github.com/bir3/gocompiler@v0.3.205/src/cmd/link/internal/loader/loader.go (about)

     1  // Copyright 2019 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package loader
     6  
     7  import (
     8  	"bytes"
     9  	"github.com/bir3/gocompiler/src/cmd/internal/bio"
    10  	"github.com/bir3/gocompiler/src/cmd/internal/goobj"
    11  	"github.com/bir3/gocompiler/src/cmd/internal/obj"
    12  	"github.com/bir3/gocompiler/src/cmd/internal/objabi"
    13  	"github.com/bir3/gocompiler/src/cmd/internal/sys"
    14  	"github.com/bir3/gocompiler/src/cmd/link/internal/sym"
    15  	"debug/elf"
    16  	"fmt"
    17  	"io"
    18  	"log"
    19  	"math/bits"
    20  	"os"
    21  	"sort"
    22  	"strings"
    23  )
    24  
    25  var _ = fmt.Print
    26  
    27  // Sym encapsulates a global symbol index, used to identify a specific
    28  // Go symbol. The 0-valued Sym is corresponds to an invalid symbol.
    29  type Sym int
    30  
    31  // Relocs encapsulates the set of relocations on a given symbol; an
    32  // instance of this type is returned by the Loader Relocs() method.
    33  type Relocs struct {
    34  	rs []goobj.Reloc
    35  
    36  	li uint32   // local index of symbol whose relocs we're examining
    37  	r  *oReader // object reader for containing package
    38  	l  *Loader  // loader
    39  }
    40  
    41  // ExtReloc contains the payload for an external relocation.
    42  type ExtReloc struct {
    43  	Xsym Sym
    44  	Xadd int64
    45  	Type objabi.RelocType
    46  	Size uint8
    47  }
    48  
    49  // Reloc holds a "handle" to access a relocation record from an
    50  // object file.
    51  type Reloc struct {
    52  	*goobj.Reloc
    53  	r *oReader
    54  	l *Loader
    55  }
    56  
    57  func (rel Reloc) Type() objabi.RelocType     { return objabi.RelocType(rel.Reloc.Type()) &^ objabi.R_WEAK }
    58  func (rel Reloc) Weak() bool                 { return objabi.RelocType(rel.Reloc.Type())&objabi.R_WEAK != 0 }
    59  func (rel Reloc) SetType(t objabi.RelocType) { rel.Reloc.SetType(uint16(t)) }
    60  func (rel Reloc) Sym() Sym                   { return rel.l.resolve(rel.r, rel.Reloc.Sym()) }
    61  func (rel Reloc) SetSym(s Sym)               { rel.Reloc.SetSym(goobj.SymRef{PkgIdx: 0, SymIdx: uint32(s)}) }
    62  func (rel Reloc) IsMarker() bool             { return rel.Siz() == 0 }
    63  
    64  // Aux holds a "handle" to access an aux symbol record from an
    65  // object file.
    66  type Aux struct {
    67  	*goobj.Aux
    68  	r *oReader
    69  	l *Loader
    70  }
    71  
    72  func (a Aux) Sym() Sym { return a.l.resolve(a.r, a.Aux.Sym()) }
    73  
    74  // oReader is a wrapper type of obj.Reader, along with some
    75  // extra information.
    76  type oReader struct {
    77  	*goobj.Reader
    78  	unit         *sym.CompilationUnit
    79  	version      int // version of static symbol
    80  	pkgprefix    string
    81  	syms         []Sym    // Sym's global index, indexed by local index
    82  	pkg          []uint32 // indices of referenced package by PkgIdx (index into loader.objs array)
    83  	ndef         int      // cache goobj.Reader.NSym()
    84  	nhashed64def int      // cache goobj.Reader.NHashed64Def()
    85  	nhasheddef   int      // cache goobj.Reader.NHashedDef()
    86  	objidx       uint32   // index of this reader in the objs slice
    87  }
    88  
    89  // Total number of defined symbols (package symbols, hashed symbols, and
    90  // non-package symbols).
    91  func (r *oReader) NAlldef() int { return r.ndef + r.nhashed64def + r.nhasheddef + r.NNonpkgdef() }
    92  
    93  type objIdx struct {
    94  	r *oReader
    95  	i Sym // start index
    96  }
    97  
    98  // objSym represents a symbol in an object file. It is a tuple of
    99  // the object and the symbol's local index.
   100  // For external symbols, objidx is the index of l.extReader (extObj),
   101  // s is its index into the payload array.
   102  // {0, 0} represents the nil symbol.
   103  type objSym struct {
   104  	objidx uint32 // index of the object (in l.objs array)
   105  	s      uint32 // local index
   106  }
   107  
   108  type nameVer struct {
   109  	name string
   110  	v    int
   111  }
   112  
   113  type Bitmap []uint32
   114  
   115  // set the i-th bit.
   116  func (bm Bitmap) Set(i Sym) {
   117  	n, r := uint(i)/32, uint(i)%32
   118  	bm[n] |= 1 << r
   119  }
   120  
   121  // unset the i-th bit.
   122  func (bm Bitmap) Unset(i Sym) {
   123  	n, r := uint(i)/32, uint(i)%32
   124  	bm[n] &^= (1 << r)
   125  }
   126  
   127  // whether the i-th bit is set.
   128  func (bm Bitmap) Has(i Sym) bool {
   129  	n, r := uint(i)/32, uint(i)%32
   130  	return bm[n]&(1<<r) != 0
   131  }
   132  
   133  // return current length of bitmap in bits.
   134  func (bm Bitmap) Len() int {
   135  	return len(bm) * 32
   136  }
   137  
   138  // return the number of bits set.
   139  func (bm Bitmap) Count() int {
   140  	s := 0
   141  	for _, x := range bm {
   142  		s += bits.OnesCount32(x)
   143  	}
   144  	return s
   145  }
   146  
   147  func MakeBitmap(n int) Bitmap {
   148  	return make(Bitmap, (n+31)/32)
   149  }
   150  
   151  // growBitmap insures that the specified bitmap has enough capacity,
   152  // reallocating (doubling the size) if needed.
   153  func growBitmap(reqLen int, b Bitmap) Bitmap {
   154  	curLen := b.Len()
   155  	if reqLen > curLen {
   156  		b = append(b, MakeBitmap(reqLen+1-curLen)...)
   157  	}
   158  	return b
   159  }
   160  
   161  type symAndSize struct {
   162  	sym  Sym
   163  	size uint32
   164  }
   165  
   166  // A Loader loads new object files and resolves indexed symbol references.
   167  //
   168  // Notes on the layout of global symbol index space:
   169  //
   170  //   - Go object files are read before host object files; each Go object
   171  //     read adds its defined package symbols to the global index space.
   172  //     Nonpackage symbols are not yet added.
   173  //
   174  //   - In loader.LoadNonpkgSyms, add non-package defined symbols and
   175  //     references in all object files to the global index space.
   176  //
   177  //   - Host object file loading happens; the host object loader does a
   178  //     name/version lookup for each symbol it finds; this can wind up
   179  //     extending the external symbol index space range. The host object
   180  //     loader stores symbol payloads in loader.payloads using SymbolBuilder.
   181  //
   182  //   - Each symbol gets a unique global index. For duplicated and
   183  //     overwriting/overwritten symbols, the second (or later) appearance
   184  //     of the symbol gets the same global index as the first appearance.
   185  type Loader struct {
   186  	start       map[*oReader]Sym // map from object file to its start index
   187  	objs        []objIdx         // sorted by start index (i.e. objIdx.i)
   188  	extStart    Sym              // from this index on, the symbols are externally defined
   189  	builtinSyms []Sym            // global index of builtin symbols
   190  
   191  	objSyms []objSym // global index mapping to local index
   192  
   193  	symsByName    [2]map[string]Sym // map symbol name to index, two maps are for ABI0 and ABIInternal
   194  	extStaticSyms map[nameVer]Sym   // externally defined static symbols, keyed by name
   195  
   196  	extReader    *oReader // a dummy oReader, for external symbols
   197  	payloadBatch []extSymPayload
   198  	payloads     []*extSymPayload // contents of linker-materialized external syms
   199  	values       []int64          // symbol values, indexed by global sym index
   200  
   201  	sects    []*sym.Section // sections
   202  	symSects []uint16       // symbol's section, index to sects array
   203  
   204  	align []uint8 // symbol 2^N alignment, indexed by global index
   205  
   206  	deferReturnTramp map[Sym]bool // whether the symbol is a trampoline of a deferreturn call
   207  
   208  	objByPkg map[string]uint32 // map package path to the index of its Go object reader
   209  
   210  	anonVersion int // most recently assigned ext static sym pseudo-version
   211  
   212  	// Bitmaps and other side structures used to store data used to store
   213  	// symbol flags/attributes; these are to be accessed via the
   214  	// corresponding loader "AttrXXX" and "SetAttrXXX" methods. Please
   215  	// visit the comments on these methods for more details on the
   216  	// semantics / interpretation of the specific flags or attribute.
   217  	attrReachable        Bitmap // reachable symbols, indexed by global index
   218  	attrOnList           Bitmap // "on list" symbols, indexed by global index
   219  	attrLocal            Bitmap // "local" symbols, indexed by global index
   220  	attrNotInSymbolTable Bitmap // "not in symtab" symbols, indexed by global idx
   221  	attrUsedInIface      Bitmap // "used in interface" symbols, indexed by global idx
   222  	attrVisibilityHidden Bitmap // hidden symbols, indexed by ext sym index
   223  	attrDuplicateOK      Bitmap // dupOK symbols, indexed by ext sym index
   224  	attrShared           Bitmap // shared symbols, indexed by ext sym index
   225  	attrExternal         Bitmap // external symbols, indexed by ext sym index
   226  
   227  	attrReadOnly         map[Sym]bool     // readonly data for this sym
   228  	attrSpecial          map[Sym]struct{} // "special" frame symbols
   229  	attrCgoExportDynamic map[Sym]struct{} // "cgo_export_dynamic" symbols
   230  	attrCgoExportStatic  map[Sym]struct{} // "cgo_export_static" symbols
   231  	generatedSyms        map[Sym]struct{} // symbols that generate their content
   232  
   233  	// Outer and Sub relations for symbols.
   234  	// TODO: figure out whether it's more efficient to just have these
   235  	// as fields on extSymPayload (note that this won't be a viable
   236  	// strategy if somewhere in the linker we set sub/outer for a
   237  	// non-external sym).
   238  	outer map[Sym]Sym
   239  	sub   map[Sym]Sym
   240  
   241  	dynimplib   map[Sym]string      // stores Dynimplib symbol attribute
   242  	dynimpvers  map[Sym]string      // stores Dynimpvers symbol attribute
   243  	localentry  map[Sym]uint8       // stores Localentry symbol attribute
   244  	extname     map[Sym]string      // stores Extname symbol attribute
   245  	elfType     map[Sym]elf.SymType // stores elf type symbol property
   246  	elfSym      map[Sym]int32       // stores elf sym symbol property
   247  	localElfSym map[Sym]int32       // stores "local" elf sym symbol property
   248  	symPkg      map[Sym]string      // stores package for symbol, or library for shlib-derived syms
   249  	plt         map[Sym]int32       // stores dynimport for pe objects
   250  	got         map[Sym]int32       // stores got for pe objects
   251  	dynid       map[Sym]int32       // stores Dynid for symbol
   252  
   253  	relocVariant map[relocId]sym.RelocVariant // stores variant relocs
   254  
   255  	// Used to implement field tracking; created during deadcode if
   256  	// field tracking is enabled. Reachparent[K] contains the index of
   257  	// the symbol that triggered the marking of symbol K as live.
   258  	Reachparent []Sym
   259  
   260  	// CgoExports records cgo-exported symbols by SymName.
   261  	CgoExports map[string]Sym
   262  
   263  	flags uint32
   264  
   265  	strictDupMsgs int // number of strict-dup warning/errors, when FlagStrictDups is enabled
   266  
   267  	elfsetstring elfsetstringFunc
   268  
   269  	errorReporter *ErrorReporter
   270  
   271  	npkgsyms    int // number of package symbols, for accounting
   272  	nhashedsyms int // number of hashed symbols, for accounting
   273  }
   274  
   275  const (
   276  	pkgDef = iota
   277  	hashed64Def
   278  	hashedDef
   279  	nonPkgDef
   280  	nonPkgRef
   281  )
   282  
   283  // objidx
   284  const (
   285  	nilObj = iota
   286  	extObj
   287  	goObjStart
   288  )
   289  
   290  type elfsetstringFunc func(str string, off int)
   291  
   292  // extSymPayload holds the payload (data + relocations) for linker-synthesized
   293  // external symbols (note that symbol value is stored in a separate slice).
   294  type extSymPayload struct {
   295  	name   string // TODO: would this be better as offset into str table?
   296  	size   int64
   297  	ver    int
   298  	kind   sym.SymKind
   299  	objidx uint32 // index of original object if sym made by cloneToExternal
   300  	relocs []goobj.Reloc
   301  	data   []byte
   302  	auxs   []goobj.Aux
   303  }
   304  
   305  const (
   306  	// Loader.flags
   307  	FlagStrictDups = 1 << iota
   308  )
   309  
   310  func NewLoader(flags uint32, elfsetstring elfsetstringFunc, reporter *ErrorReporter) *Loader {
   311  	nbuiltin := goobj.NBuiltin()
   312  	extReader := &oReader{objidx: extObj}
   313  	ldr := &Loader{
   314  		start:                make(map[*oReader]Sym),
   315  		objs:                 []objIdx{{}, {extReader, 0}}, // reserve index 0 for nil symbol, 1 for external symbols
   316  		objSyms:              make([]objSym, 1, 1),         // This will get overwritten later.
