github.com/bir3/gocompiler@v0.3.205/src/cmd/link/internal/ld/pcln.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ld
     6  
     7  import (
     8  	"github.com/bir3/gocompiler/src/cmd/internal/goobj"
     9  	"github.com/bir3/gocompiler/src/cmd/internal/objabi"
    10  	"github.com/bir3/gocompiler/src/cmd/internal/sys"
    11  	"github.com/bir3/gocompiler/src/cmd/link/internal/loader"
    12  	"github.com/bir3/gocompiler/src/cmd/link/internal/sym"
    13  	"fmt"
    14  	"github.com/bir3/gocompiler/src/internal/buildcfg"
    15  	"os"
    16  	"path/filepath"
    17  	"strings"
    18  )
    19  
    20  const funcSize = 11 * 4 // funcSize is the size of the _func object in runtime/runtime2.go
    21  
    22  // pclntab holds the state needed for pclntab generation.
    23  type pclntab struct {
    24  	// The first and last functions found.
    25  	firstFunc, lastFunc loader.Sym
    26  
    27  	// Running total size of pclntab.
    28  	size int64
    29  
    30  	// runtime.pclntab's symbols
    31  	carrier     loader.Sym
    32  	pclntab     loader.Sym
    33  	pcheader    loader.Sym
    34  	funcnametab loader.Sym
    35  	findfunctab loader.Sym
    36  	cutab       loader.Sym
    37  	filetab     loader.Sym
    38  	pctab       loader.Sym
    39  
    40  	// The number of functions + number of TEXT sections - 1. This is such an
    41  	// unexpected value because platforms that have more than one TEXT section
    42  	// get a dummy function inserted between because the external linker can place
    43  	// functions in those areas. We mark those areas as not covered by the Go
    44  	// runtime.
    45  	//
    46  	// On most platforms this is the number of reachable functions.
    47  	nfunc int32
    48  
    49  	// The number of filenames in runtime.filetab.
    50  	nfiles uint32
    51  }
    52  
    53  // addGeneratedSym adds a generator symbol to pclntab, returning the new Sym.
    54  // It is the caller's responsibility to save the symbol in state.
    55  func (state *pclntab) addGeneratedSym(ctxt *Link, name string, size int64, f generatorFunc) loader.Sym {
    56  	size = Rnd(size, int64(ctxt.Arch.PtrSize))
    57  	state.size += size
    58  	s := ctxt.createGeneratorSymbol(name, 0, sym.SPCLNTAB, size, f)
    59  	ctxt.loader.SetAttrReachable(s, true)
    60  	ctxt.loader.SetCarrierSym(s, state.carrier)
    61  	ctxt.loader.SetAttrNotInSymbolTable(s, true)
    62  	return s
    63  }
    64  
    65  // makePclntab makes a pclntab object, and assembles all the compilation units
    66  // we'll need to write pclntab. Returns the pclntab structure, a slice of the
    67  // CompilationUnits we need, and a slice of the function symbols we need to
    68  // generate pclntab.
    69  func makePclntab(ctxt *Link, container loader.Bitmap) (*pclntab, []*sym.CompilationUnit, []loader.Sym) {
    70  	ldr := ctxt.loader
    71  	state := new(pclntab)
    72  
    73  	// Gather some basic stats and info.
    74  	seenCUs := make(map[*sym.CompilationUnit]struct{})
    75  	compUnits := []*sym.CompilationUnit{}
    76  	funcs := []loader.Sym{}
    77  
    78  	for _, s := range ctxt.Textp {
    79  		if !emitPcln(ctxt, s, container) {
    80  			continue
    81  		}
    82  		funcs = append(funcs, s)
    83  		state.nfunc++
    84  		if state.firstFunc == 0 {
    85  			state.firstFunc = s
    86  		}
    87  		state.lastFunc = s
    88  
    89  		// We need to keep track of all compilation units we see. Some symbols
    90  		// (eg, go.buildid, _cgoexp_, etc) won't have a compilation unit.
    91  		cu := ldr.SymUnit(s)
    92  		if _, ok := seenCUs[cu]; cu != nil && !ok {
    93  			seenCUs[cu] = struct{}{}
    94  			cu.PclnIndex = len(compUnits)
    95  			compUnits = append(compUnits, cu)
    96  		}
    97  	}
    98  	return state, compUnits, funcs
    99  }
   100  
   101  func emitPcln(ctxt *Link, s loader.Sym, container loader.Bitmap) bool {
   102  	// We want to generate func table entries only for the "lowest
   103  	// level" symbols, not containers of subsymbols.
   104  	return !container.Has(s)
   105  }
   106  
   107  func computeDeferReturn(ctxt *Link, deferReturnSym, s loader.Sym) uint32 {
   108  	ldr := ctxt.loader
   109  	target := ctxt.Target
   110  	deferreturn := uint32(0)
   111  	lastWasmAddr := uint32(0)
   112  
   113  	relocs := ldr.Relocs(s)
   114  	for ri := 0; ri < relocs.Count(); ri++ {
   115  		r := relocs.At(ri)
   116  		if target.IsWasm() && r.Type() == objabi.R_ADDR {
   117  			// wasm/ssa.go generates an ARESUMEPOINT just
   118  			// before the deferreturn call. The "PC" of
   119  			// the deferreturn call is stored in the
   120  			// R_ADDR relocation on the ARESUMEPOINT.
