github.com/bir3/gocompiler@v0.3.205/src/go/printer/nodes.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements printing of AST nodes; specifically
     6  // expressions, statements, declarations, and files. It uses
     7  // the print functionality implemented in printer.go.
     8  
     9  package printer
    10  
    11  import (
    12  	"github.com/bir3/gocompiler/src/go/ast"
    13  	"github.com/bir3/gocompiler/src/go/token"
    14  	"math"
    15  	"strconv"
    16  	"strings"
    17  	"unicode"
    18  	"unicode/utf8"
    19  )
    20  
    21  // Formatting issues:
    22  // - better comment formatting for /*-style comments at the end of a line (e.g. a declaration)
    23  //   when the comment spans multiple lines; if such a comment is just two lines, formatting is
    24  //   not idempotent
    25  // - formatting of expression lists
    26  // - should use blank instead of tab to separate one-line function bodies from
    27  //   the function header unless there is a group of consecutive one-liners
    28  
    29  // ----------------------------------------------------------------------------
    30  // Common AST nodes.
    31  
    32  // Print as many newlines as necessary (but at least min newlines) to get to
    33  // the current line. ws is printed before the first line break. If newSection
    34  // is set, the first line break is printed as formfeed. Returns 0 if no line
    35  // breaks were printed, returns 1 if there was exactly one newline printed,
    36  // and returns a value > 1 if there was a formfeed or more than one newline
    37  // printed.
    38  //
    39  // TODO(gri): linebreak may add too many lines if the next statement at "line"
    40  // is preceded by comments because the computation of n assumes
    41  // the current position before the comment and the target position
    42  // after the comment. Thus, after interspersing such comments, the
    43  // space taken up by them is not considered to reduce the number of
    44  // linebreaks. At the moment there is no easy way to know about
    45  // future (not yet interspersed) comments in this function.
    46  func (p *printer) linebreak(line, min int, ws whiteSpace, newSection bool) (nbreaks int) {
    47  	n := nlimit(line - p.pos.Line)
    48  	if n < min {
    49  		n = min
    50  	}
    51  	if n > 0 {
    52  		p.print(ws)
    53  		if newSection {
    54  			p.print(formfeed)
    55  			n--
    56  			nbreaks = 2
    57  		}
    58  		nbreaks += n
    59  		for ; n > 0; n-- {
    60  			p.print(newline)
    61  		}
    62  	}
    63  	return
    64  }
    65  
    66  // setComment sets g as the next comment if g != nil and if node comments
    67  // are enabled - this mode is used when printing source code fragments such
    68  // as exports only. It assumes that there is no pending comment in p.comments
    69  // and at most one pending comment in the p.comment cache.
    70  func (p *printer) setComment(g *ast.CommentGroup) {
    71  	if g == nil || !p.useNodeComments {
    72  		return
    73  	}
    74  	if p.comments == nil {
    75  		// initialize p.comments lazily
    76  		p.comments = make([]*ast.CommentGroup, 1)
    77  	} else if p.cindex < len(p.comments) {
    78  		// for some reason there are pending comments; this
    79  		// should never happen - handle gracefully and flush
    80  		// all comments up to g, ignore anything after that
    81  		p.flush(p.posFor(g.List[0].Pos()), token.ILLEGAL)
    82  		p.comments = p.comments[0:1]
    83  		// in debug mode, report error
    84  		p.internalError("setComment found pending comments")
    85  	}
    86  	p.comments[0] = g
    87  	p.cindex = 0
    88  	// don't overwrite any pending comment in the p.comment cache
    89  	// (there may be a pending comment when a line comment is
    90  	// immediately followed by a lead comment with no other
    91  	// tokens between)
    92  	if p.commentOffset == infinity {
    93  		p.nextComment() // get comment ready for use
    94  	}
    95  }
    96  
    97  type exprListMode uint
    98  
    99  const (
   100  	commaTerm exprListMode = 1 << iota // list is optionally terminated by a comma
   101  	noIndent                           // no extra indentation in multi-line lists
   102  )
   103  
   104  // If indent is set, a multi-line identifier list is indented after the
   105  // first linebreak encountered.
   106  func (p *printer) identList(list []*ast.Ident, indent bool) {
   107  	// convert into an expression list so we can re-use exprList formatting
   108  	xlist := make([]ast.Expr, len(list))
   109  	for i, x := range list {
   110  		xlist[i] = x
   111  	}
   112  	var mode exprListMode
   113  	if !indent {
   114  		mode = noIndent
   115  	}
   116  	p.exprList(token.NoPos, xlist, 1, mode, token.NoPos, false)
   117  }
   118  
   119  const filteredMsg = "contains filtered or unexported fields"
   120  
   121  // Print a list of expressions. If the list spans multiple
   122  // source lines, the original line breaks are respected between
   123  // expressions.
   124  //
   125  // TODO(gri) Consider rewriting this to be independent of []ast.Expr
   126  // so that we can use the algorithm for any kind of list
   127  //
   128  //	(e.g., pass list via a channel over which to range).