   317  		extReader:            extReader,
   318  		symsByName:           [2]map[string]Sym{make(map[string]Sym, 80000), make(map[string]Sym, 50000)}, // preallocate ~2MB for ABI0 and ~1MB for ABI1 symbols
   319  		objByPkg:             make(map[string]uint32),
   320  		outer:                make(map[Sym]Sym),
   321  		sub:                  make(map[Sym]Sym),
   322  		dynimplib:            make(map[Sym]string),
   323  		dynimpvers:           make(map[Sym]string),
   324  		localentry:           make(map[Sym]uint8),
   325  		extname:              make(map[Sym]string),
   326  		attrReadOnly:         make(map[Sym]bool),
   327  		elfType:              make(map[Sym]elf.SymType),
   328  		elfSym:               make(map[Sym]int32),
   329  		localElfSym:          make(map[Sym]int32),
   330  		symPkg:               make(map[Sym]string),
   331  		plt:                  make(map[Sym]int32),
   332  		got:                  make(map[Sym]int32),
   333  		dynid:                make(map[Sym]int32),
   334  		attrSpecial:          make(map[Sym]struct{}),
   335  		attrCgoExportDynamic: make(map[Sym]struct{}),
   336  		attrCgoExportStatic:  make(map[Sym]struct{}),
   337  		generatedSyms:        make(map[Sym]struct{}),
   338  		deferReturnTramp:     make(map[Sym]bool),
   339  		extStaticSyms:        make(map[nameVer]Sym),
   340  		builtinSyms:          make([]Sym, nbuiltin),
   341  		flags:                flags,
   342  		elfsetstring:         elfsetstring,
   343  		errorReporter:        reporter,
   344  		sects:                []*sym.Section{nil}, // reserve index 0 for nil section
   345  	}
   346  	reporter.ldr = ldr
   347  	return ldr
   348  }
   349  
   350  // Add object file r, return the start index.
   351  func (l *Loader) addObj(pkg string, r *oReader) Sym {
   352  	if _, ok := l.start[r]; ok {
   353  		panic("already added")
   354  	}
   355  	pkg = objabi.PathToPrefix(pkg) // the object file contains escaped package path
   356  	if _, ok := l.objByPkg[pkg]; !ok {
   357  		l.objByPkg[pkg] = r.objidx
   358  	}
   359  	i := Sym(len(l.objSyms))
   360  	l.start[r] = i
   361  	l.objs = append(l.objs, objIdx{r, i})
   362  	return i
   363  }
   364  
   365  // Add a symbol from an object file, return the global index.
   366  // If the symbol already exist, it returns the index of that symbol.
   367  func (st *loadState) addSym(name string, ver int, r *oReader, li uint32, kind int, osym *goobj.Sym) Sym {
   368  	l := st.l
   369  	if l.extStart != 0 {
   370  		panic("addSym called after external symbol is created")
   371  	}
   372  	i := Sym(len(l.objSyms))
   373  	addToGlobal := func() {
   374  		l.objSyms = append(l.objSyms, objSym{r.objidx, li})
   375  	}
   376  	if name == "" && kind != hashed64Def && kind != hashedDef {
   377  		addToGlobal()
   378  		return i // unnamed aux symbol
   379  	}
   380  	if ver == r.version {
   381  		// Static symbol. Add its global index but don't
   382  		// add to name lookup table, as it cannot be
   383  		// referenced by name.
   384  		addToGlobal()
   385  		return i
   386  	}
   387  	switch kind {
   388  	case pkgDef:
   389  		// Defined package symbols cannot be dup to each other.
   390  		// We load all the package symbols first, so we don't need
   391  		// to check dup here.
   392  		// We still add it to the lookup table, as it may still be
   393  		// referenced by name (e.g. through linkname).
   394  		l.symsByName[ver][name] = i
   395  		addToGlobal()
   396  		return i
   397  	case hashed64Def, hashedDef:
   398  		// Hashed (content-addressable) symbol. Check the hash
   399  		// but don't add to name lookup table, as they are not
   400  		// referenced by name. Also no need to do overwriting
   401  		// check, as same hash indicates same content.
   402  		var checkHash func() (symAndSize, bool)
   403  		var addToHashMap func(symAndSize)
   404  		var h64 uint64        // only used for hashed64Def
   405  		var h *goobj.HashType // only used for hashedDef
   406  		if kind == hashed64Def {
   407  			checkHash = func() (symAndSize, bool) {
   408  				h64 = r.Hash64(li - uint32(r.ndef))
   409  				s, existed := st.hashed64Syms[h64]
   410  				return s, existed
   411  			}
   412  			addToHashMap = func(ss symAndSize) { st.hashed64Syms[h64] = ss }
   413  		} else {
   414  			checkHash = func() (symAndSize, bool) {
   415  				h = r.Hash(li - uint32(r.ndef+r.nhashed64def))
   416  				s, existed := st.hashedSyms[*h]
   417  				return s, existed
   418  			}
   419  			addToHashMap = func(ss symAndSize) { st.hashedSyms[*h] = ss }
   420  		}
   421  		siz := osym.Siz()
   422  		if s, existed := checkHash(); existed {
   423  			// The content hash is built from symbol data and relocations. In the
   424  			// object file, the symbol data may not always contain trailing zeros,
   425  			// e.g. for [5]int{1,2,3} and [100]int{1,2,3}, the data is same
   426  			// (although the size is different).
   427  			// Also, for short symbols, the content hash is the identity function of
   428  			// the 8 bytes, and trailing zeros doesn't change the hash value, e.g.
   429  			// hash("A") == hash("A\0\0\0").
   430  			// So when two symbols have the same hash, we need to use the one with
   431  			// larger size.
   432  			if siz > s.size {
   433  				// New symbol has larger size, use the new one. Rewrite the index mapping.
   434  				l.objSyms[s.sym] = objSym{r.objidx, li}
   435  				addToHashMap(symAndSize{s.sym, siz})
   436  			}
   437  			return s.sym
   438  		}
   439  		addToHashMap(symAndSize{i, siz})
   440  		addToGlobal()
   441  		return i
   442  	}
   443  
   444  	// Non-package (named) symbol. Check if it already exists.
   445  	oldi, existed := l.symsByName[ver][name]
   446  	if !existed {
   447  		l.symsByName[ver][name] = i
   448  		addToGlobal()
   449  		return i
   450  	}
   451  	// symbol already exists
   452  	if osym.Dupok() {
   453  		if l.flags&FlagStrictDups != 0 {
   454  			l.checkdup(name, r, li, oldi)
   455  		}
   456  		// Fix for issue #47185 -- given two dupok symbols with
   457  		// different sizes, favor symbol with larger size. See
   458  		// also issue #46653.
   459  		szdup := l.SymSize(oldi)
   460  		sz := int64(r.Sym(li).Siz())
   461  		if szdup < sz {
   462  			// new symbol overwrites old symbol.
   463  			l.objSyms[oldi] = objSym{r.objidx, li}
   464  		}
   465  		return oldi
   466  	}
   467  	oldr, oldli := l.toLocal(oldi)
   468  	oldsym := oldr.Sym(oldli)
   469  	if oldsym.Dupok() {
   470  		return oldi
   471  	}
   472  	overwrite := r.DataSize(li) != 0
   473  	if overwrite {
   474  		// new symbol overwrites old symbol.
   475  		oldtyp := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type())]
   476  		if !(oldtyp.IsData() && oldr.DataSize(oldli) == 0) {
   477  			log.Fatalf("duplicated definition of symbol %s, from %s and %s", name, r.unit.Lib.Pkg, oldr.unit.Lib.Pkg)
   478  		}
   479  		l.objSyms[oldi] = objSym{r.objidx, li}
   480  	} else {
   481  		// old symbol overwrites new symbol.
   482  		typ := sym.AbiSymKindToSymKind[objabi.SymKind(oldsym.Type())]
   483  		if !typ.IsData() { // only allow overwriting data symbol
   484  			log.Fatalf("duplicated definition of symbol %s, from %s and %s", name, r.unit.Lib.Pkg, oldr.unit.Lib.Pkg)
   485  		}
   486  	}
   487  	return oldi
   488  }
   489  
   490  // newExtSym creates a new external sym with the specified
   491  // name/version.
   492  func (l *Loader) newExtSym(name string, ver int) Sym {
   493  	i := Sym(len(l.objSyms))
   494  	if l.extStart == 0 {
   495  		l.extStart = i
   496  	}
   497  	l.growValues(int(i) + 1)
   498  	l.growAttrBitmaps(int(i) + 1)
   499  	pi := l.newPayload(name, ver)
   500  	l.objSyms = append(l.objSyms, objSym{l.extReader.objidx, uint32(pi)})
   501  	l.extReader.syms = append(l.extReader.syms, i)
   502  	return i
   503  }
   504  
   505  // LookupOrCreateSym looks up the symbol with the specified name/version,
   506  // returning its Sym index if found. If the lookup fails, a new external
   507  // Sym will be created, entered into the lookup tables, and returned.
   508  func (l *Loader) LookupOrCreateSym(name string, ver int) Sym {
   509  	i := l.Lookup(name, ver)
   510  	if i != 0 {
   511  		return i
   512  	}
   513  	i = l.newExtSym(name, ver)
   514  	static := ver >= sym.SymVerStatic || ver < 0
   515  	if static {
   516  		l.extStaticSyms[nameVer{name, ver}] = i
   517  	} else {
   518  		l.symsByName[ver][name] = i
   519  	}
   520  	return i
   521  }
   522  
   523  // AddCgoExport records a cgo-exported symbol in l.CgoExports.
   524  // This table is used to identify the correct Go symbol ABI to use
   525  // to resolve references from host objects (which don't have ABIs).
   526  func (l *Loader) AddCgoExport(s Sym) {
   527  	if l.CgoExports == nil {
   528  		l.CgoExports = make(map[string]Sym)
   529  	}
   530  	l.CgoExports[l.SymName(s)] = s
   531  }
   532  
   533  // LookupOrCreateCgoExport is like LookupOrCreateSym, but if ver
   534  // indicates a global symbol, it uses the CgoExport table to determine
   535  // the appropriate symbol version (ABI) to use. ver must be either 0
   536  // or a static symbol version.
   537  func (l *Loader) LookupOrCreateCgoExport(name string, ver int) Sym {
   538  	if ver >= sym.SymVerStatic {
   539  		return l.LookupOrCreateSym(name, ver)
   540  	}
   541  	if ver != 0 {
   542  		panic("ver must be 0 or a static version")
   543  	}
   544  	// Look for a cgo-exported symbol from Go.
   545  	if s, ok := l.CgoExports[name]; ok {
   546  		return s
   547  	}
   548  	// Otherwise, this must just be a symbol in the host object.
   549  	// Create a version 0 symbol for it.
   550  	return l.LookupOrCreateSym(name, 0)
   551  }
   552  
   553  func (l *Loader) IsExternal(i Sym) bool {
   554  	r, _ := l.toLocal(i)
   555  	return l.isExtReader(r)
   556  }
   557  
   558  func (l *Loader) isExtReader(r *oReader) bool {
   559  	return r == l.extReader
   560  }
   561  
   562  // For external symbol, return its index in the payloads array.
   563  // XXX result is actually not a global index. We (ab)use the Sym type
   564  // so we don't need conversion for accessing bitmaps.
   565  func (l *Loader) extIndex(i Sym) Sym {
   566  	_, li := l.toLocal(i)
   567  	return Sym(li)
   568  }
   569  
   570  // Get a new payload for external symbol, return its index in
   571  // the payloads array.
   572  func (l *Loader) newPayload(name string, ver int) int {
   573  	pi := len(l.payloads)
   574  	pp := l.allocPayload()
   575  	pp.name = name
   576  	pp.ver = ver
   577  	l.payloads = append(l.payloads, pp)
   578  	l.growExtAttrBitmaps()
   579  	return pi
   580  }
   581  
   582  // getPayload returns a pointer to the extSymPayload struct for an
   583  // external symbol if the symbol has a payload. Will panic if the
   584  // symbol in question is bogus (zero or not an external sym).
   585  func (l *Loader) getPayload(i Sym) *extSymPayload {
   586  	if !l.IsExternal(i) {
   587  		panic(fmt.Sprintf("bogus symbol index %d in getPayload", i))
   588  	}
   589  	pi := l.extIndex(i)
   590  	return l.payloads[pi]
   591  }
   592  
   593  // allocPayload allocates a new payload.
   594  func (l *Loader) allocPayload() *extSymPayload {
   595  	batch := l.payloadBatch
   596  	if len(batch) == 0 {
   597  		batch = make([]extSymPayload, 1000)
   598  	}
   599  	p := &batch[0]
   600  	l.payloadBatch = batch[1:]
   601  	return p
   602  }
   603  
   604  func (ms *extSymPayload) Grow(siz int64) {
   605  	if int64(int(siz)) != siz {
   606  		log.Fatalf("symgrow size %d too long", siz)
   607  	}
   608  	if int64(len(ms.data)) >= siz {
   609  		return
   610  	}
   611  	if cap(ms.data) < int(siz) {
   612  		cl := len(ms.data)
   613  		ms.data = append(ms.data, make([]byte, int(siz)+1-cl)...)
   614  		ms.data = ms.data[0:cl]
   615  	}
   616  	ms.data = ms.data[:siz]
   617  }
   618  
   619  // Convert a local index to a global index.
   620  func (l *Loader) toGlobal(r *oReader, i uint32) Sym {
   621  	return r.syms[i]
   622  }
   623  
   624  // Convert a global index to a local index.
   625  func (l *Loader) toLocal(i Sym) (*oReader, uint32) {
   626  	return l.objs[l.objSyms[i].objidx].r, l.objSyms[i].s
   627  }
   628  
   629  // Resolve a local symbol reference. Return global index.
   630  func (l *Loader) resolve(r *oReader, s goobj.SymRef) Sym {
   631  	var rr *oReader
   632  	switch p := s.PkgIdx; p {
   633  	case goobj.PkgIdxInvalid:
   634  		// {0, X} with non-zero X is never a valid sym reference from a Go object.
   635  		// We steal this space for symbol references from external objects.
   636  		// In this case, X is just the global index.