   121  			lastWasmAddr = uint32(r.Add())
   122  		}
   123  		if r.Type().IsDirectCall() && (r.Sym() == deferReturnSym || ldr.IsDeferReturnTramp(r.Sym())) {
   124  			if target.IsWasm() {
   125  				deferreturn = lastWasmAddr - 1
   126  			} else {
   127  				// Note: the relocation target is in the call instruction, but
   128  				// is not necessarily the whole instruction (for instance, on
   129  				// x86 the relocation applies to bytes [1:5] of the 5 byte call
   130  				// instruction).
   131  				deferreturn = uint32(r.Off())
   132  				switch target.Arch.Family {
   133  				case sys.AMD64, sys.I386:
   134  					deferreturn--
   135  				case sys.ARM, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64:
   136  					// no change
   137  				case sys.S390X:
   138  					deferreturn -= 2
   139  				default:
   140  					panic(fmt.Sprint("Unhandled architecture:", target.Arch.Family))
   141  				}
   142  			}
   143  			break // only need one
   144  		}
   145  	}
   146  	return deferreturn
   147  }
   148  
   149  // genInlTreeSym generates the InlTree sym for a function with the
   150  // specified FuncInfo.
   151  func genInlTreeSym(ctxt *Link, cu *sym.CompilationUnit, fi loader.FuncInfo, arch *sys.Arch, nameOffsets map[loader.Sym]uint32) loader.Sym {
   152  	ldr := ctxt.loader
   153  	its := ldr.CreateExtSym("", 0)
   154  	inlTreeSym := ldr.MakeSymbolUpdater(its)
   155  	// Note: the generated symbol is given a type of sym.SGOFUNC, as a
   156  	// signal to the symtab() phase that it needs to be grouped in with
   157  	// other similar symbols (gcdata, etc); the dodata() phase will
   158  	// eventually switch the type back to SRODATA.
   159  	inlTreeSym.SetType(sym.SGOFUNC)
   160  	ldr.SetAttrReachable(its, true)
   161  	ldr.SetSymAlign(its, 4) // it has 32-bit fields
   162  	ninl := fi.NumInlTree()
   163  	for i := 0; i < int(ninl); i++ {
   164  		call := fi.InlTree(i)
   165  		nameOff, ok := nameOffsets[call.Func]
   166  		if !ok {
   167  			panic("couldn't find function name offset")
   168  		}
   169  
   170  		inlFunc := ldr.FuncInfo(call.Func)
   171  		var funcID objabi.FuncID
   172  		startLine := int32(0)
   173  		if inlFunc.Valid() {
   174  			funcID = inlFunc.FuncID()
   175  			startLine = inlFunc.StartLine()
   176  		} else if !ctxt.linkShared {
   177  			// Inlined functions are always Go functions, and thus
   178  			// must have FuncInfo.
   179  			//
   180  			// Unfortunately, with -linkshared, the inlined
   181  			// function may be external symbols (from another
   182  			// shared library), and we don't load FuncInfo from the
   183  			// shared library. We will report potentially incorrect
   184  			// FuncID in this case. See https://go.dev/issue/55954.
   185  			panic(fmt.Sprintf("inlined function %s missing func info", ldr.SymName(call.Func)))
   186  		}
   187  
   188  		// Construct runtime.inlinedCall value.
   189  		const size = 16
   190  		inlTreeSym.SetUint8(arch, int64(i*size+0), uint8(funcID))
   191  		// Bytes 1-3 are unused.
   192  		inlTreeSym.SetUint32(arch, int64(i*size+4), uint32(nameOff))
   193  		inlTreeSym.SetUint32(arch, int64(i*size+8), uint32(call.ParentPC))
   194  		inlTreeSym.SetUint32(arch, int64(i*size+12), uint32(startLine))
   195  	}
   196  	return its
   197  }
   198  
   199  // makeInlSyms returns a map of loader.Sym that are created inlSyms.
   200  func makeInlSyms(ctxt *Link, funcs []loader.Sym, nameOffsets map[loader.Sym]uint32) map[loader.Sym]loader.Sym {
   201  	ldr := ctxt.loader
   202  	// Create the inline symbols we need.
   203  	inlSyms := make(map[loader.Sym]loader.Sym)
   204  	for _, s := range funcs {
   205  		if fi := ldr.FuncInfo(s); fi.Valid() {
   206  			fi.Preload()
   207  			if fi.NumInlTree() > 0 {
   208  				inlSyms[s] = genInlTreeSym(ctxt, ldr.SymUnit(s), fi, ctxt.Arch, nameOffsets)
   209  			}
   210  		}
   211  	}
   212  	return inlSyms
   213  }
   214  
   215  // generatePCHeader creates the runtime.pcheader symbol, setting it up as a
   216  // generator to fill in its data later.
   217  func (state *pclntab) generatePCHeader(ctxt *Link) {
   218  	ldr := ctxt.loader
   219  	textStartOff := int64(8 + 2*ctxt.Arch.PtrSize)
   220  	size := int64(8 + 8*ctxt.Arch.PtrSize)
   221  	writeHeader := func(ctxt *Link, s loader.Sym) {
   222  		header := ctxt.loader.MakeSymbolUpdater(s)
   223  
   224  		writeSymOffset := func(off int64, ws loader.Sym) int64 {
   225  			diff := ldr.SymValue(ws) - ldr.SymValue(s)
   226  			if diff <= 0 {
   227  				name := ldr.SymName(ws)
   228  				panic(fmt.Sprintf("expected runtime.pcheader(%x) to be placed before %s(%x)", ldr.SymValue(s), name, ldr.SymValue(ws)))
   229  			}
   230  			return header.SetUintptr(ctxt.Arch, off, uintptr(diff))
   231  		}
   232  
   233  		// Write header.
   234  		// Keep in sync with runtime/symtab.go:pcHeader and package debug/gosym.