   129  func (p *printer) exprList(prev0 token.Pos, list []ast.Expr, depth int, mode exprListMode, next0 token.Pos, isIncomplete bool) {
   130  	if len(list) == 0 {
   131  		if isIncomplete {
   132  			prev := p.posFor(prev0)
   133  			next := p.posFor(next0)
   134  			if prev.IsValid() && prev.Line == next.Line {
   135  				p.print("/* " + filteredMsg + " */")
   136  			} else {
   137  				p.print(newline)
   138  				p.print(indent, "// "+filteredMsg, unindent, newline)
   139  			}
   140  		}
   141  		return
   142  	}
   143  
   144  	prev := p.posFor(prev0)
   145  	next := p.posFor(next0)
   146  	line := p.lineFor(list[0].Pos())
   147  	endLine := p.lineFor(list[len(list)-1].End())
   148  
   149  	if prev.IsValid() && prev.Line == line && line == endLine {
   150  		// all list entries on a single line
   151  		for i, x := range list {
   152  			if i > 0 {
   153  				// use position of expression following the comma as
   154  				// comma position for correct comment placement
   155  				p.setPos(x.Pos())
   156  				p.print(token.COMMA, blank)
   157  			}
   158  			p.expr0(x, depth)
   159  		}
   160  		if isIncomplete {
   161  			p.print(token.COMMA, blank, "/* "+filteredMsg+" */")
   162  		}
   163  		return
   164  	}
   165  
   166  	// list entries span multiple lines;
   167  	// use source code positions to guide line breaks
   168  
   169  	// Don't add extra indentation if noIndent is set;
   170  	// i.e., pretend that the first line is already indented.
   171  	ws := ignore
   172  	if mode&noIndent == 0 {
   173  		ws = indent
   174  	}
   175  
   176  	// The first linebreak is always a formfeed since this section must not
   177  	// depend on any previous formatting.
   178  	prevBreak := -1 // index of last expression that was followed by a linebreak
   179  	if prev.IsValid() && prev.Line < line && p.linebreak(line, 0, ws, true) > 0 {
   180  		ws = ignore
   181  		prevBreak = 0
   182  	}
   183  
   184  	// initialize expression/key size: a zero value indicates expr/key doesn't fit on a single line
   185  	size := 0
   186  
   187  	// We use the ratio between the geometric mean of the previous key sizes and
   188  	// the current size to determine if there should be a break in the alignment.
   189  	// To compute the geometric mean we accumulate the ln(size) values (lnsum)
   190  	// and the number of sizes included (count).
   191  	lnsum := 0.0
   192  	count := 0
   193  
   194  	// print all list elements
   195  	prevLine := prev.Line
   196  	for i, x := range list {
   197  		line = p.lineFor(x.Pos())
   198  
   199  		// Determine if the next linebreak, if any, needs to use formfeed:
   200  		// in general, use the entire node size to make the decision; for
   201  		// key:value expressions, use the key size.
   202  		// TODO(gri) for a better result, should probably incorporate both
   203  		//           the key and the node size into the decision process
   204  		useFF := true
   205  
   206  		// Determine element size: All bets are off if we don't have
   207  		// position information for the previous and next token (likely
   208  		// generated code - simply ignore the size in this case by setting
   209  		// it to 0).
   210  		prevSize := size
   211  		const infinity = 1e6 // larger than any source line
   212  		size = p.nodeSize(x, infinity)
   213  		pair, isPair := x.(*ast.KeyValueExpr)
   214  		if size <= infinity && prev.IsValid() && next.IsValid() {
   215  			// x fits on a single line
   216  			if isPair {
   217  				size = p.nodeSize(pair.Key, infinity) // size <= infinity
   218  			}
   219  		} else {
   220  			// size too large or we don't have good layout information
   221  			size = 0
   222  		}
   223  
   224  		// If the previous line and the current line had single-
   225  		// line-expressions and the key sizes are small or the
   226  		// ratio between the current key and the geometric mean
   227  		// if the previous key sizes does not exceed a threshold,
   228  		// align columns and do not use formfeed.
   229  		if prevSize > 0 && size > 0 {
   230  			const smallSize = 40
   231  			if count == 0 || prevSize <= smallSize && size <= smallSize {
   232  				useFF = false
   233  			} else {
   234  				const r = 2.5                               // threshold
   235  				geomean := math.Exp(lnsum / float64(count)) // count > 0
   236  				ratio := float64(size) / geomean
   237  				useFF = r*ratio <= 1 || r <= ratio
   238  			}
   239  		}
   240  
   241  		needsLinebreak := 0 < prevLine && prevLine < line
   242  		if i > 0 {
   243  			// Use position of expression following the comma as
   244  			// comma position for correct comment placement, but
   245  			// only if the expression is on the same line.
   246  			if !needsLinebreak {
   247  				p.setPos(x.Pos())
   248  			}
   249  			p.print(token.COMMA)
   250  			needsBlank := true
   251  			if needsLinebreak {
   252  				// Lines are broken using newlines so comments remain aligned
   253  				// unless useFF is set or there are multiple expressions on
   254  				// the same line in which case formfeed is used.