   637  		if l.isExtReader(r) {
   638  			return Sym(s.SymIdx)
   639  		}
   640  		if s.SymIdx != 0 {
   641  			panic("bad sym ref")
   642  		}
   643  		return 0
   644  	case goobj.PkgIdxHashed64:
   645  		i := int(s.SymIdx) + r.ndef
   646  		return r.syms[i]
   647  	case goobj.PkgIdxHashed:
   648  		i := int(s.SymIdx) + r.ndef + r.nhashed64def
   649  		return r.syms[i]
   650  	case goobj.PkgIdxNone:
   651  		i := int(s.SymIdx) + r.ndef + r.nhashed64def + r.nhasheddef
   652  		return r.syms[i]
   653  	case goobj.PkgIdxBuiltin:
   654  		if bi := l.builtinSyms[s.SymIdx]; bi != 0 {
   655  			return bi
   656  		}
   657  		l.reportMissingBuiltin(int(s.SymIdx), r.unit.Lib.Pkg)
   658  		return 0
   659  	case goobj.PkgIdxSelf:
   660  		rr = r
   661  	default:
   662  		rr = l.objs[r.pkg[p]].r
   663  	}
   664  	return l.toGlobal(rr, s.SymIdx)
   665  }
   666  
   667  // reportMissingBuiltin issues an error in the case where we have a
   668  // relocation against a runtime builtin whose definition is not found
   669  // when the runtime package is built. The canonical example is
   670  // "runtime.racefuncenter" -- currently if you do something like
   671  //
   672  //	go build -gcflags=-race myprogram.go
   673  //
   674  // the compiler will insert calls to the builtin runtime.racefuncenter,
   675  // but the version of the runtime used for linkage won't actually contain
   676  // definitions of that symbol. See issue #42396 for details.
   677  //
   678  // As currently implemented, this is a fatal error. This has drawbacks
   679  // in that if there are multiple missing builtins, the error will only
   680  // cite the first one. On the plus side, terminating the link here has
   681  // advantages in that we won't run the risk of panics or crashes later
   682  // on in the linker due to R_CALL relocations with 0-valued target
   683  // symbols.
   684  func (l *Loader) reportMissingBuiltin(bsym int, reflib string) {
   685  	bname, _ := goobj.BuiltinName(bsym)
   686  	log.Fatalf("reference to undefined builtin %q from package %q",
   687  		bname, reflib)
   688  }
   689  
   690  // Look up a symbol by name, return global index, or 0 if not found.
   691  // This is more like Syms.ROLookup than Lookup -- it doesn't create
   692  // new symbol.
   693  func (l *Loader) Lookup(name string, ver int) Sym {
   694  	if ver >= sym.SymVerStatic || ver < 0 {
   695  		return l.extStaticSyms[nameVer{name, ver}]
   696  	}
   697  	return l.symsByName[ver][name]
   698  }
   699  
   700  // Check that duplicate symbols have same contents.
   701  func (l *Loader) checkdup(name string, r *oReader, li uint32, dup Sym) {
   702  	p := r.Data(li)
   703  	rdup, ldup := l.toLocal(dup)
   704  	pdup := rdup.Data(ldup)
   705  	reason := "same length but different contents"
   706  	if len(p) != len(pdup) {
   707  		reason = fmt.Sprintf("new length %d != old length %d", len(p), len(pdup))
   708  	} else if bytes.Equal(p, pdup) {
   709  		// For BSS symbols, we need to check size as well, see issue 46653.
   710  		szdup := l.SymSize(dup)
   711  		sz := int64(r.Sym(li).Siz())
   712  		if szdup == sz {
   713  			return
   714  		}
   715  		reason = fmt.Sprintf("different sizes: new size %d != old size %d",
   716  			sz, szdup)
   717  	}
   718  	fmt.Fprintf(os.Stderr, "cmd/link: while reading object for '%v': duplicate symbol '%s', previous def at '%v', with mismatched payload: %s\n", r.unit.Lib, name, rdup.unit.Lib, reason)
   719  
   720  	// For the moment, allow DWARF subprogram DIEs for
   721  	// auto-generated wrapper functions. What seems to happen
   722  	// here is that we get different line numbers on formal
   723  	// params; I am guessing that the pos is being inherited
   724  	// from the spot where the wrapper is needed.
   725  	allowed := strings.HasPrefix(name, "go:info.go.interface") ||
   726  		strings.HasPrefix(name, "go:info.go.builtin") ||
   727  		strings.HasPrefix(name, "go:debuglines")
   728  	if !allowed {
   729  		l.strictDupMsgs++
   730  	}
   731  }
   732  
   733  func (l *Loader) NStrictDupMsgs() int { return l.strictDupMsgs }
   734  
   735  // Number of total symbols.
   736  func (l *Loader) NSym() int {
   737  	return len(l.objSyms)
   738  }
   739  
   740  // Number of defined Go symbols.
   741  func (l *Loader) NDef() int {
   742  	return int(l.extStart)
   743  }
   744  
   745  // Number of reachable symbols.
   746  func (l *Loader) NReachableSym() int {
   747  	return l.attrReachable.Count()
   748  }
   749  
   750  // Returns the name of the i-th symbol.
   751  func (l *Loader) SymName(i Sym) string {
   752  	if l.IsExternal(i) {
   753  		pp := l.getPayload(i)
   754  		return pp.name
   755  	}
   756  	r, li := l.toLocal(i)
   757  	if r == nil {
   758  		return "?"
   759  	}
   760  	return r.Sym(li).Name(r.Reader)
   761  }
   762  
   763  // Returns the version of the i-th symbol.
   764  func (l *Loader) SymVersion(i Sym) int {
   765  	if l.IsExternal(i) {
   766  		pp := l.getPayload(i)
   767  		return pp.ver
   768  	}
   769  	r, li := l.toLocal(i)
   770  	return int(abiToVer(r.Sym(li).ABI(), r.version))
   771  }
   772  
   773  func (l *Loader) IsFileLocal(i Sym) bool {
   774  	return l.SymVersion(i) >= sym.SymVerStatic
   775  }
   776  
   777  // IsFromAssembly returns true if this symbol is derived from an
   778  // object file generated by the Go assembler.
   779  func (l *Loader) IsFromAssembly(i Sym) bool {
   780  	if l.IsExternal(i) {
   781  		return false
   782  	}
   783  	r, _ := l.toLocal(i)
   784  	return r.FromAssembly()
   785  }
   786  
   787  // Returns the type of the i-th symbol.
   788  func (l *Loader) SymType(i Sym) sym.SymKind {
   789  	if l.IsExternal(i) {
   790  		pp := l.getPayload(i)
   791  		if pp != nil {
   792  			return pp.kind
   793  		}
   794  		return 0
   795  	}
   796  	r, li := l.toLocal(i)
   797  	return sym.AbiSymKindToSymKind[objabi.SymKind(r.Sym(li).Type())]
   798  }
   799  
   800  // Returns the attributes of the i-th symbol.
   801  func (l *Loader) SymAttr(i Sym) uint8 {
   802  	if l.IsExternal(i) {
   803  		// TODO: do something? External symbols have different representation of attributes.
   804  		// For now, ReflectMethod, NoSplit, GoType, and Typelink are used and they cannot be
   805  		// set by external symbol.
   806  		return 0
   807  	}
   808  	r, li := l.toLocal(i)
   809  	return r.Sym(li).Flag()
   810  }
   811  
   812  // Returns the size of the i-th symbol.
   813  func (l *Loader) SymSize(i Sym) int64 {
   814  	if l.IsExternal(i) {
   815  		pp := l.getPayload(i)
   816  		return pp.size
   817  	}
   818  	r, li := l.toLocal(i)
   819  	return int64(r.Sym(li).Siz())
   820  }
   821  
   822  // AttrReachable returns true for symbols that are transitively
   823  // referenced from the entry points. Unreachable symbols are not
   824  // written to the output.
   825  func (l *Loader) AttrReachable(i Sym) bool {
   826  	return l.attrReachable.Has(i)
   827  }
   828  
   829  // SetAttrReachable sets the reachability property for a symbol (see
   830  // AttrReachable).
   831  func (l *Loader) SetAttrReachable(i Sym, v bool) {
   832  	if v {
   833  		l.attrReachable.Set(i)
   834  	} else {
   835  		l.attrReachable.Unset(i)
   836  	}
   837  }
   838  
   839  // AttrOnList returns true for symbols that are on some list (such as
   840  // the list of all text symbols, or one of the lists of data symbols)
   841  // and is consulted to avoid bugs where a symbol is put on a list
   842  // twice.
   843  func (l *Loader) AttrOnList(i Sym) bool {
   844  	return l.attrOnList.Has(i)
   845  }
   846  
   847  // SetAttrOnList sets the "on list" property for a symbol (see
   848  // AttrOnList).
   849  func (l *Loader) SetAttrOnList(i Sym, v bool) {
   850  	if v {
   851  		l.attrOnList.Set(i)
   852  	} else {
   853  		l.attrOnList.Unset(i)
   854  	}
   855  }
   856  
   857  // AttrLocal returns true for symbols that are only visible within the
   858  // module (executable or shared library) being linked. This attribute
   859  // is applied to thunks and certain other linker-generated symbols.
   860  func (l *Loader) AttrLocal(i Sym) bool {
   861  	return l.attrLocal.Has(i)
   862  }
   863  
   864  // SetAttrLocal the "local" property for a symbol (see AttrLocal above).
   865  func (l *Loader) SetAttrLocal(i Sym, v bool) {
   866  	if v {
   867  		l.attrLocal.Set(i)
   868  	} else {
   869  		l.attrLocal.Unset(i)
   870  	}
   871  }
   872  
   873  // AttrUsedInIface returns true for a type symbol that is used in
   874  // an interface.
   875  func (l *Loader) AttrUsedInIface(i Sym) bool {
   876  	return l.attrUsedInIface.Has(i)
   877  }
   878  
   879  func (l *Loader) SetAttrUsedInIface(i Sym, v bool) {
   880  	if v {
   881  		l.attrUsedInIface.Set(i)
   882  	} else {
   883  		l.attrUsedInIface.Unset(i)
   884  	}
   885  }
   886  
   887  // SymAddr checks that a symbol is reachable, and returns its value.
   888  func (l *Loader) SymAddr(i Sym) int64 {
   889  	if !l.AttrReachable(i) {
   890  		panic("unreachable symbol in symaddr")
   891  	}
   892  	return l.values[i]
   893  }
   894  
   895  // AttrNotInSymbolTable returns true for symbols that should not be
   896  // added to the symbol table of the final generated load module.
   897  func (l *Loader) AttrNotInSymbolTable(i Sym) bool {
   898  	return l.attrNotInSymbolTable.Has(i)
   899  }
   900  
   901  // SetAttrNotInSymbolTable the "not in symtab" property for a symbol
   902  // (see AttrNotInSymbolTable above).
   903  func (l *Loader) SetAttrNotInSymbolTable(i Sym, v bool) {
   904  	if v {
   905  		l.attrNotInSymbolTable.Set(i)
   906  	} else {
   907  		l.attrNotInSymbolTable.Unset(i)
   908  	}
   909  }
   910  
   911  // AttrVisibilityHidden symbols returns true for ELF symbols with
   912  // visibility set to STV_HIDDEN. They become local symbols in
   913  // the final executable. Only relevant when internally linking
   914  // on an ELF platform.
   915  func (l *Loader) AttrVisibilityHidden(i Sym) bool {
   916  	if !l.IsExternal(i) {
   917  		return false
   918  	}
   919  	return l.attrVisibilityHidden.Has(l.extIndex(i))
   920  }
   921  
   922  // SetAttrVisibilityHidden sets the "hidden visibility" property for a
   923  // symbol (see AttrVisibilityHidden).
   924  func (l *Loader) SetAttrVisibilityHidden(i Sym, v bool) {
   925  	if !l.IsExternal(i) {
   926  		panic("tried to set visibility attr on non-external symbol")
   927  	}
   928  	if v {
   929  		l.attrVisibilityHidden.Set(l.extIndex(i))
   930  	} else {
   931  		l.attrVisibilityHidden.Unset(l.extIndex(i))
   932  	}
   933  }
   934  
   935  // AttrDuplicateOK returns true for a symbol that can be present in
   936  // multiple object files.
   937  func (l *Loader) AttrDuplicateOK(i Sym) bool {
   938  	if !l.IsExternal(i) {
   939  		// TODO: if this path winds up being taken frequently, it
   940  		// might make more sense to copy the flag value out of the object
   941  		// into a larger bitmap during preload.
   942  		r, li := l.toLocal(i)
   943  		return r.Sym(li).Dupok()
   944  	}
   945  	return l.attrDuplicateOK.Has(l.extIndex(i))
   946  }
   947  
   948  // SetAttrDuplicateOK sets the "duplicate OK" property for an external
   949  // symbol (see AttrDuplicateOK).
   950  func (l *Loader) SetAttrDuplicateOK(i Sym, v bool) {
   951  	if !l.IsExternal(i) {
   952  		panic("tried to set dupok attr on non-external symbol")
   953  	}
   954  	if v {
   955  		l.attrDuplicateOK.Set(l.extIndex(i))
   956  	} else {
   957  		l.attrDuplicateOK.Unset(l.extIndex(i))
   958  	}
   959  }
   960  
   961  // AttrShared returns true for symbols compiled with the -shared option.
   962  func (l *Loader) AttrShared(i Sym) bool {
   963  	if !l.IsExternal(i) {
   964  		// TODO: if this path winds up being taken frequently, it
   965  		// might make more sense to copy the flag value out of the
   966  		// object into a larger bitmap during preload.
   967  		r, _ := l.toLocal(i)
   968  		return r.Shared()
   969  	}
   970  	return l.attrShared.Has(l.extIndex(i))
   971  }
   972  
   973  // SetAttrShared sets the "shared" property for an external
   974  // symbol (see AttrShared).
   975  func (l *Loader) SetAttrShared(i Sym, v bool) {
   976  	if !l.IsExternal(i) {
   977  		panic(fmt.Sprintf("tried to set shared attr on non-external symbol %d %s", i, l.SymName(i)))
   978  	}
   979  	if v {
   980  		l.attrShared.Set(l.extIndex(i))
   981  	} else {
   982  		l.attrShared.Unset(l.extIndex(i))
   983  	}
   984  }
   985  
   986  // AttrExternal returns true for function symbols loaded from host
   987  // object files.
   988  func (l *Loader) AttrExternal(i Sym) bool {
   989  	if !l.IsExternal(i) {
   990  		return false
   991  	}
   992  	return l.attrExternal.Has(l.extIndex(i))
   993  }
   994  
   995  // SetAttrExternal sets the "external" property for an host object
   996  // symbol (see AttrExternal).
   997  func (l *Loader) SetAttrExternal(i Sym, v bool) {
   998  	if !l.IsExternal(i) {
   999  		panic(fmt.Sprintf("tried to set external attr on non-external symbol %q", l.SymName(i)))
  1000  	}
  1001  	if v {
  1002  		l.attrExternal.Set(l.extIndex(i))
  1003  	} else {
  1004  		l.attrExternal.Unset(l.extIndex(i))
  1005  	}
  1006  }
  1007  
  1008  // AttrSpecial returns true for a symbols that do not have their
  1009  // address (i.e. Value) computed by the usual mechanism of
  1010  // data.go:dodata() & data.go:address().