   235  		header.SetUint32(ctxt.Arch, 0, 0xfffffff1)
   236  		header.SetUint8(ctxt.Arch, 6, uint8(ctxt.Arch.MinLC))
   237  		header.SetUint8(ctxt.Arch, 7, uint8(ctxt.Arch.PtrSize))
   238  		off := header.SetUint(ctxt.Arch, 8, uint64(state.nfunc))
   239  		off = header.SetUint(ctxt.Arch, off, uint64(state.nfiles))
   240  		if off != textStartOff {
   241  			panic(fmt.Sprintf("pcHeader textStartOff: %d != %d", off, textStartOff))
   242  		}
   243  		off += int64(ctxt.Arch.PtrSize) // skip runtimeText relocation
   244  		off = writeSymOffset(off, state.funcnametab)
   245  		off = writeSymOffset(off, state.cutab)
   246  		off = writeSymOffset(off, state.filetab)
   247  		off = writeSymOffset(off, state.pctab)
   248  		off = writeSymOffset(off, state.pclntab)
   249  		if off != size {
   250  			panic(fmt.Sprintf("pcHeader size: %d != %d", off, size))
   251  		}
   252  	}
   253  
   254  	state.pcheader = state.addGeneratedSym(ctxt, "runtime.pcheader", size, writeHeader)
   255  	// Create the runtimeText relocation.
   256  	sb := ldr.MakeSymbolUpdater(state.pcheader)
   257  	sb.SetAddr(ctxt.Arch, textStartOff, ldr.Lookup("runtime.text", 0))
   258  }
   259  
   260  // walkFuncs iterates over the funcs, calling a function for each unique
   261  // function and inlined function.
   262  func walkFuncs(ctxt *Link, funcs []loader.Sym, f func(loader.Sym)) {
   263  	ldr := ctxt.loader
   264  	seen := make(map[loader.Sym]struct{})
   265  	for _, s := range funcs {
   266  		if _, ok := seen[s]; !ok {
   267  			f(s)
   268  			seen[s] = struct{}{}
   269  		}
   270  
   271  		fi := ldr.FuncInfo(s)
   272  		if !fi.Valid() {
   273  			continue
   274  		}
   275  		fi.Preload()
   276  		for i, ni := 0, fi.NumInlTree(); i < int(ni); i++ {
   277  			call := fi.InlTree(i).Func
   278  			if _, ok := seen[call]; !ok {
   279  				f(call)
   280  				seen[call] = struct{}{}
   281  			}
   282  		}
   283  	}
   284  }
   285  
   286  // generateFuncnametab creates the function name table. Returns a map of
   287  // func symbol to the name offset in runtime.funcnamtab.
   288  func (state *pclntab) generateFuncnametab(ctxt *Link, funcs []loader.Sym) map[loader.Sym]uint32 {
   289  	nameOffsets := make(map[loader.Sym]uint32, state.nfunc)
   290  
   291  	// The name used by the runtime is the concatenation of the 3 returned strings.
   292  	// For regular functions, only one returned string is nonempty.
   293  	// For generic functions, we use three parts so that we can print everything
   294  	// within the outermost "[]" as "...".
   295  	nameParts := func(name string) (string, string, string) {
   296  		i := strings.IndexByte(name, '[')
   297  		if i < 0 {
   298  			return name, "", ""
   299  		}
   300  		// TODO: use LastIndexByte once the bootstrap compiler is >= Go 1.5.
   301  		j := len(name) - 1
   302  		for j > i && name[j] != ']' {
   303  			j--
   304  		}
   305  		if j <= i {
   306  			return name, "", ""
   307  		}
   308  		return name[:i], "[...]", name[j+1:]
   309  	}
   310  
   311  	// Write the null terminated strings.
   312  	writeFuncNameTab := func(ctxt *Link, s loader.Sym) {
   313  		symtab := ctxt.loader.MakeSymbolUpdater(s)
   314  		for s, off := range nameOffsets {
   315  			a, b, c := nameParts(ctxt.loader.SymName(s))
   316  			o := int64(off)
   317  			o = symtab.AddStringAt(o, a)
   318  			o = symtab.AddStringAt(o, b)
   319  			_ = symtab.AddCStringAt(o, c)
   320  		}
   321  	}
   322  
   323  	// Loop through the CUs, and calculate the size needed.
   324  	var size int64
   325  	walkFuncs(ctxt, funcs, func(s loader.Sym) {
   326  		nameOffsets[s] = uint32(size)
   327  		a, b, c := nameParts(ctxt.loader.SymName(s))
   328  		size += int64(len(a) + len(b) + len(c) + 1) // NULL terminate
   329  	})
   330  
   331  	state.funcnametab = state.addGeneratedSym(ctxt, "runtime.funcnametab", size, writeFuncNameTab)
   332  	return nameOffsets
   333  }
   334  
   335  // walkFilenames walks funcs, calling a function for each filename used in each
   336  // function's line table.
   337  func walkFilenames(ctxt *Link, funcs []loader.Sym, f func(*sym.CompilationUnit, goobj.CUFileIndex)) {
   338  	ldr := ctxt.loader
   339  
   340  	// Loop through all functions, finding the filenames we need.
   341  	for _, s := range funcs {
   342  		fi := ldr.FuncInfo(s)
   343  		if !fi.Valid() {
   344  			continue
   345  		}
   346  		fi.Preload()
   347  
   348  		cu := ldr.SymUnit(s)
   349  		for i, nf := 0, int(fi.NumFile()); i < nf; i++ {
   350  			f(cu, fi.File(i))
   351  		}
   352  		for i, ninl := 0, int(fi.NumInlTree()); i < ninl; i++ {
   353  			call := fi.InlTree(i)
   354  			f(cu, call.File)
   355  		}
   356  	}
   357  }
   358  
   359  // generateFilenameTabs creates LUTs needed for filename lookup. Returns a slice
   360  // of the index at which each CU begins in runtime.cutab.