   255  				nbreaks := p.linebreak(line, 0, ws, useFF || prevBreak+1 < i)
   256  				if nbreaks > 0 {
   257  					ws = ignore
   258  					prevBreak = i
   259  					needsBlank = false // we got a line break instead
   260  				}
   261  				// If there was a new section or more than one new line
   262  				// (which means that the tabwriter will implicitly break
   263  				// the section), reset the geomean variables since we are
   264  				// starting a new group of elements with the next element.
   265  				if nbreaks > 1 {
   266  					lnsum = 0
   267  					count = 0
   268  				}
   269  			}
   270  			if needsBlank {
   271  				p.print(blank)
   272  			}
   273  		}
   274  
   275  		if len(list) > 1 && isPair && size > 0 && needsLinebreak {
   276  			// We have a key:value expression that fits onto one line
   277  			// and it's not on the same line as the prior expression:
   278  			// Use a column for the key such that consecutive entries
   279  			// can align if possible.
   280  			// (needsLinebreak is set if we started a new line before)
   281  			p.expr(pair.Key)
   282  			p.setPos(pair.Colon)
   283  			p.print(token.COLON, vtab)
   284  			p.expr(pair.Value)
   285  		} else {
   286  			p.expr0(x, depth)
   287  		}
   288  
   289  		if size > 0 {
   290  			lnsum += math.Log(float64(size))
   291  			count++
   292  		}
   293  
   294  		prevLine = line
   295  	}
   296  
   297  	if mode&commaTerm != 0 && next.IsValid() && p.pos.Line < next.Line {
   298  		// Print a terminating comma if the next token is on a new line.
   299  		p.print(token.COMMA)
   300  		if isIncomplete {
   301  			p.print(newline)
   302  			p.print("// " + filteredMsg)
   303  		}
   304  		if ws == ignore && mode&noIndent == 0 {
   305  			// unindent if we indented
   306  			p.print(unindent)
   307  		}
   308  		p.print(formfeed) // terminating comma needs a line break to look good
   309  		return
   310  	}
   311  
   312  	if isIncomplete {
   313  		p.print(token.COMMA, newline)
   314  		p.print("// "+filteredMsg, newline)
   315  	}
   316  
   317  	if ws == ignore && mode&noIndent == 0 {
   318  		// unindent if we indented
   319  		p.print(unindent)
   320  	}
   321  }
   322  
   323  type paramMode int
   324  
   325  const (
   326  	funcParam paramMode = iota
   327  	funcTParam
   328  	typeTParam
   329  )
   330  
   331  func (p *printer) parameters(fields *ast.FieldList, mode paramMode) {
   332  	openTok, closeTok := token.LPAREN, token.RPAREN
   333  	if mode != funcParam {
   334  		openTok, closeTok = token.LBRACK, token.RBRACK
   335  	}
   336  	p.setPos(fields.Opening)
   337  	p.print(openTok)
   338  	if len(fields.List) > 0 {
   339  		prevLine := p.lineFor(fields.Opening)
   340  		ws := indent
   341  		for i, par := range fields.List {
   342  			// determine par begin and end line (may be different
   343  			// if there are multiple parameter names for this par
   344  			// or the type is on a separate line)
   345  			parLineBeg := p.lineFor(par.Pos())
   346  			parLineEnd := p.lineFor(par.End())
   347  			// separating "," if needed
   348  			needsLinebreak := 0 < prevLine && prevLine < parLineBeg
   349  			if i > 0 {
   350  				// use position of parameter following the comma as
   351  				// comma position for correct comma placement, but
   352  				// only if the next parameter is on the same line
   353  				if !needsLinebreak {
   354  					p.setPos(par.Pos())
   355  				}
   356  				p.print(token.COMMA)
   357  			}
   358  			// separator if needed (linebreak or blank)
   359  			if needsLinebreak && p.linebreak(parLineBeg, 0, ws, true) > 0 {
   360  				// break line if the opening "(" or previous parameter ended on a different line
   361  				ws = ignore
   362  			} else if i > 0 {
   363  				p.print(blank)
   364  			}
   365  			// parameter names
   366  			if len(par.Names) > 0 {
   367  				// Very subtle: If we indented before (ws == ignore), identList
   368  				// won't indent again. If we didn't (ws == indent), identList will
   369  				// indent if the identList spans multiple lines, and it will outdent
   370  				// again at the end (and still ws == indent). Thus, a subsequent indent
   371  				// by a linebreak call after a type, or in the next multi-line identList
   372  				// will do the right thing.
   373  				p.identList(par.Names, ws == indent)
   374  				p.print(blank)
   375  			}
   376  			// parameter type
   377  			p.expr(stripParensAlways(par.Type))
   378  			prevLine = parLineEnd
   379  		}
   380  
   381  		// if the closing ")" is on a separate line from the last parameter,
   382  		// print an additional "," and line break
   383  		if closing := p.lineFor(fields.Closing); 0 < prevLine && prevLine < closing {
   384  			p.print(token.COMMA)
   385  			p.linebreak(closing, 0, ignore, true)
   386  		} else if mode == typeTParam && fields.NumFields() == 1 && combinesWithName(fields.List[0].Type) {
   387  			// A type parameter list [P T] where the name P and the type expression T syntactically
   388  			// combine to another valid (value) expression requires a trailing comma, as in [P *T,]
   389  			// (or an enclosing interface as in [P interface(*T)]), so that the type parameter list
   390  			// is not parsed as an array length [P*T].