  1011  func (l *Loader) AttrSpecial(i Sym) bool {
  1012  	_, ok := l.attrSpecial[i]
  1013  	return ok
  1014  }
  1015  
  1016  // SetAttrSpecial sets the "special" property for a symbol (see
  1017  // AttrSpecial).
  1018  func (l *Loader) SetAttrSpecial(i Sym, v bool) {
  1019  	if v {
  1020  		l.attrSpecial[i] = struct{}{}
  1021  	} else {
  1022  		delete(l.attrSpecial, i)
  1023  	}
  1024  }
  1025  
  1026  // AttrCgoExportDynamic returns true for a symbol that has been
  1027  // specially marked via the "cgo_export_dynamic" compiler directive
  1028  // written by cgo (in response to //export directives in the source).
  1029  func (l *Loader) AttrCgoExportDynamic(i Sym) bool {
  1030  	_, ok := l.attrCgoExportDynamic[i]
  1031  	return ok
  1032  }
  1033  
  1034  // SetAttrCgoExportDynamic sets the "cgo_export_dynamic" for a symbol
  1035  // (see AttrCgoExportDynamic).
  1036  func (l *Loader) SetAttrCgoExportDynamic(i Sym, v bool) {
  1037  	if v {
  1038  		l.attrCgoExportDynamic[i] = struct{}{}
  1039  	} else {
  1040  		delete(l.attrCgoExportDynamic, i)
  1041  	}
  1042  }
  1043  
  1044  // AttrCgoExportStatic returns true for a symbol that has been
  1045  // specially marked via the "cgo_export_static" directive
  1046  // written by cgo.
  1047  func (l *Loader) AttrCgoExportStatic(i Sym) bool {
  1048  	_, ok := l.attrCgoExportStatic[i]
  1049  	return ok
  1050  }
  1051  
  1052  // SetAttrCgoExportStatic sets the "cgo_export_static" for a symbol
  1053  // (see AttrCgoExportStatic).
  1054  func (l *Loader) SetAttrCgoExportStatic(i Sym, v bool) {
  1055  	if v {
  1056  		l.attrCgoExportStatic[i] = struct{}{}
  1057  	} else {
  1058  		delete(l.attrCgoExportStatic, i)
  1059  	}
  1060  }
  1061  
  1062  // IsGeneratedSym returns true if a symbol's been previously marked as a
  1063  // generator symbol through the SetIsGeneratedSym. The functions for generator
  1064  // symbols are kept in the Link context.
  1065  func (l *Loader) IsGeneratedSym(i Sym) bool {
  1066  	_, ok := l.generatedSyms[i]
  1067  	return ok
  1068  }
  1069  
  1070  // SetIsGeneratedSym marks symbols as generated symbols. Data shouldn't be
  1071  // stored in generated symbols, and a function is registered and called for
  1072  // each of these symbols.
  1073  func (l *Loader) SetIsGeneratedSym(i Sym, v bool) {
  1074  	if !l.IsExternal(i) {
  1075  		panic("only external symbols can be generated")
  1076  	}
  1077  	if v {
  1078  		l.generatedSyms[i] = struct{}{}
  1079  	} else {
  1080  		delete(l.generatedSyms, i)
  1081  	}
  1082  }
  1083  
  1084  func (l *Loader) AttrCgoExport(i Sym) bool {
  1085  	return l.AttrCgoExportDynamic(i) || l.AttrCgoExportStatic(i)
  1086  }
  1087  
  1088  // AttrReadOnly returns true for a symbol whose underlying data
  1089  // is stored via a read-only mmap.
  1090  func (l *Loader) AttrReadOnly(i Sym) bool {
  1091  	if v, ok := l.attrReadOnly[i]; ok {
  1092  		return v
  1093  	}
  1094  	if l.IsExternal(i) {
  1095  		pp := l.getPayload(i)
  1096  		if pp.objidx != 0 {
  1097  			return l.objs[pp.objidx].r.ReadOnly()
  1098  		}
  1099  		return false
  1100  	}
  1101  	r, _ := l.toLocal(i)
  1102  	return r.ReadOnly()
  1103  }
  1104  
  1105  // SetAttrReadOnly sets the "data is read only" property for a symbol
  1106  // (see AttrReadOnly).
  1107  func (l *Loader) SetAttrReadOnly(i Sym, v bool) {
  1108  	l.attrReadOnly[i] = v
  1109  }
  1110  
  1111  // AttrSubSymbol returns true for symbols that are listed as a
  1112  // sub-symbol of some other outer symbol. The sub/outer mechanism is
  1113  // used when loading host objects (sections from the host object
  1114  // become regular linker symbols and symbols go on the Sub list of
  1115  // their section) and for constructing the global offset table when
  1116  // internally linking a dynamic executable.
  1117  //
  1118  // Note that in later stages of the linker, we set Outer(S) to some
  1119  // container symbol C, but don't set Sub(C). Thus we have two
  1120  // distinct scenarios:
  1121  //
  1122  // - Outer symbol covers the address ranges of its sub-symbols.
  1123  //   Outer.Sub is set in this case.
  1124  // - Outer symbol doesn't conver the address ranges. It is zero-sized
  1125  //   and doesn't have sub-symbols. In the case, the inner symbol is
  1126  //   not actually a "SubSymbol". (Tricky!)
  1127  //
  1128  // This method returns TRUE only for sub-symbols in the first scenario.
  1129  //
  1130  // FIXME: would be better to do away with this and have a better way
  1131  // to represent container symbols.
  1132  
  1133  func (l *Loader) AttrSubSymbol(i Sym) bool {
  1134  	// we don't explicitly store this attribute any more -- return
  1135  	// a value based on the sub-symbol setting.
  1136  	o := l.OuterSym(i)
  1137  	if o == 0 {
  1138  		return false
  1139  	}
  1140  	return l.SubSym(o) != 0
  1141  }
  1142  
  1143  // Note that we don't have a 'SetAttrSubSymbol' method in the loader;
  1144  // clients should instead use the AddInteriorSym method to establish
  1145  // containment relationships for host object symbols.
  1146  
  1147  // Returns whether the i-th symbol has ReflectMethod attribute set.
  1148  func (l *Loader) IsReflectMethod(i Sym) bool {
  1149  	return l.SymAttr(i)&goobj.SymFlagReflectMethod != 0
  1150  }
  1151  
  1152  // Returns whether the i-th symbol is nosplit.
  1153  func (l *Loader) IsNoSplit(i Sym) bool {
  1154  	return l.SymAttr(i)&goobj.SymFlagNoSplit != 0
  1155  }
  1156  
  1157  // Returns whether this is a Go type symbol.
  1158  func (l *Loader) IsGoType(i Sym) bool {
  1159  	return l.SymAttr(i)&goobj.SymFlagGoType != 0
  1160  }
  1161  
  1162  // Returns whether this symbol should be included in typelink.
  1163  func (l *Loader) IsTypelink(i Sym) bool {
  1164  	return l.SymAttr(i)&goobj.SymFlagTypelink != 0
  1165  }
  1166  
  1167  // Returns whether this symbol is an itab symbol.
  1168  func (l *Loader) IsItab(i Sym) bool {
  1169  	if l.IsExternal(i) {
  1170  		return false
  1171  	}
  1172  	r, li := l.toLocal(i)
  1173  	return r.Sym(li).IsItab()
  1174  }
  1175  
  1176  // Returns whether this symbol is a dictionary symbol.
  1177  func (l *Loader) IsDict(i Sym) bool {
  1178  	if l.IsExternal(i) {
  1179  		return false
  1180  	}
  1181  	r, li := l.toLocal(i)
  1182  	return r.Sym(li).IsDict()
  1183  }
  1184  
  1185  // Return whether this is a trampoline of a deferreturn call.
  1186  func (l *Loader) IsDeferReturnTramp(i Sym) bool {
  1187  	return l.deferReturnTramp[i]
  1188  }
  1189  
  1190  // Set that i is a trampoline of a deferreturn call.
  1191  func (l *Loader) SetIsDeferReturnTramp(i Sym, v bool) {
  1192  	l.deferReturnTramp[i] = v
  1193  }
  1194  
  1195  // growValues grows the slice used to store symbol values.
  1196  func (l *Loader) growValues(reqLen int) {
  1197  	curLen := len(l.values)
  1198  	if reqLen > curLen {
  1199  		l.values = append(l.values, make([]int64, reqLen+1-curLen)...)
  1200  	}
  1201  }
  1202  
  1203  // SymValue returns the value of the i-th symbol. i is global index.
  1204  func (l *Loader) SymValue(i Sym) int64 {
  1205  	return l.values[i]
  1206  }
  1207  
  1208  // SetSymValue sets the value of the i-th symbol. i is global index.
  1209  func (l *Loader) SetSymValue(i Sym, val int64) {
  1210  	l.values[i] = val
  1211  }
  1212  
  1213  // AddToSymValue adds to the value of the i-th symbol. i is the global index.
  1214  func (l *Loader) AddToSymValue(i Sym, val int64) {
  1215  	l.values[i] += val
  1216  }
  1217  
  1218  // Returns the symbol content of the i-th symbol. i is global index.
  1219  func (l *Loader) Data(i Sym) []byte {
  1220  	if l.IsExternal(i) {
  1221  		pp := l.getPayload(i)
  1222  		if pp != nil {
  1223  			return pp.data
  1224  		}
  1225  		return nil
  1226  	}
  1227  	r, li := l.toLocal(i)
  1228  	return r.Data(li)
  1229  }
  1230  
  1231  // FreeData clears the symbol data of an external symbol, allowing the memory
  1232  // to be freed earlier. No-op for non-external symbols.
  1233  // i is global index.
  1234  func (l *Loader) FreeData(i Sym) {
  1235  	if l.IsExternal(i) {
  1236  		pp := l.getPayload(i)
  1237  		if pp != nil {
  1238  			pp.data = nil
  1239  		}
  1240  	}
  1241  }
  1242  
  1243  // SymAlign returns the alignment for a symbol.
  1244  func (l *Loader) SymAlign(i Sym) int32 {
  1245  	if int(i) >= len(l.align) {
  1246  		// align is extended lazily -- it the sym in question is
  1247  		// outside the range of the existing slice, then we assume its
  1248  		// alignment has not yet been set.
  1249  		return 0
  1250  	}
  1251  	// TODO: would it make sense to return an arch-specific
  1252  	// alignment depending on section type? E.g. STEXT => 32,
  1253  	// SDATA => 1, etc?
  1254  	abits := l.align[i]
  1255  	if abits == 0 {
  1256  		return 0
  1257  	}
  1258  	return int32(1 << (abits - 1))
  1259  }
  1260  
  1261  // SetSymAlign sets the alignment for a symbol.
  1262  func (l *Loader) SetSymAlign(i Sym, align int32) {
  1263  	// Reject nonsense alignments.
  1264  	if align < 0 || align&(align-1) != 0 {
  1265  		panic("bad alignment value")
  1266  	}
  1267  	if int(i) >= len(l.align) {
  1268  		l.align = append(l.align, make([]uint8, l.NSym()-len(l.align))...)
  1269  	}
  1270  	if align == 0 {
  1271  		l.align[i] = 0
  1272  	}
  1273  	l.align[i] = uint8(bits.Len32(uint32(align)))
  1274  }
  1275  
  1276  // SymValue returns the section of the i-th symbol. i is global index.
  1277  func (l *Loader) SymSect(i Sym) *sym.Section {
  1278  	if int(i) >= len(l.symSects) {
  1279  		// symSects is extended lazily -- it the sym in question is
  1280  		// outside the range of the existing slice, then we assume its
  1281  		// section has not yet been set.
  1282  		return nil
  1283  	}
  1284  	return l.sects[l.symSects[i]]
  1285  }
  1286  
  1287  // SetSymSect sets the section of the i-th symbol. i is global index.
  1288  func (l *Loader) SetSymSect(i Sym, sect *sym.Section) {
  1289  	if int(i) >= len(l.symSects) {
  1290  		l.symSects = append(l.symSects, make([]uint16, l.NSym()-len(l.symSects))...)
  1291  	}
  1292  	l.symSects[i] = sect.Index
  1293  }
  1294  
  1295  // growSects grows the slice used to store symbol sections.
  1296  func (l *Loader) growSects(reqLen int) {
  1297  	curLen := len(l.symSects)
  1298  	if reqLen > curLen {
  1299  		l.symSects = append(l.symSects, make([]uint16, reqLen+1-curLen)...)
  1300  	}
  1301  }
  1302  
  1303  // NewSection creates a new (output) section.
  1304  func (l *Loader) NewSection() *sym.Section {
  1305  	sect := new(sym.Section)
  1306  	idx := len(l.sects)
  1307  	if idx != int(uint16(idx)) {
  1308  		panic("too many sections created")
  1309  	}
  1310  	sect.Index = uint16(idx)
  1311  	l.sects = append(l.sects, sect)
  1312  	return sect
  1313  }
  1314  
  1315  // SymDynImplib returns the "dynimplib" attribute for the specified
  1316  // symbol, making up a portion of the info for a symbol specified
  1317  // on a "cgo_import_dynamic" compiler directive.
  1318  func (l *Loader) SymDynimplib(i Sym) string {
  1319  	return l.dynimplib[i]
  1320  }
  1321  
  1322  // SetSymDynimplib sets the "dynimplib" attribute for a symbol.
  1323  func (l *Loader) SetSymDynimplib(i Sym, value string) {
  1324  	// reject bad symbols
  1325  	if i >= Sym(len(l.objSyms)) || i == 0 {
  1326  		panic("bad symbol index in SetDynimplib")
  1327  	}
  1328  	if value == "" {
  1329  		delete(l.dynimplib, i)
  1330  	} else {
  1331  		l.dynimplib[i] = value
  1332  	}
  1333  }
  1334  
  1335  // SymDynimpvers returns the "dynimpvers" attribute for the specified
  1336  // symbol, making up a portion of the info for a symbol specified
  1337  // on a "cgo_import_dynamic" compiler directive.