   361  //
   362  // Function objects keep track of the files they reference to print the stack.
   363  // This function creates a per-CU list of filenames if CU[M] references
   364  // files[1-N], the following is generated:
   365  //
   366  //	runtime.cutab:
   367  //	  CU[M]
   368  //	   offsetToFilename[0]
   369  //	   offsetToFilename[1]
   370  //	   ..
   371  //
   372  //	runtime.filetab
   373  //	   filename[0]
   374  //	   filename[1]
   375  //
   376  // Looking up a filename then becomes:
   377  //  0. Given a func, and filename index [K]
   378  //  1. Get Func.CUIndex:       M := func.cuOffset
   379  //  2. Find filename offset:   fileOffset := runtime.cutab[M+K]
   380  //  3. Get the filename:       getcstring(runtime.filetab[fileOffset])
   381  func (state *pclntab) generateFilenameTabs(ctxt *Link, compUnits []*sym.CompilationUnit, funcs []loader.Sym) []uint32 {
   382  	// On a per-CU basis, keep track of all the filenames we need.
   383  	//
   384  	// Note, that we store the filenames in a separate section in the object
   385  	// files, and deduplicate based on the actual value. It would be better to
   386  	// store the filenames as symbols, using content addressable symbols (and
   387  	// then not loading extra filenames), and just use the hash value of the
   388  	// symbol name to do this cataloging.
   389  	//
   390  	// TODO: Store filenames as symbols. (Note this would be easiest if you
   391  	// also move strings to ALWAYS using the larger content addressable hash
   392  	// function, and use that hash value for uniqueness testing.)
   393  	cuEntries := make([]goobj.CUFileIndex, len(compUnits))
   394  	fileOffsets := make(map[string]uint32)
   395  
   396  	// Walk the filenames.
   397  	// We store the total filename string length we need to load, and the max
   398  	// file index we've seen per CU so we can calculate how large the
   399  	// CU->global table needs to be.
   400  	var fileSize int64
   401  	walkFilenames(ctxt, funcs, func(cu *sym.CompilationUnit, i goobj.CUFileIndex) {
   402  		// Note we use the raw filename for lookup, but use the expanded filename
   403  		// when we save the size.
   404  		filename := cu.FileTable[i]
   405  		if _, ok := fileOffsets[filename]; !ok {
   406  			fileOffsets[filename] = uint32(fileSize)
   407  			fileSize += int64(len(expandFile(filename)) + 1) // NULL terminate
   408  		}
   409  
   410  		// Find the maximum file index we've seen.
   411  		if cuEntries[cu.PclnIndex] < i+1 {
   412  			cuEntries[cu.PclnIndex] = i + 1 // Store max + 1
   413  		}
   414  	})
   415  
   416  	// Calculate the size of the runtime.cutab variable.
   417  	var totalEntries uint32
   418  	cuOffsets := make([]uint32, len(cuEntries))
   419  	for i, entries := range cuEntries {
   420  		// Note, cutab is a slice of uint32, so an offset to a cu's entry is just the
   421  		// running total of all cu indices we've needed to store so far, not the
   422  		// number of bytes we've stored so far.
   423  		cuOffsets[i] = totalEntries
   424  		totalEntries += uint32(entries)
   425  	}
   426  
   427  	// Write cutab.
   428  	writeCutab := func(ctxt *Link, s loader.Sym) {
   429  		sb := ctxt.loader.MakeSymbolUpdater(s)
   430  
   431  		var off int64
   432  		for i, max := range cuEntries {
   433  			// Write the per CU LUT.
   434  			cu := compUnits[i]
   435  			for j := goobj.CUFileIndex(0); j < max; j++ {
   436  				fileOffset, ok := fileOffsets[cu.FileTable[j]]
   437  				if !ok {
   438  					// We're looping through all possible file indices. It's possible a file's
   439  					// been deadcode eliminated, and although it's a valid file in the CU, it's
   440  					// not needed in this binary. When that happens, use an invalid offset.
   441  					fileOffset = ^uint32(0)
   442  				}
   443  				off = sb.SetUint32(ctxt.Arch, off, fileOffset)
   444  			}
   445  		}
   446  	}
   447  	state.cutab = state.addGeneratedSym(ctxt, "runtime.cutab", int64(totalEntries*4), writeCutab)
   448  
   449  	// Write filetab.
   450  	writeFiletab := func(ctxt *Link, s loader.Sym) {
   451  		sb := ctxt.loader.MakeSymbolUpdater(s)
   452  
   453  		// Write the strings.
   454  		for filename, loc := range fileOffsets {
   455  			sb.AddStringAt(int64(loc), expandFile(filename))
   456  		}
   457  	}
   458  	state.nfiles = uint32(len(fileOffsets))
   459  	state.filetab = state.addGeneratedSym(ctxt, "runtime.filetab", fileSize, writeFiletab)
   460  
   461  	return cuOffsets
   462  }
   463  
   464  // generatePctab creates the runtime.pctab variable, holding all the
   465  // deduplicated pcdata.
   466  func (state *pclntab) generatePctab(ctxt *Link, funcs []loader.Sym) {
   467  	ldr := ctxt.loader
   468  
   469  	// Pctab offsets of 0 are considered invalid in the runtime. We respect
   470  	// that by just padding a single byte at the beginning of runtime.pctab,
   471  	// that way no real offsets can be zero.