   391  			p.print(token.COMMA)
   392  		}
   393  
   394  		// unindent if we indented
   395  		if ws == ignore {
   396  			p.print(unindent)
   397  		}
   398  	}
   399  
   400  	p.setPos(fields.Closing)
   401  	p.print(closeTok)
   402  }
   403  
   404  // combinesWithName reports whether a name followed by the expression x
   405  // syntactically combines to another valid (value) expression. For instance
   406  // using *T for x, "name *T" syntactically appears as the expression x*T.
   407  // On the other hand, using  P|Q or *P|~Q for x, "name P|Q" or name *P|~Q"
   408  // cannot be combined into a valid (value) expression.
   409  func combinesWithName(x ast.Expr) bool {
   410  	switch x := x.(type) {
   411  	case *ast.StarExpr:
   412  		// name *x.X combines to name*x.X if x.X is not a type element
   413  		return !isTypeElem(x.X)
   414  	case *ast.BinaryExpr:
   415  		return combinesWithName(x.X) && !isTypeElem(x.Y)
   416  	case *ast.ParenExpr:
   417  		// name(x) combines but we are making sure at
   418  		// the call site that x is never parenthesized.
   419  		panic("unexpected parenthesized expression")
   420  	}
   421  	return false
   422  }
   423  
   424  // isTypeElem reports whether x is a (possibly parenthesized) type element expression.
   425  // The result is false if x could be a type element OR an ordinary (value) expression.
   426  func isTypeElem(x ast.Expr) bool {
   427  	switch x := x.(type) {
   428  	case *ast.ArrayType, *ast.StructType, *ast.FuncType, *ast.InterfaceType, *ast.MapType, *ast.ChanType:
   429  		return true
   430  	case *ast.UnaryExpr:
   431  		return x.Op == token.TILDE
   432  	case *ast.BinaryExpr:
   433  		return isTypeElem(x.X) || isTypeElem(x.Y)
   434  	case *ast.ParenExpr:
   435  		return isTypeElem(x.X)
   436  	}
   437  	return false
   438  }
   439  
   440  func (p *printer) signature(sig *ast.FuncType) {
   441  	if sig.TypeParams != nil {
   442  		p.parameters(sig.TypeParams, funcTParam)
   443  	}
   444  	if sig.Params != nil {
   445  		p.parameters(sig.Params, funcParam)
   446  	} else {
   447  		p.print(token.LPAREN, token.RPAREN)
   448  	}
   449  	res := sig.Results
   450  	n := res.NumFields()
   451  	if n > 0 {
   452  		// res != nil
   453  		p.print(blank)
   454  		if n == 1 && res.List[0].Names == nil {
   455  			// single anonymous res; no ()'s
   456  			p.expr(stripParensAlways(res.List[0].Type))
   457  			return
   458  		}
   459  		p.parameters(res, funcParam)
   460  	}
   461  }
   462  
   463  func identListSize(list []*ast.Ident, maxSize int) (size int) {
   464  	for i, x := range list {
   465  		if i > 0 {
   466  			size += len(", ")
   467  		}
   468  		size += utf8.RuneCountInString(x.Name)
   469  		if size >= maxSize {
   470  			break
   471  		}
   472  	}
   473  	return
   474  }
   475  
   476  func (p *printer) isOneLineFieldList(list []*ast.Field) bool {
   477  	if len(list) != 1 {
   478  		return false // allow only one field
   479  	}
   480  	f := list[0]
   481  	if f.Tag != nil || f.Comment != nil {
   482  		return false // don't allow tags or comments
   483  	}
   484  	// only name(s) and type
   485  	const maxSize = 30 // adjust as appropriate, this is an approximate value
   486  	namesSize := identListSize(f.Names, maxSize)
   487  	if namesSize > 0 {
   488  		namesSize = 1 // blank between names and types
   489  	}
   490  	typeSize := p.nodeSize(f.Type, maxSize)
   491  	return namesSize+typeSize <= maxSize
   492  }
   493  
   494  func (p *printer) setLineComment(text string) {
   495  	p.setComment(&ast.CommentGroup{List: []*ast.Comment{{Slash: token.NoPos, Text: text}}})
   496  }
   497  
   498  func (p *printer) fieldList(fields *ast.FieldList, isStruct, isIncomplete bool) {
   499  	lbrace := fields.Opening
   500  	list := fields.List
   501  	rbrace := fields.Closing
   502  	hasComments := isIncomplete || p.commentBefore(p.posFor(rbrace))
   503  	srcIsOneLine := lbrace.IsValid() && rbrace.IsValid() && p.lineFor(lbrace) == p.lineFor(rbrace)
   504  
   505  	if !hasComments && srcIsOneLine {
   506  		// possibly a one-line struct/interface
   507  		if len(list) == 0 {
   508  			// no blank between keyword and {} in this case
   509  			p.setPos(lbrace)
   510  			p.print(token.LBRACE)
   511  			p.setPos(rbrace)
   512  			p.print(token.RBRACE)
   513  			return
   514  		} else if p.isOneLineFieldList(list) {
   515  			// small enough - print on one line