  1338  func (l *Loader) SymDynimpvers(i Sym) string {
  1339  	return l.dynimpvers[i]
  1340  }
  1341  
  1342  // SetSymDynimpvers sets the "dynimpvers" attribute for a symbol.
  1343  func (l *Loader) SetSymDynimpvers(i Sym, value string) {
  1344  	// reject bad symbols
  1345  	if i >= Sym(len(l.objSyms)) || i == 0 {
  1346  		panic("bad symbol index in SetDynimpvers")
  1347  	}
  1348  	if value == "" {
  1349  		delete(l.dynimpvers, i)
  1350  	} else {
  1351  		l.dynimpvers[i] = value
  1352  	}
  1353  }
  1354  
  1355  // SymExtname returns the "extname" value for the specified
  1356  // symbol.
  1357  func (l *Loader) SymExtname(i Sym) string {
  1358  	if s, ok := l.extname[i]; ok {
  1359  		return s
  1360  	}
  1361  	return l.SymName(i)
  1362  }
  1363  
  1364  // SetSymExtname sets the  "extname" attribute for a symbol.
  1365  func (l *Loader) SetSymExtname(i Sym, value string) {
  1366  	// reject bad symbols
  1367  	if i >= Sym(len(l.objSyms)) || i == 0 {
  1368  		panic("bad symbol index in SetExtname")
  1369  	}
  1370  	if value == "" {
  1371  		delete(l.extname, i)
  1372  	} else {
  1373  		l.extname[i] = value
  1374  	}
  1375  }
  1376  
  1377  // SymElfType returns the previously recorded ELF type for a symbol
  1378  // (used only for symbols read from shared libraries by ldshlibsyms).
  1379  // It is not set for symbols defined by the packages being linked or
  1380  // by symbols read by ldelf (and so is left as elf.STT_NOTYPE).
  1381  func (l *Loader) SymElfType(i Sym) elf.SymType {
  1382  	if et, ok := l.elfType[i]; ok {
  1383  		return et
  1384  	}
  1385  	return elf.STT_NOTYPE
  1386  }
  1387  
  1388  // SetSymElfType sets the elf type attribute for a symbol.
  1389  func (l *Loader) SetSymElfType(i Sym, et elf.SymType) {
  1390  	// reject bad symbols
  1391  	if i >= Sym(len(l.objSyms)) || i == 0 {
  1392  		panic("bad symbol index in SetSymElfType")
  1393  	}
  1394  	if et == elf.STT_NOTYPE {
  1395  		delete(l.elfType, i)
  1396  	} else {
  1397  		l.elfType[i] = et
  1398  	}
  1399  }
  1400  
  1401  // SymElfSym returns the ELF symbol index for a given loader
  1402  // symbol, assigned during ELF symtab generation.
  1403  func (l *Loader) SymElfSym(i Sym) int32 {
  1404  	return l.elfSym[i]
  1405  }
  1406  
  1407  // SetSymElfSym sets the elf symbol index for a symbol.
  1408  func (l *Loader) SetSymElfSym(i Sym, es int32) {
  1409  	if i == 0 {
  1410  		panic("bad sym index")
  1411  	}
  1412  	if es == 0 {
  1413  		delete(l.elfSym, i)
  1414  	} else {
  1415  		l.elfSym[i] = es
  1416  	}
  1417  }
  1418  
  1419  // SymLocalElfSym returns the "local" ELF symbol index for a given loader
  1420  // symbol, assigned during ELF symtab generation.
  1421  func (l *Loader) SymLocalElfSym(i Sym) int32 {
  1422  	return l.localElfSym[i]
  1423  }
  1424  
  1425  // SetSymLocalElfSym sets the "local" elf symbol index for a symbol.
  1426  func (l *Loader) SetSymLocalElfSym(i Sym, es int32) {
  1427  	if i == 0 {
  1428  		panic("bad sym index")
  1429  	}
  1430  	if es == 0 {
  1431  		delete(l.localElfSym, i)
  1432  	} else {
  1433  		l.localElfSym[i] = es
  1434  	}
  1435  }
  1436  
  1437  // SymPlt returns the PLT offset of symbol s.
  1438  func (l *Loader) SymPlt(s Sym) int32 {
  1439  	if v, ok := l.plt[s]; ok {
  1440  		return v
  1441  	}
  1442  	return -1
  1443  }
  1444  
  1445  // SetPlt sets the PLT offset of symbol i.
  1446  func (l *Loader) SetPlt(i Sym, v int32) {
  1447  	if i >= Sym(len(l.objSyms)) || i == 0 {
  1448  		panic("bad symbol for SetPlt")
  1449  	}
  1450  	if v == -1 {
  1451  		delete(l.plt, i)
  1452  	} else {
  1453  		l.plt[i] = v
  1454  	}
  1455  }
  1456  
  1457  // SymGot returns the GOT offset of symbol s.
  1458  func (l *Loader) SymGot(s Sym) int32 {
  1459  	if v, ok := l.got[s]; ok {
  1460  		return v
  1461  	}
  1462  	return -1
  1463  }
  1464  
  1465  // SetGot sets the GOT offset of symbol i.
  1466  func (l *Loader) SetGot(i Sym, v int32) {
  1467  	if i >= Sym(len(l.objSyms)) || i == 0 {
  1468  		panic("bad symbol for SetGot")
  1469  	}
  1470  	if v == -1 {
  1471  		delete(l.got, i)
  1472  	} else {
  1473  		l.got[i] = v
  1474  	}
  1475  }
  1476  
  1477  // SymDynid returns the "dynid" property for the specified symbol.
  1478  func (l *Loader) SymDynid(i Sym) int32 {
  1479  	if s, ok := l.dynid[i]; ok {
  1480  		return s
  1481  	}
  1482  	return -1
  1483  }
  1484  
  1485  // SetSymDynid sets the "dynid" property for a symbol.
  1486  func (l *Loader) SetSymDynid(i Sym, val int32) {
  1487  	// reject bad symbols
  1488  	if i >= Sym(len(l.objSyms)) || i == 0 {
  1489  		panic("bad symbol index in SetSymDynid")
  1490  	}
  1491  	if val == -1 {
  1492  		delete(l.dynid, i)
  1493  	} else {
  1494  		l.dynid[i] = val
  1495  	}
  1496  }
  1497  
  1498  // DynIdSyms returns the set of symbols for which dynID is set to an
  1499  // interesting (non-default) value. This is expected to be a fairly
  1500  // small set.
  1501  func (l *Loader) DynidSyms() []Sym {
  1502  	sl := make([]Sym, 0, len(l.dynid))
  1503  	for s := range l.dynid {
  1504  		sl = append(sl, s)
  1505  	}
  1506  	sort.Slice(sl, func(i, j int) bool { return sl[i] < sl[j] })
  1507  	return sl
  1508  }
  1509  
  1510  // SymGoType returns the 'Gotype' property for a given symbol (set by
  1511  // the Go compiler for variable symbols). This version relies on
  1512  // reading aux symbols for the target sym -- it could be that a faster
  1513  // approach would be to check for gotype during preload and copy the
  1514  // results in to a map (might want to try this at some point and see
  1515  // if it helps speed things up).
  1516  func (l *Loader) SymGoType(i Sym) Sym { return l.aux1(i, goobj.AuxGotype) }
  1517  
  1518  // SymUnit returns the compilation unit for a given symbol (which will
  1519  // typically be nil for external or linker-manufactured symbols).
  1520  func (l *Loader) SymUnit(i Sym) *sym.CompilationUnit {
  1521  	if l.IsExternal(i) {
  1522  		pp := l.getPayload(i)
  1523  		if pp.objidx != 0 {
  1524  			r := l.objs[pp.objidx].r
  1525  			return r.unit
  1526  		}
  1527  		return nil
  1528  	}
  1529  	r, _ := l.toLocal(i)
  1530  	return r.unit
  1531  }
  1532  
  1533  // SymPkg returns the package where the symbol came from (for
  1534  // regular compiler-generated Go symbols), but in the case of
  1535  // building with "-linkshared" (when a symbol is read from a
  1536  // shared library), will hold the library name.
  1537  // NOTE: this corresponds to sym.Symbol.File field.
  1538  func (l *Loader) SymPkg(i Sym) string {
  1539  	if f, ok := l.symPkg[i]; ok {
  1540  		return f
  1541  	}
  1542  	if l.IsExternal(i) {
  1543  		pp := l.getPayload(i)
  1544  		if pp.objidx != 0 {
  1545  			r := l.objs[pp.objidx].r
  1546  			return r.unit.Lib.Pkg
  1547  		}
  1548  		return ""
  1549  	}
  1550  	r, _ := l.toLocal(i)
  1551  	return r.unit.Lib.Pkg
  1552  }
  1553  
  1554  // SetSymPkg sets the package/library for a symbol. This is
  1555  // needed mainly for external symbols, specifically those imported
  1556  // from shared libraries.
  1557  func (l *Loader) SetSymPkg(i Sym, pkg string) {
  1558  	// reject bad symbols
  1559  	if i >= Sym(len(l.objSyms)) || i == 0 {
  1560  		panic("bad symbol index in SetSymPkg")
  1561  	}
  1562  	l.symPkg[i] = pkg
  1563  }
  1564  
  1565  // SymLocalentry returns an offset in bytes of the "local entry" of a symbol.
  1566  func (l *Loader) SymLocalentry(i Sym) uint8 {
  1567  	return l.localentry[i]
  1568  }
  1569  
  1570  // SetSymLocalentry sets the "local entry" offset attribute for a symbol.
  1571  func (l *Loader) SetSymLocalentry(i Sym, value uint8) {
  1572  	// reject bad symbols
  1573  	if i >= Sym(len(l.objSyms)) || i == 0 {
  1574  		panic("bad symbol index in SetSymLocalentry")
  1575  	}
  1576  	if value == 0 {
  1577  		delete(l.localentry, i)
  1578  	} else {
  1579  		l.localentry[i] = value
  1580  	}
  1581  }
  1582  
  1583  // Returns the number of aux symbols given a global index.
  1584  func (l *Loader) NAux(i Sym) int {
  1585  	if l.IsExternal(i) {
  1586  		return 0
  1587  	}
  1588  	r, li := l.toLocal(i)
  1589  	return r.NAux(li)
  1590  }
  1591  
  1592  // Returns the "handle" to the j-th aux symbol of the i-th symbol.
  1593  func (l *Loader) Aux(i Sym, j int) Aux {
  1594  	if l.IsExternal(i) {
  1595  		return Aux{}
  1596  	}
  1597  	r, li := l.toLocal(i)
  1598  	if j >= r.NAux(li) {
  1599  		return Aux{}
  1600  	}
  1601  	return Aux{r.Aux(li, j), r, l}
  1602  }
  1603  
  1604  // GetFuncDwarfAuxSyms collects and returns the auxiliary DWARF
  1605  // symbols associated with a given function symbol.  Prior to the
  1606  // introduction of the loader, this was done purely using name
  1607  // lookups, e.f. for function with name XYZ we would then look up
  1608  // go.info.XYZ, etc.
  1609  func (l *Loader) GetFuncDwarfAuxSyms(fnSymIdx Sym) (auxDwarfInfo, auxDwarfLoc, auxDwarfRanges, auxDwarfLines Sym) {
  1610  	if l.SymType(fnSymIdx) != sym.STEXT {
  1611  		log.Fatalf("error: non-function sym %d/%s t=%s passed to GetFuncDwarfAuxSyms", fnSymIdx, l.SymName(fnSymIdx), l.SymType(fnSymIdx).String())
  1612  	}
  1613  	r, auxs := l.auxs(fnSymIdx)
  1614  
  1615  	for i := range auxs {
  1616  		a := &auxs[i]
  1617  		switch a.Type() {
  1618  		case goobj.AuxDwarfInfo:
  1619  			auxDwarfInfo = l.resolve(r, a.Sym())
  1620  			if l.SymType(auxDwarfInfo) != sym.SDWARFFCN {
  1621  				panic("aux dwarf info sym with wrong type")
  1622  			}
  1623  		case goobj.AuxDwarfLoc:
  1624  			auxDwarfLoc = l.resolve(r, a.Sym())
  1625  			if l.SymType(auxDwarfLoc) != sym.SDWARFLOC {
  1626  				panic("aux dwarf loc sym with wrong type")
  1627  			}
  1628  		case goobj.AuxDwarfRanges:
  1629  			auxDwarfRanges = l.resolve(r, a.Sym())
  1630  			if l.SymType(auxDwarfRanges) != sym.SDWARFRANGE {
  1631  				panic("aux dwarf ranges sym with wrong type")
  1632  			}
  1633  		case goobj.AuxDwarfLines:
  1634  			auxDwarfLines = l.resolve(r, a.Sym())
  1635  			if l.SymType(auxDwarfLines) != sym.SDWARFLINES {
  1636  				panic("aux dwarf lines sym with wrong type")
  1637  			}
  1638  		}
  1639  	}
  1640  	return
  1641  }
  1642  
  1643  // AddInteriorSym sets up 'interior' as an interior symbol of
  1644  // container/payload symbol 'container'. An interior symbol does not
  1645  // itself have data, but gives a name to a subrange of the data in its
  1646  // container symbol. The container itself may or may not have a name.
  1647  // This method is intended primarily for use in the host object
  1648  // loaders, to capture the semantics of symbols and sections in an
  1649  // object file. When reading a host object file, we'll typically
  1650  // encounter a static section symbol (ex: ".text") containing content
  1651  // for a collection of functions, then a series of ELF (or macho, etc)
  1652  // symbol table entries each of which points into a sub-section
  1653  // (offset and length) of its corresponding container symbol. Within
  1654  // the go linker we create a loader.Sym for the container (which is
  1655  // expected to have the actual content/payload) and then a set of
  1656  // interior loader.Sym's that point into a portion of the container.
  1657  func (l *Loader) AddInteriorSym(container Sym, interior Sym) {
  1658  	// Container symbols are expected to have content/data.
  1659  	// NB: this restriction may turn out to be too strict (it's possible
  1660  	// to imagine a zero-sized container with an interior symbol pointing
  1661  	// into it); it's ok to relax or remove it if we counter an
  1662  	// oddball host object that triggers this.
  1663  	if l.SymSize(container) == 0 && len(l.Data(container)) == 0 {
  1664  		panic("unexpected empty container symbol")
  1665  	}
  1666  	// The interior symbols for a container are not expected to have
  1667  	// content/data or relocations.