   472  	size := int64(1)
   473  
   474  	// Walk the functions, finding offset to store each pcdata.
   475  	seen := make(map[loader.Sym]struct{})
   476  	saveOffset := func(pcSym loader.Sym) {
   477  		if _, ok := seen[pcSym]; !ok {
   478  			datSize := ldr.SymSize(pcSym)
   479  			if datSize != 0 {
   480  				ldr.SetSymValue(pcSym, size)
   481  			} else {
   482  				// Invalid PC data, record as zero.
   483  				ldr.SetSymValue(pcSym, 0)
   484  			}
   485  			size += datSize
   486  			seen[pcSym] = struct{}{}
   487  		}
   488  	}
   489  	var pcsp, pcline, pcfile, pcinline loader.Sym
   490  	var pcdata []loader.Sym
   491  	for _, s := range funcs {
   492  		fi := ldr.FuncInfo(s)
   493  		if !fi.Valid() {
   494  			continue
   495  		}
   496  		fi.Preload()
   497  		pcsp, pcfile, pcline, pcinline, pcdata = ldr.PcdataAuxs(s, pcdata)
   498  
   499  		pcSyms := []loader.Sym{pcsp, pcfile, pcline}
   500  		for _, pcSym := range pcSyms {
   501  			saveOffset(pcSym)
   502  		}
   503  		for _, pcSym := range pcdata {
   504  			saveOffset(pcSym)
   505  		}
   506  		if fi.NumInlTree() > 0 {
   507  			saveOffset(pcinline)
   508  		}
   509  	}
   510  
   511  	// TODO: There is no reason we need a generator for this variable, and it
   512  	// could be moved to a carrier symbol. However, carrier symbols containing
   513  	// carrier symbols don't work yet (as of Aug 2020). Once this is fixed,
   514  	// runtime.pctab could just be a carrier sym.
   515  	writePctab := func(ctxt *Link, s loader.Sym) {
   516  		ldr := ctxt.loader
   517  		sb := ldr.MakeSymbolUpdater(s)
   518  		for sym := range seen {
   519  			sb.SetBytesAt(ldr.SymValue(sym), ldr.Data(sym))
   520  		}
   521  	}
   522  
   523  	state.pctab = state.addGeneratedSym(ctxt, "runtime.pctab", size, writePctab)
   524  }
   525  
   526  // numPCData returns the number of PCData syms for the FuncInfo.
   527  // NB: Preload must be called on valid FuncInfos before calling this function.
   528  func numPCData(ldr *loader.Loader, s loader.Sym, fi loader.FuncInfo) uint32 {
   529  	if !fi.Valid() {
   530  		return 0
   531  	}
   532  	numPCData := uint32(ldr.NumPcdata(s))
   533  	if fi.NumInlTree() > 0 {
   534  		if numPCData < objabi.PCDATA_InlTreeIndex+1 {
   535  			numPCData = objabi.PCDATA_InlTreeIndex + 1
   536  		}
   537  	}
   538  	return numPCData
   539  }
   540  
   541  // generateFunctab creates the runtime.functab
   542  //
   543  // runtime.functab contains two things:
   544  //
   545  //   - pc->func look up table.
   546  //   - array of func objects, interleaved with pcdata and funcdata
   547  func (state *pclntab) generateFunctab(ctxt *Link, funcs []loader.Sym, inlSyms map[loader.Sym]loader.Sym, cuOffsets []uint32, nameOffsets map[loader.Sym]uint32) {
   548  	// Calculate the size of the table.
   549  	size, startLocations := state.calculateFunctabSize(ctxt, funcs)
   550  	writePcln := func(ctxt *Link, s loader.Sym) {
   551  		ldr := ctxt.loader
   552  		sb := ldr.MakeSymbolUpdater(s)
   553  		// Write the data.
   554  		writePCToFunc(ctxt, sb, funcs, startLocations)
   555  		writeFuncs(ctxt, sb, funcs, inlSyms, startLocations, cuOffsets, nameOffsets)
   556  	}
   557  	state.pclntab = state.addGeneratedSym(ctxt, "runtime.functab", size, writePcln)
   558  }
   559  
   560  // funcData returns the funcdata and offsets for the FuncInfo.
   561  // The funcdata are written into runtime.functab after each func
   562  // object. This is a helper function to make querying the FuncInfo object
   563  // cleaner.
   564  //
   565  // NB: Preload must be called on the FuncInfo before calling.
   566  // NB: fdSyms is used as scratch space.
   567  func funcData(ldr *loader.Loader, s loader.Sym, fi loader.FuncInfo, inlSym loader.Sym, fdSyms []loader.Sym) []loader.Sym {
   568  	fdSyms = fdSyms[:0]
   569  	if fi.Valid() {
   570  		fdSyms = ldr.Funcdata(s, fdSyms)
   571  		if fi.NumInlTree() > 0 {
   572  			if len(fdSyms) < objabi.FUNCDATA_InlTree+1 {
   573  				fdSyms = append(fdSyms, make([]loader.Sym, objabi.FUNCDATA_InlTree+1-len(fdSyms))...)
   574  			}
   575  			fdSyms[objabi.FUNCDATA_InlTree] = inlSym
   576  		}
   577  	}
   578  	return fdSyms
   579  }
   580  
   581  // calculateFunctabSize calculates the size of the pclntab, and the offsets in
   582  // the output buffer for individual func entries.