   516  			// (don't use identList and ignore source line breaks)
   517  			p.setPos(lbrace)
   518  			p.print(token.LBRACE, blank)
   519  			f := list[0]
   520  			if isStruct {
   521  				for i, x := range f.Names {
   522  					if i > 0 {
   523  						// no comments so no need for comma position
   524  						p.print(token.COMMA, blank)
   525  					}
   526  					p.expr(x)
   527  				}
   528  				if len(f.Names) > 0 {
   529  					p.print(blank)
   530  				}
   531  				p.expr(f.Type)
   532  			} else { // interface
   533  				if len(f.Names) > 0 {
   534  					name := f.Names[0] // method name
   535  					p.expr(name)
   536  					p.signature(f.Type.(*ast.FuncType)) // don't print "func"
   537  				} else {
   538  					// embedded interface
   539  					p.expr(f.Type)
   540  				}
   541  			}
   542  			p.print(blank)
   543  			p.setPos(rbrace)
   544  			p.print(token.RBRACE)
   545  			return
   546  		}
   547  	}
   548  	// hasComments || !srcIsOneLine
   549  
   550  	p.print(blank)
   551  	p.setPos(lbrace)
   552  	p.print(token.LBRACE, indent)
   553  	if hasComments || len(list) > 0 {
   554  		p.print(formfeed)
   555  	}
   556  
   557  	if isStruct {
   558  
   559  		sep := vtab
   560  		if len(list) == 1 {
   561  			sep = blank
   562  		}
   563  		var line int
   564  		for i, f := range list {
   565  			if i > 0 {
   566  				p.linebreak(p.lineFor(f.Pos()), 1, ignore, p.linesFrom(line) > 0)
   567  			}
   568  			extraTabs := 0
   569  			p.setComment(f.Doc)
   570  			p.recordLine(&line)
   571  			if len(f.Names) > 0 {
   572  				// named fields
   573  				p.identList(f.Names, false)
   574  				p.print(sep)
   575  				p.expr(f.Type)
   576  				extraTabs = 1
   577  			} else {
   578  				// anonymous field
   579  				p.expr(f.Type)
   580  				extraTabs = 2
   581  			}
   582  			if f.Tag != nil {
   583  				if len(f.Names) > 0 && sep == vtab {
   584  					p.print(sep)
   585  				}
   586  				p.print(sep)
   587  				p.expr(f.Tag)
   588  				extraTabs = 0
   589  			}
   590  			if f.Comment != nil {
   591  				for ; extraTabs > 0; extraTabs-- {
   592  					p.print(sep)
   593  				}
   594  				p.setComment(f.Comment)
   595  			}
   596  		}
   597  		if isIncomplete {
   598  			if len(list) > 0 {
   599  				p.print(formfeed)
   600  			}
   601  			p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment
   602  			p.setLineComment("// " + filteredMsg)
   603  		}
   604  
   605  	} else { // interface
   606  
   607  		var line int
   608  		var prev *ast.Ident // previous "type" identifier
   609  		for i, f := range list {
   610  			var name *ast.Ident // first name, or nil
   611  			if len(f.Names) > 0 {
   612  				name = f.Names[0]
   613  			}
   614  			if i > 0 {
   615  				// don't do a line break (min == 0) if we are printing a list of types
   616  				// TODO(gri) this doesn't work quite right if the list of types is
   617  				//           spread across multiple lines
   618  				min := 1
   619  				if prev != nil && name == prev {
   620  					min = 0
   621  				}
   622  				p.linebreak(p.lineFor(f.Pos()), min, ignore, p.linesFrom(line) > 0)
   623  			}
   624  			p.setComment(f.Doc)
   625  			p.recordLine(&line)
   626  			if name != nil {
   627  				// method
   628  				p.expr(name)
   629  				p.signature(f.Type.(*ast.FuncType)) // don't print "func"
   630  				prev = nil
   631  			} else {
   632  				// embedded interface
   633  				p.expr(f.Type)
   634  				prev = nil
   635  			}
   636  			p.setComment(f.Comment)
   637  		}
   638  		if isIncomplete {
   639  			if len(list) > 0 {
   640  				p.print(formfeed)
   641  			}
   642  			p.flush(p.posFor(rbrace), token.RBRACE) // make sure we don't lose the last line comment
   643  			p.setLineComment("// contains filtered or unexported methods")
   644  		}
   645  
   646  	}
   647  	p.print(unindent, formfeed)
   648  	p.setPos(rbrace)
   649  	p.print(token.RBRACE)
   650  }
   651  
   652  // ----------------------------------------------------------------------------
   653  // Expressions
   654  
   655  func walkBinary(e *ast.BinaryExpr) (has4, has5 bool, maxProblem int) {
   656  	switch e.Op.Precedence() {
   657  	case 4:
   658  		has4 = true
   659  	case 5:
   660  		has5 = true
   661  	}
   662  
   663  	switch l := e.X.(type) {
   664  	case *ast.BinaryExpr:
   665  		if l.Op.Precedence() < e.Op.Precedence() {
   666  			// parens will be inserted.