  1668  	if len(l.Data(interior)) != 0 {
  1669  		panic("unexpected non-empty interior symbol")
  1670  	}
  1671  	// Interior symbol is expected to be in the symbol table.
  1672  	if l.AttrNotInSymbolTable(interior) {
  1673  		panic("interior symbol must be in symtab")
  1674  	}
  1675  	// Only a single level of containment is allowed.
  1676  	if l.OuterSym(container) != 0 {
  1677  		panic("outer has outer itself")
  1678  	}
  1679  	// Interior sym should not already have a sibling.
  1680  	if l.SubSym(interior) != 0 {
  1681  		panic("sub set for subsym")
  1682  	}
  1683  	// Interior sym should not already point at a container.
  1684  	if l.OuterSym(interior) != 0 {
  1685  		panic("outer already set for subsym")
  1686  	}
  1687  	l.sub[interior] = l.sub[container]
  1688  	l.sub[container] = interior
  1689  	l.outer[interior] = container
  1690  }
  1691  
  1692  // OuterSym gets the outer symbol for host object loaded symbols.
  1693  func (l *Loader) OuterSym(i Sym) Sym {
  1694  	// FIXME: add check for isExternal?
  1695  	return l.outer[i]
  1696  }
  1697  
  1698  // SubSym gets the subsymbol for host object loaded symbols.
  1699  func (l *Loader) SubSym(i Sym) Sym {
  1700  	// NB: note -- no check for l.isExternal(), since I am pretty sure
  1701  	// that later phases in the linker set subsym for "type:" syms
  1702  	return l.sub[i]
  1703  }
  1704  
  1705  // SetCarrierSym declares that 'c' is the carrier or container symbol
  1706  // for 's'. Carrier symbols are used in the linker to as a container
  1707  // for a collection of sub-symbols where the content of the
  1708  // sub-symbols is effectively concatenated to form the content of the
  1709  // carrier. The carrier is given a name in the output symbol table
  1710  // while the sub-symbol names are not. For example, the Go compiler
  1711  // emits named string symbols (type SGOSTRING) when compiling a
  1712  // package; after being deduplicated, these symbols are collected into
  1713  // a single unit by assigning them a new carrier symbol named
  1714  // "go:string.*" (which appears in the final symbol table for the
  1715  // output load module).
  1716  func (l *Loader) SetCarrierSym(s Sym, c Sym) {
  1717  	if c == 0 {
  1718  		panic("invalid carrier in SetCarrierSym")
  1719  	}
  1720  	if s == 0 {
  1721  		panic("invalid sub-symbol in SetCarrierSym")
  1722  	}
  1723  	// Carrier symbols are not expected to have content/data. It is
  1724  	// ok for them to have non-zero size (to allow for use of generator
  1725  	// symbols).
  1726  	if len(l.Data(c)) != 0 {
  1727  		panic("unexpected non-empty carrier symbol")
  1728  	}
  1729  	l.outer[s] = c
  1730  	// relocsym's foldSubSymbolOffset requires that we only
  1731  	// have a single level of containment-- enforce here.
  1732  	if l.outer[c] != 0 {
  1733  		panic("invalid nested carrier sym")
  1734  	}
  1735  }
  1736  
  1737  // Initialize Reachable bitmap and its siblings for running deadcode pass.
  1738  func (l *Loader) InitReachable() {
  1739  	l.growAttrBitmaps(l.NSym() + 1)
  1740  }
  1741  
  1742  type symWithVal struct {
  1743  	s Sym
  1744  	v int64
  1745  }
  1746  type bySymValue []symWithVal
  1747  
  1748  func (s bySymValue) Len() int           { return len(s) }
  1749  func (s bySymValue) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
  1750  func (s bySymValue) Less(i, j int) bool { return s[i].v < s[j].v }
  1751  
  1752  // SortSub walks through the sub-symbols for 's' and sorts them
  1753  // in place by increasing value. Return value is the new
  1754  // sub symbol for the specified outer symbol.
  1755  func (l *Loader) SortSub(s Sym) Sym {
  1756  
  1757  	if s == 0 || l.sub[s] == 0 {
  1758  		return s
  1759  	}
  1760  
  1761  	// Sort symbols using a slice first. Use a stable sort on the off
  1762  	// chance that there's more than once symbol with the same value,
  1763  	// so as to preserve reproducible builds.
  1764  	sl := []symWithVal{}
  1765  	for ss := l.sub[s]; ss != 0; ss = l.sub[ss] {
  1766  		sl = append(sl, symWithVal{s: ss, v: l.SymValue(ss)})
  1767  	}
  1768  	sort.Stable(bySymValue(sl))
  1769  
  1770  	// Then apply any changes needed to the sub map.
  1771  	ns := Sym(0)
  1772  	for i := len(sl) - 1; i >= 0; i-- {
  1773  		s := sl[i].s
  1774  		l.sub[s] = ns
  1775  		ns = s
  1776  	}
  1777  
  1778  	// Update sub for outer symbol, then return
  1779  	l.sub[s] = sl[0].s
  1780  	return sl[0].s
  1781  }
  1782  
  1783  // SortSyms sorts a list of symbols by their value.
  1784  func (l *Loader) SortSyms(ss []Sym) {
  1785  	sort.SliceStable(ss, func(i, j int) bool { return l.SymValue(ss[i]) < l.SymValue(ss[j]) })
  1786  }
  1787  
  1788  // Insure that reachable bitmap and its siblings have enough size.
  1789  func (l *Loader) growAttrBitmaps(reqLen int) {
  1790  	if reqLen > l.attrReachable.Len() {
  1791  		// These are indexed by global symbol
  1792  		l.attrReachable = growBitmap(reqLen, l.attrReachable)
  1793  		l.attrOnList = growBitmap(reqLen, l.attrOnList)
  1794  		l.attrLocal = growBitmap(reqLen, l.attrLocal)
  1795  		l.attrNotInSymbolTable = growBitmap(reqLen, l.attrNotInSymbolTable)
  1796  		l.attrUsedInIface = growBitmap(reqLen, l.attrUsedInIface)
  1797  	}
  1798  	l.growExtAttrBitmaps()
  1799  }
  1800  
  1801  func (l *Loader) growExtAttrBitmaps() {
  1802  	// These are indexed by external symbol index (e.g. l.extIndex(i))
  1803  	extReqLen := len(l.payloads)
  1804  	if extReqLen > l.attrVisibilityHidden.Len() {
  1805  		l.attrVisibilityHidden = growBitmap(extReqLen, l.attrVisibilityHidden)
  1806  		l.attrDuplicateOK = growBitmap(extReqLen, l.attrDuplicateOK)
  1807  		l.attrShared = growBitmap(extReqLen, l.attrShared)
  1808  		l.attrExternal = growBitmap(extReqLen, l.attrExternal)
  1809  	}
  1810  }
  1811  
  1812  func (relocs *Relocs) Count() int { return len(relocs.rs) }
  1813  
  1814  // At returns the j-th reloc for a global symbol.
  1815  func (relocs *Relocs) At(j int) Reloc {
  1816  	if relocs.l.isExtReader(relocs.r) {
  1817  		return Reloc{&relocs.rs[j], relocs.r, relocs.l}
  1818  	}
  1819  	return Reloc{&relocs.rs[j], relocs.r, relocs.l}
  1820  }
  1821  
  1822  // Relocs returns a Relocs object for the given global sym.
  1823  func (l *Loader) Relocs(i Sym) Relocs {
  1824  	r, li := l.toLocal(i)
  1825  	if r == nil {
  1826  		panic(fmt.Sprintf("trying to get oreader for invalid sym %d\n\n", i))
  1827  	}
  1828  	return l.relocs(r, li)
  1829  }
  1830  
  1831  // Relocs returns a Relocs object given a local sym index and reader.
  1832  func (l *Loader) relocs(r *oReader, li uint32) Relocs {
  1833  	var rs []goobj.Reloc
  1834  	if l.isExtReader(r) {
  1835  		pp := l.payloads[li]
  1836  		rs = pp.relocs
  1837  	} else {
  1838  		rs = r.Relocs(li)
  1839  	}
  1840  	return Relocs{
  1841  		rs: rs,
  1842  		li: li,
  1843  		r:  r,
  1844  		l:  l,
  1845  	}
  1846  }
  1847  
  1848  func (l *Loader) auxs(i Sym) (*oReader, []goobj.Aux) {
  1849  	if l.IsExternal(i) {
  1850  		pp := l.getPayload(i)
  1851  		return l.objs[pp.objidx].r, pp.auxs
  1852  	} else {
  1853  		r, li := l.toLocal(i)
  1854  		return r, r.Auxs(li)
  1855  	}
  1856  }
  1857  
  1858  // Returns a specific aux symbol of type t for symbol i.
  1859  func (l *Loader) aux1(i Sym, t uint8) Sym {
  1860  	r, auxs := l.auxs(i)
  1861  	for j := range auxs {
  1862  		a := &auxs[j]
  1863  		if a.Type() == t {
  1864  			return l.resolve(r, a.Sym())
  1865  		}
  1866  	}
  1867  	return 0
  1868  }
  1869  
  1870  func (l *Loader) Pcsp(i Sym) Sym { return l.aux1(i, goobj.AuxPcsp) }
  1871  
  1872  // Returns all aux symbols of per-PC data for symbol i.
  1873  // tmp is a scratch space for the pcdata slice.
  1874  func (l *Loader) PcdataAuxs(i Sym, tmp []Sym) (pcsp, pcfile, pcline, pcinline Sym, pcdata []Sym) {
  1875  	pcdata = tmp[:0]
  1876  	r, auxs := l.auxs(i)
  1877  	for j := range auxs {
  1878  		a := &auxs[j]
  1879  		switch a.Type() {
  1880  		case goobj.AuxPcsp:
  1881  			pcsp = l.resolve(r, a.Sym())
  1882  		case goobj.AuxPcline:
  1883  			pcline = l.resolve(r, a.Sym())
  1884  		case goobj.AuxPcfile:
  1885  			pcfile = l.resolve(r, a.Sym())
  1886  		case goobj.AuxPcinline:
  1887  			pcinline = l.resolve(r, a.Sym())
  1888  		case goobj.AuxPcdata:
  1889  			pcdata = append(pcdata, l.resolve(r, a.Sym()))
  1890  		}
  1891  	}
  1892  	return
  1893  }
  1894  
  1895  // Returns the number of pcdata for symbol i.
  1896  func (l *Loader) NumPcdata(i Sym) int {
  1897  	n := 0
  1898  	_, auxs := l.auxs(i)
  1899  	for j := range auxs {
  1900  		a := &auxs[j]
  1901  		if a.Type() == goobj.AuxPcdata {
  1902  			n++
  1903  		}
  1904  	}
  1905  	return n
  1906  }
  1907  
  1908  // Returns all funcdata symbols of symbol i.
  1909  // tmp is a scratch space.
  1910  func (l *Loader) Funcdata(i Sym, tmp []Sym) []Sym {
  1911  	fd := tmp[:0]
  1912  	r, auxs := l.auxs(i)
  1913  	for j := range auxs {
  1914  		a := &auxs[j]
  1915  		if a.Type() == goobj.AuxFuncdata {
  1916  			fd = append(fd, l.resolve(r, a.Sym()))
  1917  		}
  1918  	}
  1919  	return fd
  1920  }
  1921  
  1922  // Returns the number of funcdata for symbol i.
  1923  func (l *Loader) NumFuncdata(i Sym) int {
  1924  	n := 0
  1925  	_, auxs := l.auxs(i)
  1926  	for j := range auxs {
  1927  		a := &auxs[j]
  1928  		if a.Type() == goobj.AuxFuncdata {
  1929  			n++
  1930  		}
  1931  	}
  1932  	return n
  1933  }
  1934  
  1935  // FuncInfo provides hooks to access goobj.FuncInfo in the objects.
  1936  type FuncInfo struct {
  1937  	l       *Loader
  1938  	r       *oReader
  1939  	data    []byte
  1940  	lengths goobj.FuncInfoLengths
  1941  }
  1942  
  1943  func (fi *FuncInfo) Valid() bool { return fi.r != nil }
  1944  
  1945  func (fi *FuncInfo) Args() int {
  1946  	return int((*goobj.FuncInfo)(nil).ReadArgs(fi.data))
  1947  }
  1948  
  1949  func (fi *FuncInfo) Locals() int {
  1950  	return int((*goobj.FuncInfo)(nil).ReadLocals(fi.data))
  1951  }
  1952  
  1953  func (fi *FuncInfo) FuncID() objabi.FuncID {
  1954  	return (*goobj.FuncInfo)(nil).ReadFuncID(fi.data)
  1955  }
  1956  
  1957  func (fi *FuncInfo) FuncFlag() objabi.FuncFlag {
  1958  	return (*goobj.FuncInfo)(nil).ReadFuncFlag(fi.data)
  1959  }
  1960  
  1961  func (fi *FuncInfo) StartLine() int32 {
  1962  	return (*goobj.FuncInfo)(nil).ReadStartLine(fi.data)
  1963  }
  1964  
  1965  // Preload has to be called prior to invoking the various methods
  1966  // below related to pcdata, funcdataoff, files, and inltree nodes.
  1967  func (fi *FuncInfo) Preload() {
  1968  	fi.lengths = (*goobj.FuncInfo)(nil).ReadFuncInfoLengths(fi.data)
  1969  }
  1970  
  1971  func (fi *FuncInfo) NumFile() uint32 {
  1972  	if !fi.lengths.Initialized {
  1973  		panic("need to call Preload first")
  1974  	}
  1975  	return fi.lengths.NumFile
  1976  }
  1977  
  1978  func (fi *FuncInfo) File(k int) goobj.CUFileIndex {
  1979  	if !fi.lengths.Initialized {
  1980  		panic("need to call Preload first")
  1981  	}
  1982  	return (*goobj.FuncInfo)(nil).ReadFile(fi.data, fi.lengths.FileOff, uint32(k))
  1983  }
  1984  
  1985  // TopFrame returns true if the function associated with this FuncInfo
  1986  // is an entry point, meaning that unwinders should stop when they hit
  1987  // this function.