   583  func (state pclntab) calculateFunctabSize(ctxt *Link, funcs []loader.Sym) (int64, []uint32) {
   584  	ldr := ctxt.loader
   585  	startLocations := make([]uint32, len(funcs))
   586  
   587  	// Allocate space for the pc->func table. This structure consists of a pc offset
   588  	// and an offset to the func structure. After that, we have a single pc
   589  	// value that marks the end of the last function in the binary.
   590  	size := int64(int(state.nfunc)*2*4 + 4)
   591  
   592  	// Now find the space for the func objects. We do this in a running manner,
   593  	// so that we can find individual starting locations.
   594  	for i, s := range funcs {
   595  		size = Rnd(size, int64(ctxt.Arch.PtrSize))
   596  		startLocations[i] = uint32(size)
   597  		fi := ldr.FuncInfo(s)
   598  		size += funcSize
   599  		if fi.Valid() {
   600  			fi.Preload()
   601  			numFuncData := ldr.NumFuncdata(s)
   602  			if fi.NumInlTree() > 0 {
   603  				if numFuncData < objabi.FUNCDATA_InlTree+1 {
   604  					numFuncData = objabi.FUNCDATA_InlTree + 1
   605  				}
   606  			}
   607  			size += int64(numPCData(ldr, s, fi) * 4)
   608  			size += int64(numFuncData * 4)
   609  		}
   610  	}
   611  
   612  	return size, startLocations
   613  }
   614  
   615  // writePCToFunc writes the PC->func lookup table.
   616  func writePCToFunc(ctxt *Link, sb *loader.SymbolBuilder, funcs []loader.Sym, startLocations []uint32) {
   617  	ldr := ctxt.loader
   618  	textStart := ldr.SymValue(ldr.Lookup("runtime.text", 0))
   619  	pcOff := func(s loader.Sym) uint32 {
   620  		off := ldr.SymValue(s) - textStart
   621  		if off < 0 {
   622  			panic(fmt.Sprintf("expected func %s(%x) to be placed at or after textStart (%x)", ldr.SymName(s), ldr.SymValue(s), textStart))
   623  		}
   624  		return uint32(off)
   625  	}
   626  	for i, s := range funcs {
   627  		sb.SetUint32(ctxt.Arch, int64(i*2*4), pcOff(s))
   628  		sb.SetUint32(ctxt.Arch, int64((i*2+1)*4), startLocations[i])
   629  	}
   630  
   631  	// Final entry of table is just end pc offset.
   632  	lastFunc := funcs[len(funcs)-1]
   633  	sb.SetUint32(ctxt.Arch, int64(len(funcs))*2*4, pcOff(lastFunc)+uint32(ldr.SymSize(lastFunc)))
   634  }
   635  
   636  // writeFuncs writes the func structures and pcdata to runtime.functab.
   637  func writeFuncs(ctxt *Link, sb *loader.SymbolBuilder, funcs []loader.Sym, inlSyms map[loader.Sym]loader.Sym, startLocations, cuOffsets []uint32, nameOffsets map[loader.Sym]uint32) {
   638  	ldr := ctxt.loader
   639  	deferReturnSym := ldr.Lookup("runtime.deferreturn", abiInternalVer)
   640  	gofunc := ldr.Lookup("go:func.*", 0)
   641  	gofuncBase := ldr.SymValue(gofunc)
   642  	textStart := ldr.SymValue(ldr.Lookup("runtime.text", 0))
   643  	funcdata := []loader.Sym{}
   644  	var pcsp, pcfile, pcline, pcinline loader.Sym
   645  	var pcdata []loader.Sym
   646  
   647  	// Write the individual func objects.
   648  	for i, s := range funcs {
   649  		startLine := int32(0)
   650  		fi := ldr.FuncInfo(s)
   651  		if fi.Valid() {
   652  			fi.Preload()
   653  			pcsp, pcfile, pcline, pcinline, pcdata = ldr.PcdataAuxs(s, pcdata)
   654  			startLine = fi.StartLine()
   655  		}
   656  
   657  		off := int64(startLocations[i])
   658  		// entryOff uint32 (offset of func entry PC from textStart)
   659  		entryOff := ldr.SymValue(s) - textStart
   660  		if entryOff < 0 {
   661  			panic(fmt.Sprintf("expected func %s(%x) to be placed before or at textStart (%x)", ldr.SymName(s), ldr.SymValue(s), textStart))
   662  		}
   663  		off = sb.SetUint32(ctxt.Arch, off, uint32(entryOff))
   664  
   665  		// nameOff int32
   666  		nameOff, ok := nameOffsets[s]
   667  		if !ok {
   668  			panic("couldn't find function name offset")
   669  		}
   670  		off = sb.SetUint32(ctxt.Arch, off, uint32(nameOff))
   671  
   672  		// args int32
   673  		// TODO: Move into funcinfo.
   674  		args := uint32(0)
   675  		if fi.Valid() {
   676  			args = uint32(fi.Args())
   677  		}
   678  		off = sb.SetUint32(ctxt.Arch, off, args)
   679  
   680  		// deferreturn
   681  		deferreturn := computeDeferReturn(ctxt, deferReturnSym, s)
   682  		off = sb.SetUint32(ctxt.Arch, off, deferreturn)
   683  
   684  		// pcdata
   685  		if fi.Valid() {
   686  			off = sb.SetUint32(ctxt.Arch, off, uint32(ldr.SymValue(pcsp)))
   687  			off = sb.SetUint32(ctxt.Arch, off, uint32(ldr.SymValue(pcfile)))
   688  			off = sb.SetUint32(ctxt.Arch, off, uint32(ldr.SymValue(pcline)))
   689  		} else {
   690  			off += 12
   691  		}
   692  		off = sb.SetUint32(ctxt.Arch, off, uint32(numPCData(ldr, s, fi)))
   693  
   694  		// Store the offset to compilation unit's file table.