   667  			// pretend this is an *ast.ParenExpr and do nothing.
   668  			break
   669  		}
   670  		h4, h5, mp := walkBinary(l)
   671  		has4 = has4 || h4
   672  		has5 = has5 || h5
   673  		if maxProblem < mp {
   674  			maxProblem = mp
   675  		}
   676  	}
   677  
   678  	switch r := e.Y.(type) {
   679  	case *ast.BinaryExpr:
   680  		if r.Op.Precedence() <= e.Op.Precedence() {
   681  			// parens will be inserted.
   682  			// pretend this is an *ast.ParenExpr and do nothing.
   683  			break
   684  		}
   685  		h4, h5, mp := walkBinary(r)
   686  		has4 = has4 || h4
   687  		has5 = has5 || h5
   688  		if maxProblem < mp {
   689  			maxProblem = mp
   690  		}
   691  
   692  	case *ast.StarExpr:
   693  		if e.Op == token.QUO { // `*/`
   694  			maxProblem = 5
   695  		}
   696  
   697  	case *ast.UnaryExpr:
   698  		switch e.Op.String() + r.Op.String() {
   699  		case "/*", "&&", "&^":
   700  			maxProblem = 5
   701  		case "++", "--":
   702  			if maxProblem < 4 {
   703  				maxProblem = 4
   704  			}
   705  		}
   706  	}
   707  	return
   708  }
   709  
   710  func cutoff(e *ast.BinaryExpr, depth int) int {
   711  	has4, has5, maxProblem := walkBinary(e)
   712  	if maxProblem > 0 {
   713  		return maxProblem + 1
   714  	}
   715  	if has4 && has5 {
   716  		if depth == 1 {
   717  			return 5
   718  		}
   719  		return 4
   720  	}
   721  	if depth == 1 {
   722  		return 6
   723  	}
   724  	return 4
   725  }
   726  
   727  func diffPrec(expr ast.Expr, prec int) int {
   728  	x, ok := expr.(*ast.BinaryExpr)
   729  	if !ok || prec != x.Op.Precedence() {
   730  		return 1
   731  	}
   732  	return 0
   733  }
   734  
   735  func reduceDepth(depth int) int {
   736  	depth--
   737  	if depth < 1 {
   738  		depth = 1
   739  	}
   740  	return depth
   741  }
   742  
   743  // Format the binary expression: decide the cutoff and then format.
   744  // Let's call depth == 1 Normal mode, and depth > 1 Compact mode.
   745  // (Algorithm suggestion by Russ Cox.)
   746  //
   747  // The precedences are:
   748  //
   749  //	5             *  /  %  <<  >>  &  &^
   750  //	4             +  -  |  ^
   751  //	3             ==  !=  <  <=  >  >=
   752  //	2             &&
   753  //	1             ||
   754  //
   755  // The only decision is whether there will be spaces around levels 4 and 5.
   756  // There are never spaces at level 6 (unary), and always spaces at levels 3 and below.
   757  //
   758  // To choose the cutoff, look at the whole expression but excluding primary
   759  // expressions (function calls, parenthesized exprs), and apply these rules:
   760  //
   761  //  1. If there is a binary operator with a right side unary operand
   762  //     that would clash without a space, the cutoff must be (in order):
   763  //
   764  //     /*	6
   765  //     &&	6
   766  //     &^	6
   767  //     ++	5
   768  //     --	5
   769  //
   770  //     (Comparison operators always have spaces around them.)
   771  //
   772  //  2. If there is a mix of level 5 and level 4 operators, then the cutoff
   773  //     is 5 (use spaces to distinguish precedence) in Normal mode
   774  //     and 4 (never use spaces) in Compact mode.
   775  //
   776  //  3. If there are no level 4 operators or no level 5 operators, then the
   777  //     cutoff is 6 (always use spaces) in Normal mode
   778  //     and 4 (never use spaces) in Compact mode.
   779  func (p *printer) binaryExpr(x *ast.BinaryExpr, prec1, cutoff, depth int) {
   780  	prec := x.Op.Precedence()
   781  	if prec < prec1 {
   782  		// parenthesis needed
   783  		// Note: The parser inserts an ast.ParenExpr node; thus this case
   784  		//       can only occur if the AST is created in a different way.
   785  		p.print(token.LPAREN)
   786  		p.expr0(x, reduceDepth(depth)) // parentheses undo one level of depth
   787  		p.print(token.RPAREN)
   788  		return
   789  	}
   790  
   791  	printBlank := prec < cutoff
   792  
   793  	ws := indent
   794  	p.expr1(x.X, prec, depth+diffPrec(x.X, prec))
   795  	if printBlank {
   796  		p.print(blank)
   797  	}
   798  	xline := p.pos.Line // before the operator (it may be on the next line!)