  1988  func (fi *FuncInfo) TopFrame() bool {
  1989  	return (fi.FuncFlag() & objabi.FuncFlag_TOPFRAME) != 0
  1990  }
  1991  
  1992  type InlTreeNode struct {
  1993  	Parent   int32
  1994  	File     goobj.CUFileIndex
  1995  	Line     int32
  1996  	Func     Sym
  1997  	ParentPC int32
  1998  }
  1999  
  2000  func (fi *FuncInfo) NumInlTree() uint32 {
  2001  	if !fi.lengths.Initialized {
  2002  		panic("need to call Preload first")
  2003  	}
  2004  	return fi.lengths.NumInlTree
  2005  }
  2006  
  2007  func (fi *FuncInfo) InlTree(k int) InlTreeNode {
  2008  	if !fi.lengths.Initialized {
  2009  		panic("need to call Preload first")
  2010  	}
  2011  	node := (*goobj.FuncInfo)(nil).ReadInlTree(fi.data, fi.lengths.InlTreeOff, uint32(k))
  2012  	return InlTreeNode{
  2013  		Parent:   node.Parent,
  2014  		File:     node.File,
  2015  		Line:     node.Line,
  2016  		Func:     fi.l.resolve(fi.r, node.Func),
  2017  		ParentPC: node.ParentPC,
  2018  	}
  2019  }
  2020  
  2021  func (l *Loader) FuncInfo(i Sym) FuncInfo {
  2022  	r, auxs := l.auxs(i)
  2023  	for j := range auxs {
  2024  		a := &auxs[j]
  2025  		if a.Type() == goobj.AuxFuncInfo {
  2026  			b := r.Data(a.Sym().SymIdx)
  2027  			return FuncInfo{l, r, b, goobj.FuncInfoLengths{}}
  2028  		}
  2029  	}
  2030  	return FuncInfo{}
  2031  }
  2032  
  2033  // Preload a package: adds autolib.
  2034  // Does not add defined package or non-packaged symbols to the symbol table.
  2035  // These are done in LoadSyms.
  2036  // Does not read symbol data.
  2037  // Returns the fingerprint of the object.
  2038  func (l *Loader) Preload(localSymVersion int, f *bio.Reader, lib *sym.Library, unit *sym.CompilationUnit, length int64) goobj.FingerprintType {
  2039  	roObject, readonly, err := f.Slice(uint64(length)) // TODO: no need to map blocks that are for tools only (e.g. RefName)
  2040  	if err != nil {
  2041  		log.Fatal("cannot read object file:", err)
  2042  	}
  2043  	r := goobj.NewReaderFromBytes(roObject, readonly)
  2044  	if r == nil {
  2045  		if len(roObject) >= 8 && bytes.Equal(roObject[:8], []byte("\x00go114ld")) {
  2046  			log.Fatalf("found object file %s in old format", f.File().Name())
  2047  		}
  2048  		panic("cannot read object file")
  2049  	}
  2050  	pkgprefix := objabi.PathToPrefix(lib.Pkg) + "."
  2051  	ndef := r.NSym()
  2052  	nhashed64def := r.NHashed64def()
  2053  	nhasheddef := r.NHasheddef()
  2054  	or := &oReader{
  2055  		Reader:       r,
  2056  		unit:         unit,
  2057  		version:      localSymVersion,
  2058  		pkgprefix:    pkgprefix,
  2059  		syms:         make([]Sym, ndef+nhashed64def+nhasheddef+r.NNonpkgdef()+r.NNonpkgref()),
  2060  		ndef:         ndef,
  2061  		nhasheddef:   nhasheddef,
  2062  		nhashed64def: nhashed64def,
  2063  		objidx:       uint32(len(l.objs)),
  2064  	}
  2065  
  2066  	if r.Unlinkable() {
  2067  		log.Fatalf("link: unlinkable object (from package %s) - compiler requires -p flag", lib.Pkg)
  2068  	}
  2069  
  2070  	// Autolib
  2071  	lib.Autolib = append(lib.Autolib, r.Autolib()...)
  2072  
  2073  	// DWARF file table
  2074  	nfile := r.NFile()
  2075  	unit.FileTable = make([]string, nfile)
  2076  	for i := range unit.FileTable {
  2077  		unit.FileTable[i] = r.File(i)
  2078  	}
  2079  
  2080  	l.addObj(lib.Pkg, or)
  2081  
  2082  	// The caller expects us consuming all the data
  2083  	f.MustSeek(length, io.SeekCurrent)
  2084  
  2085  	return r.Fingerprint()
  2086  }
  2087  
  2088  // Holds the loader along with temporary states for loading symbols.
  2089  type loadState struct {
  2090  	l            *Loader
  2091  	hashed64Syms map[uint64]symAndSize         // short hashed (content-addressable) symbols, keyed by content hash
  2092  	hashedSyms   map[goobj.HashType]symAndSize // hashed (content-addressable) symbols, keyed by content hash
  2093  }
  2094  
  2095  // Preload symbols of given kind from an object.
  2096  func (st *loadState) preloadSyms(r *oReader, kind int) {
  2097  	l := st.l
  2098  	var start, end uint32
  2099  	switch kind {
  2100  	case pkgDef:
  2101  		start = 0
  2102  		end = uint32(r.ndef)
  2103  	case hashed64Def:
  2104  		start = uint32(r.ndef)
  2105  		end = uint32(r.ndef + r.nhashed64def)
  2106  	case hashedDef:
  2107  		start = uint32(r.ndef + r.nhashed64def)
  2108  		end = uint32(r.ndef + r.nhashed64def + r.nhasheddef)
  2109  	case nonPkgDef:
  2110  		start = uint32(r.ndef + r.nhashed64def + r.nhasheddef)
  2111  		end = uint32(r.ndef + r.nhashed64def + r.nhasheddef + r.NNonpkgdef())
  2112  	default:
  2113  		panic("preloadSyms: bad kind")
  2114  	}
  2115  	l.growAttrBitmaps(len(l.objSyms) + int(end-start))
  2116  	loadingRuntimePkg := r.unit.Lib.Pkg == "runtime"
  2117  	for i := start; i < end; i++ {
  2118  		osym := r.Sym(i)
  2119  		var name string
  2120  		var v int
  2121  		if kind != hashed64Def && kind != hashedDef { // we don't need the name, etc. for hashed symbols
  2122  			name = osym.Name(r.Reader)
  2123  			v = abiToVer(osym.ABI(), r.version)
  2124  		}
  2125  		gi := st.addSym(name, v, r, i, kind, osym)
  2126  		r.syms[i] = gi
  2127  		if osym.Local() {
  2128  			l.SetAttrLocal(gi, true)
  2129  		}
  2130  		if osym.UsedInIface() {
  2131  			l.SetAttrUsedInIface(gi, true)
  2132  		}
  2133  		if strings.HasPrefix(name, "runtime.") ||
  2134  			(loadingRuntimePkg && strings.HasPrefix(name, "type:")) {
  2135  			if bi := goobj.BuiltinIdx(name, int(osym.ABI())); bi != -1 {
  2136  				// This is a definition of a builtin symbol. Record where it is.
  2137  				l.builtinSyms[bi] = gi
  2138  			}
  2139  		}
  2140  		if a := int32(osym.Align()); a != 0 && a > l.SymAlign(gi) {
  2141  			l.SetSymAlign(gi, a)
  2142  		}
  2143  	}
  2144  }
  2145  
  2146  // Add syms, hashed (content-addressable) symbols, non-package symbols, and
  2147  // references to external symbols (which are always named).
  2148  func (l *Loader) LoadSyms(arch *sys.Arch) {
  2149  	// Allocate space for symbols, making a guess as to how much space we need.
  2150  	// This function was determined empirically by looking at the cmd/compile on
  2151  	// Darwin, and picking factors for hashed and hashed64 syms.
  2152  	var symSize, hashedSize, hashed64Size int
  2153  	for _, o := range l.objs[goObjStart:] {
  2154  		symSize += o.r.ndef + o.r.nhasheddef/2 + o.r.nhashed64def/2 + o.r.NNonpkgdef()
  2155  		hashedSize += o.r.nhasheddef / 2
  2156  		hashed64Size += o.r.nhashed64def / 2
  2157  	}
  2158  	// Index 0 is invalid for symbols.
  2159  	l.objSyms = make([]objSym, 1, symSize)
  2160  
  2161  	st := loadState{
  2162  		l:            l,
  2163  		hashed64Syms: make(map[uint64]symAndSize, hashed64Size),
  2164  		hashedSyms:   make(map[goobj.HashType]symAndSize, hashedSize),
  2165  	}
  2166  
  2167  	for _, o := range l.objs[goObjStart:] {
  2168  		st.preloadSyms(o.r, pkgDef)
  2169  	}
  2170  	l.npkgsyms = l.NSym()
  2171  	for _, o := range l.objs[goObjStart:] {
  2172  		st.preloadSyms(o.r, hashed64Def)
  2173  		st.preloadSyms(o.r, hashedDef)
  2174  		st.preloadSyms(o.r, nonPkgDef)
  2175  	}
  2176  	l.nhashedsyms = len(st.hashed64Syms) + len(st.hashedSyms)
  2177  	for _, o := range l.objs[goObjStart:] {
  2178  		loadObjRefs(l, o.r, arch)
  2179  	}
  2180  	l.values = make([]int64, l.NSym(), l.NSym()+1000) // +1000 make some room for external symbols
  2181  }
  2182  
  2183  func loadObjRefs(l *Loader, r *oReader, arch *sys.Arch) {
  2184  	// load non-package refs
  2185  	ndef := uint32(r.NAlldef())
  2186  	for i, n := uint32(0), uint32(r.NNonpkgref()); i < n; i++ {
  2187  		osym := r.Sym(ndef + i)
  2188  		name := osym.Name(r.Reader)
  2189  		v := abiToVer(osym.ABI(), r.version)
  2190  		r.syms[ndef+i] = l.LookupOrCreateSym(name, v)
  2191  		gi := r.syms[ndef+i]
  2192  		if osym.Local() {
  2193  			l.SetAttrLocal(gi, true)
  2194  		}
  2195  		if osym.UsedInIface() {
  2196  			l.SetAttrUsedInIface(gi, true)
  2197  		}
  2198  	}
  2199  
  2200  	// referenced packages
  2201  	npkg := r.NPkg()
  2202  	r.pkg = make([]uint32, npkg)
  2203  	for i := 1; i < npkg; i++ { // PkgIdx 0 is a dummy invalid package
  2204  		pkg := r.Pkg(i)
  2205  		objidx, ok := l.objByPkg[pkg]
  2206  		if !ok {
  2207  			log.Fatalf("%v: reference to nonexistent package %s", r.unit.Lib, pkg)
  2208  		}
  2209  		r.pkg[i] = objidx
  2210  	}
  2211  
  2212  	// load flags of package refs
  2213  	for i, n := 0, r.NRefFlags(); i < n; i++ {
  2214  		rf := r.RefFlags(i)
  2215  		gi := l.resolve(r, rf.Sym())
  2216  		if rf.Flag2()&goobj.SymFlagUsedInIface != 0 {
  2217  			l.SetAttrUsedInIface(gi, true)
  2218  		}
  2219  	}
  2220  }
  2221  
  2222  func abiToVer(abi uint16, localSymVersion int) int {
  2223  	var v int
  2224  	if abi == goobj.SymABIstatic {
  2225  		// Static
  2226  		v = localSymVersion
  2227  	} else if abiver := sym.ABIToVersion(obj.ABI(abi)); abiver != -1 {
  2228  		// Note that data symbols are "ABI0", which maps to version 0.
  2229  		v = abiver
  2230  	} else {
  2231  		log.Fatalf("invalid symbol ABI: %d", abi)
  2232  	}
  2233  	return v
  2234  }
  2235  
  2236  // TopLevelSym tests a symbol (by name and kind) to determine whether
  2237  // the symbol first class sym (participating in the link) or is an
  2238  // anonymous aux or sub-symbol containing some sub-part or payload of
  2239  // another symbol.
  2240  func (l *Loader) TopLevelSym(s Sym) bool {
  2241  	return topLevelSym(l.SymName(s), l.SymType(s))
  2242  }
  2243  
  2244  // topLevelSym tests a symbol name and kind to determine whether
  2245  // the symbol first class sym (participating in the link) or is an
  2246  // anonymous aux or sub-symbol containing some sub-part or payload of
  2247  // another symbol.
  2248  func topLevelSym(sname string, skind sym.SymKind) bool {
  2249  	if sname != "" {
  2250  		return true
  2251  	}
  2252  	switch skind {
  2253  	case sym.SDWARFFCN, sym.SDWARFABSFCN, sym.SDWARFTYPE, sym.SDWARFCONST, sym.SDWARFCUINFO, sym.SDWARFRANGE, sym.SDWARFLOC, sym.SDWARFLINES, sym.SGOFUNC:
  2254  		return true
  2255  	default:
  2256  		return false
  2257  	}
  2258  }
  2259  
  2260  // cloneToExternal takes the existing object file symbol (symIdx)
  2261  // and creates a new external symbol payload that is a clone with
  2262  // respect to name, version, type, relocations, etc. The idea here
  2263  // is that if the linker decides it wants to update the contents of
  2264  // a symbol originally discovered as part of an object file, it's
  2265  // easier to do this if we make the updates to an external symbol
  2266  // payload.
  2267  func (l *Loader) cloneToExternal(symIdx Sym) {
  2268  	if l.IsExternal(symIdx) {
  2269  		panic("sym is already external, no need for clone")
  2270  	}
  2271  
  2272  	// Read the particulars from object.
  2273  	r, li := l.toLocal(symIdx)
  2274  	osym := r.Sym(li)
  2275  	sname := osym.Name(r.Reader)
  2276  	sver := abiToVer(osym.ABI(), r.version)
  2277  	skind := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())]
  2278  
  2279  	// Create new symbol, update version and kind.
  2280  	pi := l.newPayload(sname, sver)
  2281  	pp := l.payloads[pi]
  2282  	pp.kind = skind
  2283  	pp.ver = sver
  2284  	pp.size = int64(osym.Siz())
  2285  	pp.objidx = r.objidx
  2286  
  2287  	// If this is a def, then copy the guts. We expect this case
  2288  	// to be very rare (one case it may come up is with -X).
  2289  	if li < uint32(r.NAlldef()) {
  2290  
  2291  		// Copy relocations
  2292  		relocs := l.Relocs(symIdx)
  2293  		pp.relocs = make([]goobj.Reloc, relocs.Count())
  2294  		for i := range pp.relocs {
  2295  			// Copy the relocs slice.