   695  		cuIdx := ^uint32(0)
   696  		if cu := ldr.SymUnit(s); cu != nil {
   697  			cuIdx = cuOffsets[cu.PclnIndex]
   698  		}
   699  		off = sb.SetUint32(ctxt.Arch, off, cuIdx)
   700  
   701  		// startLine int32
   702  		off = sb.SetUint32(ctxt.Arch, off, uint32(startLine))
   703  
   704  		// funcID uint8
   705  		var funcID objabi.FuncID
   706  		if fi.Valid() {
   707  			funcID = fi.FuncID()
   708  		}
   709  		off = sb.SetUint8(ctxt.Arch, off, uint8(funcID))
   710  
   711  		// flag uint8
   712  		var flag objabi.FuncFlag
   713  		if fi.Valid() {
   714  			flag = fi.FuncFlag()
   715  		}
   716  		off = sb.SetUint8(ctxt.Arch, off, uint8(flag))
   717  
   718  		off += 1 // pad
   719  
   720  		// nfuncdata must be the final entry.
   721  		funcdata = funcData(ldr, s, fi, 0, funcdata)
   722  		off = sb.SetUint8(ctxt.Arch, off, uint8(len(funcdata)))
   723  
   724  		// Output the pcdata.
   725  		if fi.Valid() {
   726  			for j, pcSym := range pcdata {
   727  				sb.SetUint32(ctxt.Arch, off+int64(j*4), uint32(ldr.SymValue(pcSym)))
   728  			}
   729  			if fi.NumInlTree() > 0 {
   730  				sb.SetUint32(ctxt.Arch, off+objabi.PCDATA_InlTreeIndex*4, uint32(ldr.SymValue(pcinline)))
   731  			}
   732  		}
   733  
   734  		// Write funcdata refs as offsets from go:func.* and go:funcrel.*.
   735  		funcdata = funcData(ldr, s, fi, inlSyms[s], funcdata)
   736  		// Missing funcdata will be ^0. See runtime/symtab.go:funcdata.
   737  		off = int64(startLocations[i] + funcSize + numPCData(ldr, s, fi)*4)
   738  		for j := range funcdata {
   739  			dataoff := off + int64(4*j)
   740  			fdsym := funcdata[j]
   741  			if fdsym == 0 {
   742  				sb.SetUint32(ctxt.Arch, dataoff, ^uint32(0)) // ^0 is a sentinel for "no value"
   743  				continue
   744  			}
   745  
   746  			if outer := ldr.OuterSym(fdsym); outer != gofunc {
   747  				panic(fmt.Sprintf("bad carrier sym for symbol %s (funcdata %s#%d), want go:func.* got %s", ldr.SymName(fdsym), ldr.SymName(s), j, ldr.SymName(outer)))
   748  			}
   749  			sb.SetUint32(ctxt.Arch, dataoff, uint32(ldr.SymValue(fdsym)-gofuncBase))
   750  		}
   751  	}
   752  }
   753  
   754  // pclntab initializes the pclntab symbol with
   755  // runtime function and file name information.
   756  
   757  // pclntab generates the pcln table for the link output.
   758  func (ctxt *Link) pclntab(container loader.Bitmap) *pclntab {
   759  	// Go 1.2's symtab layout is documented in golang.org/s/go12symtab, but the
   760  	// layout and data has changed since that time.
   761  	//
   762  	// As of August 2020, here's the layout of pclntab:
   763  	//
   764  	//  .gopclntab/__gopclntab [elf/macho section]
   765  	//    runtime.pclntab
   766  	//      Carrier symbol for the entire pclntab section.
   767  	//
   768  	//      runtime.pcheader  (see: runtime/symtab.go:pcHeader)
   769  	//        8-byte magic
   770  	//        nfunc [thearch.ptrsize bytes]
   771  	//        offset to runtime.funcnametab from the beginning of runtime.pcheader
   772  	//        offset to runtime.pclntab_old from beginning of runtime.pcheader
   773  	//
   774  	//      runtime.funcnametab
   775  	//        []list of null terminated function names
   776  	//
   777  	//      runtime.cutab
   778  	//        for i=0..#CUs
   779  	//          for j=0..#max used file index in CU[i]
   780  	//            uint32 offset into runtime.filetab for the filename[j]
   781  	//
   782  	//      runtime.filetab
   783  	//        []null terminated filename strings
   784  	//
   785  	//      runtime.pctab
   786  	//        []byte of deduplicated pc data.
   787  	//
   788  	//      runtime.functab
   789  	//        function table, alternating PC and offset to func struct [each entry thearch.ptrsize bytes]
   790  	//        end PC [thearch.ptrsize bytes]
   791  	//        func structures, pcdata offsets, func data.
