symIdx loader.Sym) string { 434 return string(ldr.Data(symIdx)) 435 } 436 437 func (d *deadcodePass) decodetypeMethods(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs) []methodsig { 438 p := ldr.Data(symIdx) 439 if !decodetypeHasUncommon(arch, p) { 440 panic(fmt.Sprintf("no methods on %q", ldr.SymName(symIdx))) 441 } 442 off := commonsize(arch) // reflect.rtype 443 switch decodetypeKind(arch, p) & kindMask { 444 case kindStruct: // reflect.structType 445 off += 4 * arch.PtrSize 446 case kindPtr: // reflect.ptrType 447 off += arch.PtrSize 448 case kindFunc: // reflect.funcType 449 off += arch.PtrSize // 4 bytes, pointer aligned 450 case kindSlice: // reflect.sliceType 451 off += arch.PtrSize 452 case kindArray: // reflect.arrayType 453 off += 3 * arch.PtrSize 454 case kindChan: // reflect.chanType 455 off += 2 * arch.PtrSize 456 case kindMap: // reflect.mapType 457 off += 4*arch.PtrSize + 8 458 case kindInterface: // reflect.interfaceType 459 off += 3 * arch.PtrSize 460 default: 461 // just Sizeof(rtype) 462 } 463 464 mcount := int(decodeInuxi(arch, p[off+4:], 2)) 465 moff := int(decodeInuxi(arch, p[off+4+2+2:], 4)) 466 off += moff // offset to array of reflect.method values 467 const sizeofMethod = 4 * 4 // sizeof reflect.method in program 468 return d.decodeMethodSig(ldr, arch, symIdx, relocs, off, sizeofMethod, mcount) 469 }