   799  	yline := p.lineFor(x.Y.Pos())
   800  	p.setPos(x.OpPos)
   801  	p.print(x.Op)
   802  	if xline != yline && xline > 0 && yline > 0 {
   803  		// at least one line break, but respect an extra empty line
   804  		// in the source
   805  		if p.linebreak(yline, 1, ws, true) > 0 {
   806  			ws = ignore
   807  			printBlank = false // no blank after line break
   808  		}
   809  	}
   810  	if printBlank {
   811  		p.print(blank)
   812  	}
   813  	p.expr1(x.Y, prec+1, depth+1)
   814  	if ws == ignore {
   815  		p.print(unindent)
   816  	}
   817  }
   818  
   819  func isBinary(expr ast.Expr) bool {
   820  	_, ok := expr.(*ast.BinaryExpr)
   821  	return ok
   822  }
   823  
   824  func (p *printer) expr1(expr ast.Expr, prec1, depth int) {
   825  	p.setPos(expr.Pos())
   826  
   827  	switch x := expr.(type) {
   828  	case *ast.BadExpr:
   829  		p.print("BadExpr")
   830  
   831  	case *ast.Ident:
   832  		p.print(x)
   833  
   834  	case *ast.BinaryExpr:
   835  		if depth < 1 {
   836  			p.internalError("depth < 1:", depth)
   837  			depth = 1
   838  		}
   839  		p.binaryExpr(x, prec1, cutoff(x, depth), depth)
   840  
   841  	case *ast.KeyValueExpr:
   842  		p.expr(x.Key)
   843  		p.setPos(x.Colon)
   844  		p.print(token.COLON, blank)
   845  		p.expr(x.Value)
   846  
   847  	case *ast.StarExpr:
   848  		const prec = token.UnaryPrec
   849  		if prec < prec1 {
   850  			// parenthesis needed
   851  			p.print(token.LPAREN)
   852  			p.print(token.MUL)
   853  			p.expr(x.X)
   854  			p.print(token.RPAREN)
   855  		} else {
   856  			// no parenthesis needed
   857  			p.print(token.MUL)
   858  			p.expr(x.X)
   859  		}
   860  
   861  	case *ast.UnaryExpr:
   862  		const prec = token.UnaryPrec
   863  		if prec < prec1 {
   864  			// parenthesis needed
   865  			p.print(token.LPAREN)
   866  			p.expr(x)
   867  			p.print(token.RPAREN)
   868  		} else {
   869  			// no parenthesis needed
   870  			p.print(x.Op)
   871  			if x.Op == token.RANGE {
   872  				// TODO(gri) Remove this code if it cannot be reached.
   873  				p.print(blank)
   874  			}
   875  			p.expr1(x.X, prec, depth)
   876  		}
   877  
   878  	case *ast.BasicLit:
   879  		if p.Config.Mode&normalizeNumbers != 0 {
   880  			x = normalizedNumber(x)
   881  		}
   882  		p.print(x)
   883  
   884  	case *ast.FuncLit:
   885  		p.setPos(x.Type.Pos())
   886  		p.print(token.FUNC)
   887  		// See the comment in funcDecl about how the header size is computed.
   888  		startCol := p.out.Column - len("func")
   889  		p.signature(x.Type)
   890  		p.funcBody(p.distanceFrom(x.Type.Pos(), startCol), blank, x.Body)
   891  
   892  	case *ast.ParenExpr:
   893  		if _, hasParens := x.X.(*ast.ParenExpr); hasParens {
   894  			// don't print parentheses around an already parenthesized expression
   895  			// TODO(gri) consider making this more general and incorporate precedence levels
   896  			p.expr0(x.X, depth)
   897  		} else {
   898  			p.print(token.LPAREN)
   899  			p.expr0(x.X, reduceDepth(depth)) // parentheses undo one level of depth
   900  			p.setPos(x.Rparen)
   901  			p.print(token.RPAREN)
   902  		}
   903  
   904  	case *ast.SelectorExpr:
   905  		p.selectorExpr(x, depth, false)
   906  
   907  	case *ast.TypeAssertExpr:
   908  		p.expr1(x.X, token.HighestPrec, depth)
   909  		p.print(token.PERIOD)
   910  		p.setPos(x.Lparen)
   911  		p.print(token.LPAREN)
   912  		if x.Type != nil {
   913  			p.expr(x.Type)
   914  		} else {
   915  			p.print(token.TYPE)
   916  		}
   917  		p.setPos(x.Rparen)
   918  		p.print(token.RPAREN)
   919  
   920  	case *ast.IndexExpr:
   921  		// TODO(gri): should treat[] like parentheses and undo one level of depth
   922  		p.expr1(x.X, token.HighestPrec, 1)
   923  		p.setPos(x.Lbrack)
   924  		p.print(token.LBRACK)
   925  		p.expr0(x.Index, depth+1)
   926  		p.setPos(x.Rbrack)
   927  		p.print(token.RBRACK)
   928  
   929  	case *ast.IndexListExpr:
   930  		// TODO(gri): as for IndexExpr, should treat [] like parentheses and undo
   931  		// one level of depth
   932  		p.expr1(x.X, token.HighestPrec, 1)
   933  		p.setPos(x.Lbrack)
   934  		p.print(token.LBRACK)