   792  
   793  	state, compUnits, funcs := makePclntab(ctxt, container)
   794  
   795  	ldr := ctxt.loader
   796  	state.carrier = ldr.LookupOrCreateSym("runtime.pclntab", 0)
   797  	ldr.MakeSymbolUpdater(state.carrier).SetType(sym.SPCLNTAB)
   798  	ldr.SetAttrReachable(state.carrier, true)
   799  	setCarrierSym(sym.SPCLNTAB, state.carrier)
   800  
   801  	state.generatePCHeader(ctxt)
   802  	nameOffsets := state.generateFuncnametab(ctxt, funcs)
   803  	cuOffsets := state.generateFilenameTabs(ctxt, compUnits, funcs)
   804  	state.generatePctab(ctxt, funcs)
   805  	inlSyms := makeInlSyms(ctxt, funcs, nameOffsets)
   806  	state.generateFunctab(ctxt, funcs, inlSyms, cuOffsets, nameOffsets)
   807  
   808  	return state
   809  }
   810  
   811  func gorootFinal() string {
   812  	root := buildcfg.GOROOT
   813  	if final := os.Getenv("GOROOT_FINAL"); final != "" {
   814  		root = final
   815  	}
   816  	return root
   817  }
   818  
   819  func expandGoroot(s string) string {
   820  	const n = len("$GOROOT")
   821  	if len(s) >= n+1 && s[:n] == "$GOROOT" && (s[n] == '/' || s[n] == '\\') {
   822  		if final := gorootFinal(); final != "" {
   823  			return filepath.ToSlash(filepath.Join(final, s[n:]))
   824  		}
   825  	}
   826  	return s
   827  }
   828  
   829  const (
   830  	BUCKETSIZE    = 256 * MINFUNC
   831  	SUBBUCKETS    = 16
   832  	SUBBUCKETSIZE = BUCKETSIZE / SUBBUCKETS
   833  	NOIDX         = 0x7fffffff
   834  )
   835  
   836  // findfunctab generates a lookup table to quickly find the containing
   837  // function for a pc. See src/runtime/symtab.go:findfunc for details.
   838  func (ctxt *Link) findfunctab(state *pclntab, container loader.Bitmap) {
   839  	ldr := ctxt.loader
   840  
   841  	// find min and max address
   842  	min := ldr.SymValue(ctxt.Textp[0])
   843  	lastp := ctxt.Textp[len(ctxt.Textp)-1]
   844  	max := ldr.SymValue(lastp) + ldr.SymSize(lastp)
   845  
   846  	// for each subbucket, compute the minimum of all symbol indexes
   847  	// that map to that subbucket.
   848  	n := int32((max - min + SUBBUCKETSIZE - 1) / SUBBUCKETSIZE)
   849  
   850  	nbuckets := int32((max - min + BUCKETSIZE - 1) / BUCKETSIZE)
   851  
   852  	size := 4*int64(nbuckets) + int64(n)
   853  
   854  	writeFindFuncTab := func(_ *Link, s loader.Sym) {
   855  		t := ldr.MakeSymbolUpdater(s)
   856  
   857  		indexes := make([]int32, n)
   858  		for i := int32(0); i < n; i++ {
   859  			indexes[i] = NOIDX
   860  		}
   861  		idx := int32(0)
   862  		for i, s := range ctxt.Textp {
   863  			if !emitPcln(ctxt, s, container) {
   864  				continue
   865  			}
   866  			p := ldr.SymValue(s)
   867  			var e loader.Sym
   868  			i++
   869  			if i < len(ctxt.Textp) {
   870  				e = ctxt.Textp[i]
   871  			}
   872  			for e != 0 && !emitPcln(ctxt, e, container) && i < len(ctxt.Textp) {
   873  				e = ctxt.Textp[i]
   874  				i++
   875  			}
   876  			q := max
   877  			if e != 0 {
   878  				q = ldr.SymValue(e)
   879  			}
   880  
   881  			//print("%d: [%lld %lld] %s\n", idx, p, q, s->name);
   882  			for ; p < q; p += SUBBUCKETSIZE {
   883  				i = int((p - min) / SUBBUCKETSIZE)
   884  				if indexes[i] > idx {
   885  					indexes[i] = idx
   886  				}
   887  			}
   888  
   889  			i = int((q - 1 - min) / SUBBUCKETSIZE)
   890  			if indexes[i] > idx {
   891  				indexes[i] = idx
   892  			}
   893  			idx++
   894  		}
   895  
   896  		// fill in table
   897  		for i := int32(0); i < nbuckets; i++ {
   898  			base := indexes[i*SUBBUCKETS]
   899  			if base == NOIDX {
   900  				Errorf(nil, "hole in findfunctab")
   901  			}
   902  			t.SetUint32(ctxt.Arch, int64(i)*(4+SUBBUCKETS), uint32(base))
   903  			for j := int32(0); j < SUBBUCKETS && i*SUBBUCKETS+j < n; j++ {
   904  				idx = indexes[i*SUBBUCKETS+j]
   905  				if idx == NOIDX {
   906  					Errorf(nil, "hole in findfunctab")
   907  				}
   908  				if idx-base >= 256 {
   909  					Errorf(nil, "too many functions in a findfunc bucket! %d/%d %d %d", i, nbuckets, j, idx-base)
   910  				}
   911  
   912  				t.SetUint8(ctxt.Arch, int64(i)*(4+SUBBUCKETS)+4+int64(j), uint8(idx-base))
   913  			}
   914  		}
   915  	}
   916  
   917  	state.findfunctab = ctxt.createGeneratorSymbol("runtime.findfunctab", 0, sym.SRODATA, size, writeFindFuncTab)
   918  	ldr.SetAttrReachable(state.findfunctab, true)
   919  	ldr.SetAttrLocal(state.findfunctab, true)
   920  }
   921  
   922  // findContainerSyms returns a bitmap, indexed by symbol number, where there's
   923  // a 1 for every container symbol.
   924  func (ctxt *Link) findContainerSyms() loader.Bitmap {
   925  	ldr := ctxt.loader
   926  	container := loader.MakeBitmap(ldr.NSym())
   927  	// Find container symbols and mark them as such.
   928  	for _, s := range ctxt.Textp {
   929  		outer := ldr.OuterSym(s)
   930  		if outer != 0 {
   931  			container.Set(outer)
   932  		}
   933  	}
   934  	return container
   935  }