  2296  			// Convert local reference to global reference.
  2297  			rel := relocs.At(i)
  2298  			pp.relocs[i].Set(rel.Off(), rel.Siz(), uint16(rel.Type()), rel.Add(), goobj.SymRef{PkgIdx: 0, SymIdx: uint32(rel.Sym())})
  2299  		}
  2300  
  2301  		// Copy data
  2302  		pp.data = r.Data(li)
  2303  	}
  2304  
  2305  	// If we're overriding a data symbol, collect the associated
  2306  	// Gotype, so as to propagate it to the new symbol.
  2307  	auxs := r.Auxs(li)
  2308  	pp.auxs = auxs
  2309  
  2310  	// Install new payload to global index space.
  2311  	// (This needs to happen at the end, as the accessors above
  2312  	// need to access the old symbol content.)
  2313  	l.objSyms[symIdx] = objSym{l.extReader.objidx, uint32(pi)}
  2314  	l.extReader.syms = append(l.extReader.syms, symIdx)
  2315  
  2316  	// Some attributes were encoded in the object file. Copy them over.
  2317  	l.SetAttrDuplicateOK(symIdx, r.Sym(li).Dupok())
  2318  	l.SetAttrShared(symIdx, r.Shared())
  2319  }
  2320  
  2321  // Copy the payload of symbol src to dst. Both src and dst must be external
  2322  // symbols.
  2323  // The intended use case is that when building/linking against a shared library,
  2324  // where we do symbol name mangling, the Go object file may have reference to
  2325  // the original symbol name whereas the shared library provides a symbol with
  2326  // the mangled name. When we do mangling, we copy payload of mangled to original.
  2327  func (l *Loader) CopySym(src, dst Sym) {
  2328  	if !l.IsExternal(dst) {
  2329  		panic("dst is not external") //l.newExtSym(l.SymName(dst), l.SymVersion(dst))
  2330  	}
  2331  	if !l.IsExternal(src) {
  2332  		panic("src is not external") //l.cloneToExternal(src)
  2333  	}
  2334  	l.payloads[l.extIndex(dst)] = l.payloads[l.extIndex(src)]
  2335  	l.SetSymPkg(dst, l.SymPkg(src))
  2336  	// TODO: other attributes?
  2337  }
  2338  
  2339  // CreateExtSym creates a new external symbol with the specified name
  2340  // without adding it to any lookup tables, returning a Sym index for it.
  2341  func (l *Loader) CreateExtSym(name string, ver int) Sym {
  2342  	return l.newExtSym(name, ver)
  2343  }
  2344  
  2345  // CreateStaticSym creates a new static symbol with the specified name
  2346  // without adding it to any lookup tables, returning a Sym index for it.
  2347  func (l *Loader) CreateStaticSym(name string) Sym {
  2348  	// Assign a new unique negative version -- this is to mark the
  2349  	// symbol so that it is not included in the name lookup table.
  2350  	l.anonVersion--
  2351  	return l.newExtSym(name, l.anonVersion)
  2352  }
  2353  
  2354  func (l *Loader) FreeSym(i Sym) {
  2355  	if l.IsExternal(i) {
  2356  		pp := l.getPayload(i)
  2357  		*pp = extSymPayload{}
  2358  	}
  2359  }
  2360  
  2361  // relocId is essentially a <S,R> tuple identifying the Rth
  2362  // relocation of symbol S.
  2363  type relocId struct {
  2364  	sym  Sym
  2365  	ridx int
  2366  }
  2367  
  2368  // SetRelocVariant sets the 'variant' property of a relocation on
  2369  // some specific symbol.
  2370  func (l *Loader) SetRelocVariant(s Sym, ri int, v sym.RelocVariant) {
  2371  	// sanity check
  2372  	if relocs := l.Relocs(s); ri >= relocs.Count() {
  2373  		panic("invalid relocation ID")
  2374  	}
  2375  	if l.relocVariant == nil {
  2376  		l.relocVariant = make(map[relocId]sym.RelocVariant)
  2377  	}
  2378  	if v != 0 {
  2379  		l.relocVariant[relocId{s, ri}] = v
  2380  	} else {
  2381  		delete(l.relocVariant, relocId{s, ri})
  2382  	}
  2383  }
  2384  
  2385  // RelocVariant returns the 'variant' property of a relocation on
  2386  // some specific symbol.
  2387  func (l *Loader) RelocVariant(s Sym, ri int) sym.RelocVariant {
  2388  	return l.relocVariant[relocId{s, ri}]
  2389  }
  2390  
  2391  // UndefinedRelocTargets iterates through the global symbol index
  2392  // space, looking for symbols with relocations targeting undefined
  2393  // references. The linker's loadlib method uses this to determine if
  2394  // there are unresolved references to functions in system libraries
  2395  // (for example, libgcc.a), presumably due to CGO code. Return value
  2396  // is a pair of lists of loader.Sym's. First list corresponds to the
  2397  // corresponding to the undefined symbols themselves, the second list
  2398  // is the symbol that is making a reference to the undef. The "limit"
  2399  // param controls the maximum number of results returned; if "limit"
  2400  // is -1, then all undefs are returned.
  2401  func (l *Loader) UndefinedRelocTargets(limit int) ([]Sym, []Sym) {
  2402  	result, fromr := []Sym{}, []Sym{}
  2403  outerloop:
  2404  	for si := Sym(1); si < Sym(len(l.objSyms)); si++ {
  2405  		relocs := l.Relocs(si)
  2406  		for ri := 0; ri < relocs.Count(); ri++ {
  2407  			r := relocs.At(ri)
  2408  			rs := r.Sym()
  2409  			if rs != 0 && l.SymType(rs) == sym.SXREF && l.SymName(rs) != ".got" {
  2410  				result = append(result, rs)
  2411  				fromr = append(fromr, si)
  2412  				if limit != -1 && len(result) >= limit {
  2413  					break outerloop
  2414  				}
  2415  			}
  2416  		}
  2417  	}
  2418  	return result, fromr
  2419  }
  2420  
  2421  // AssignTextSymbolOrder populates the Textp slices within each
  2422  // library and compilation unit, insuring that packages are laid down
  2423  // in dependency order (internal first, then everything else). Return value
  2424  // is a slice of all text syms.
  2425  func (l *Loader) AssignTextSymbolOrder(libs []*sym.Library, intlibs []bool, extsyms []Sym) []Sym {
  2426  
  2427  	// Library Textp lists should be empty at this point.
  2428  	for _, lib := range libs {
  2429  		if len(lib.Textp) != 0 {
  2430  			panic("expected empty Textp slice for library")
  2431  		}
  2432  		if len(lib.DupTextSyms) != 0 {
  2433  			panic("expected empty DupTextSyms slice for library")
  2434  		}
  2435  	}
  2436  
  2437  	// Used to record which dupok symbol we've assigned to a unit.
  2438  	// Can't use the onlist attribute here because it will need to
  2439  	// clear for the later assignment of the sym.Symbol to a unit.
  2440  	// NB: we can convert to using onList once we no longer have to
  2441  	// call the regular addToTextp.
  2442  	assignedToUnit := MakeBitmap(l.NSym() + 1)
  2443  
  2444  	// Start off textp with reachable external syms.
  2445  	textp := []Sym{}
  2446  	for _, sym := range extsyms {
  2447  		if !l.attrReachable.Has(sym) {
  2448  			continue
  2449  		}
  2450  		textp = append(textp, sym)
  2451  	}
  2452  
  2453  	// Walk through all text symbols from Go object files and append
  2454  	// them to their corresponding library's textp list.
  2455  	for _, o := range l.objs[goObjStart:] {
  2456  		r := o.r
  2457  		lib := r.unit.Lib
  2458  		for i, n := uint32(0), uint32(r.NAlldef()); i < n; i++ {
  2459  			gi := l.toGlobal(r, i)
  2460  			if !l.attrReachable.Has(gi) {
  2461  				continue
  2462  			}
  2463  			osym := r.Sym(i)
  2464  			st := sym.AbiSymKindToSymKind[objabi.SymKind(osym.Type())]
  2465  			if st != sym.STEXT {
  2466  				continue
  2467  			}
  2468  			dupok := osym.Dupok()
  2469  			if r2, i2 := l.toLocal(gi); r2 != r || i2 != i {
  2470  				// A dupok text symbol is resolved to another package.
  2471  				// We still need to record its presence in the current
  2472  				// package, as the trampoline pass expects packages
  2473  				// are laid out in dependency order.
  2474  				lib.DupTextSyms = append(lib.DupTextSyms, sym.LoaderSym(gi))
  2475  				continue // symbol in different object
  2476  			}
  2477  			if dupok {
  2478  				lib.DupTextSyms = append(lib.DupTextSyms, sym.LoaderSym(gi))
  2479  				continue
  2480  			}
  2481  
  2482  			lib.Textp = append(lib.Textp, sym.LoaderSym(gi))
  2483  		}
  2484  	}
  2485  
  2486  	// Now assemble global textp, and assign text symbols to units.
  2487  	for _, doInternal := range [2]bool{true, false} {
  2488  		for idx, lib := range libs {
  2489  			if intlibs[idx] != doInternal {
  2490  				continue
  2491  			}
  2492  			lists := [2][]sym.LoaderSym{lib.Textp, lib.DupTextSyms}
  2493  			for i, list := range lists {
  2494  				for _, s := range list {
  2495  					sym := Sym(s)
  2496  					if !assignedToUnit.Has(sym) {
  2497  						textp = append(textp, sym)
  2498  						unit := l.SymUnit(sym)
  2499  						if unit != nil {
  2500  							unit.Textp = append(unit.Textp, s)
  2501  							assignedToUnit.Set(sym)
  2502  						}
  2503  						// Dupok symbols may be defined in multiple packages; the
  2504  						// associated package for a dupok sym is chosen sort of
  2505  						// arbitrarily (the first containing package that the linker
  2506  						// loads). Canonicalizes its Pkg to the package with which
  2507  						// it will be laid down in text.
  2508  						if i == 1 /* DupTextSyms2 */ && l.SymPkg(sym) != lib.Pkg {
  2509  							l.SetSymPkg(sym, lib.Pkg)
  2510  						}
  2511  					}
  2512  				}
  2513  			}
  2514  			lib.Textp = nil
  2515  			lib.DupTextSyms = nil
  2516  		}
  2517  	}
  2518  
  2519  	return textp
  2520  }
  2521  
  2522  // ErrorReporter is a helper class for reporting errors.
  2523  type ErrorReporter struct {
  2524  	ldr              *Loader
  2525  	AfterErrorAction func()
  2526  }
  2527  
  2528  // Errorf method logs an error message.
  2529  //
  2530  // After each error, the error actions function will be invoked; this
  2531  // will either terminate the link immediately (if -h option given)
  2532  // or it will keep a count and exit if more than 20 errors have been printed.
  2533  //
  2534  // Logging an error means that on exit cmd/link will delete any
  2535  // output file and return a non-zero error code.
  2536  func (reporter *ErrorReporter) Errorf(s Sym, format string, args ...interface{}) {
  2537  	if s != 0 && reporter.ldr.SymName(s) != "" {
  2538  		// Note: Replace is needed here because symbol names might have % in them,
  2539  		// due to the use of LinkString for names of instantiating types.
  2540  		format = strings.Replace(reporter.ldr.SymName(s), "%", "%%", -1) + ": " + format
  2541  	} else {
  2542  		format = fmt.Sprintf("sym %d: %s", s, format)
  2543  	}
  2544  	format += "\n"
  2545  	fmt.Fprintf(os.Stderr, format, args...)
  2546  	reporter.AfterErrorAction()
  2547  }
  2548  
  2549  // GetErrorReporter returns the loader's associated error reporter.
  2550  func (l *Loader) GetErrorReporter() *ErrorReporter {
  2551  	return l.errorReporter
  2552  }
  2553  
  2554  // Errorf method logs an error message. See ErrorReporter.Errorf for details.
  2555  func (l *Loader) Errorf(s Sym, format string, args ...interface{}) {
  2556  	l.errorReporter.Errorf(s, format, args...)
  2557  }
  2558  
  2559  // Symbol statistics.
  2560  func (l *Loader) Stat() string {
  2561  	s := fmt.Sprintf("%d symbols, %d reachable\n", l.NSym(), l.NReachableSym())
  2562  	s += fmt.Sprintf("\t%d package symbols, %d hashed symbols, %d non-package symbols, %d external symbols\n",
  2563  		l.npkgsyms, l.nhashedsyms, int(l.extStart)-l.npkgsyms-l.nhashedsyms, l.NSym()-int(l.extStart))
  2564  	return s
  2565  }
  2566  
  2567  // For debugging.
  2568  func (l *Loader) Dump() {
  2569  	fmt.Println("objs")
  2570  	for _, obj := range l.objs[goObjStart:] {
  2571  		if obj.r != nil {
  2572  			fmt.Println(obj.i, obj.r.unit.Lib)
  2573  		}
  2574  	}
  2575  	fmt.Println("extStart:", l.extStart)
  2576  	fmt.Println("Nsyms:", len(l.objSyms))
  2577  	fmt.Println("syms")
  2578  	for i := Sym(1); i < Sym(len(l.objSyms)); i++ {
  2579  		pi := ""
  2580  		if l.IsExternal(i) {
  2581  			pi = fmt.Sprintf("<ext %d>", l.extIndex(i))
  2582  		}
  2583  		sect := ""
  2584  		if l.SymSect(i) != nil {
  2585  			sect = l.SymSect(i).Name
  2586  		}
  2587  		fmt.Printf("%v %v %v %v %x %v\n", i, l.SymName(i), l.SymType(i), pi, l.SymValue(i), sect)
  2588  	}
  2589  	fmt.Println("symsByName")
  2590  	for name, i := range l.symsByName[0] {
  2591  		fmt.Println(i, name, 0)
  2592  	}
  2593  	for name, i := range l.symsByName[1] {
  2594  		fmt.Println(i, name, 1)
  2595  	}
  2596  	fmt.Println("payloads:")
  2597  	for i := range l.payloads {
  2598  		pp := l.payloads[i]
  2599  		fmt.Println(i, pp.name, pp.ver, pp.kind)
  2600  	}
  2601  }