   935  		p.exprList(x.Lbrack, x.Indices, depth+1, commaTerm, x.Rbrack, false)
   936  		p.setPos(x.Rbrack)
   937  		p.print(token.RBRACK)
   938  
   939  	case *ast.SliceExpr:
   940  		// TODO(gri): should treat[] like parentheses and undo one level of depth
   941  		p.expr1(x.X, token.HighestPrec, 1)
   942  		p.setPos(x.Lbrack)
   943  		p.print(token.LBRACK)
   944  		indices := []ast.Expr{x.Low, x.High}
   945  		if x.Max != nil {
   946  			indices = append(indices, x.Max)
   947  		}
   948  		// determine if we need extra blanks around ':'
   949  		var needsBlanks bool
   950  		if depth <= 1 {
   951  			var indexCount int
   952  			var hasBinaries bool
   953  			for _, x := range indices {
   954  				if x != nil {
   955  					indexCount++
   956  					if isBinary(x) {
   957  						hasBinaries = true
   958  					}
   959  				}
   960  			}
   961  			if indexCount > 1 && hasBinaries {
   962  				needsBlanks = true
   963  			}
   964  		}
   965  		for i, x := range indices {
   966  			if i > 0 {
   967  				if indices[i-1] != nil && needsBlanks {
   968  					p.print(blank)
   969  				}
   970  				p.print(token.COLON)
   971  				if x != nil && needsBlanks {
   972  					p.print(blank)
   973  				}
   974  			}
   975  			if x != nil {
   976  				p.expr0(x, depth+1)
   977  			}
   978  		}
   979  		p.setPos(x.Rbrack)
   980  		p.print(token.RBRACK)
   981  
   982  	case *ast.CallExpr:
   983  		if len(x.Args) > 1 {
   984  			depth++
   985  		}
   986  		var wasIndented bool
   987  		if _, ok := x.Fun.(*ast.FuncType); ok {
   988  			// conversions to literal function types require parentheses around the type
   989  			p.print(token.LPAREN)
   990  			wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth)
   991  			p.print(token.RPAREN)
   992  		} else {
   993  			wasIndented = p.possibleSelectorExpr(x.Fun, token.HighestPrec, depth)
   994  		}
   995  		p.setPos(x.Lparen)
   996  		p.print(token.LPAREN)
   997  		if x.Ellipsis.IsValid() {
   998  			p.exprList(x.Lparen, x.Args, depth, 0, x.Ellipsis, false)
   999  			p.setPos(x.Ellipsis)
  1000  			p.print(token.ELLIPSIS)
  1001  			if x.Rparen.IsValid() && p.lineFor(x.Ellipsis) < p.lineFor(x.Rparen) {
  1002  				p.print(token.COMMA, formfeed)
  1003  			}
  1004  		} else {
  1005  			p.exprList(x.Lparen, x.Args, depth, commaTerm, x.Rparen, false)
  1006  		}
  1007  		p.setPos(x.Rparen)
  1008  		p.print(token.RPAREN)
  1009  		if wasIndented {
  1010  			p.print(unindent)
  1011  		}
  1012  
  1013  	case *ast.CompositeLit:
  1014  		// composite literal elements that are composite literals themselves may have the type omitted
  1015  		if x.Type != nil {
  1016  			p.expr1(x.Type, token.HighestPrec, depth)
  1017  		}
  1018  		p.level++
  1019  		p.setPos(x.Lbrace)
  1020  		p.print(token.LBRACE)
  1021  		p.exprList(x.Lbrace, x.Elts, 1, commaTerm, x.Rbrace, x.Incomplete)
  1022  		// do not insert extra line break following a /*-style comment
  1023  		// before the closing '}' as it might break the code if there
  1024  		// is no trailing ','
  1025  		mode := noExtraLinebreak
  1026  		// do not insert extra blank following a /*-style comment
  1027  		// before the closing '}' unless the literal is empty
  1028  		if len(x.Elts) > 0 {
  1029  			mode |= noExtraBlank
  1030  		}
  1031  		// need the initial indent to print lone comments with
  1032  		// the proper level of indentation
  1033  		p.print(indent, unindent, mode)
  1034  		p.setPos(x.Rbrace)
  1035  		p.print(token.RBRACE, mode)
  1036  		p.level--
  1037  
  1038  	case *ast.Ellipsis:
  1039  		p.print(token.ELLIPSIS)
  1040  		if x.Elt != nil {
  1041  			p.expr(x.Elt)
  1042  		}
  1043  
  1044  	case *ast.ArrayType:
  1045  		p.print(token.LBRACK)
  1046  		if x.Len != nil {
  1047  			p.expr(x.Len)
  1048  		}
  1049  		p.print(token.RBRACK)
  1050  		p.expr(x.Elt)
  1051  
  1052  	case *ast.StructType:
  1053  		p.print(token.STRUCT)
  1054  		p.fieldList(x.Fields, true, x.Incomplete)
  1055  
  1056  	case *ast.FuncType:
  1057  		p.print(token.FUNC)
  1058  		p.signature(x)
  1059  
  1060  	case *ast.InterfaceType:
  1061  		p.print(token.INTERFACE)
  1062  		p.fieldList(x.Methods, false, x.Incomplete)
  1063  
  1064  	case *ast.MapType:
  1065  		p.print(token.MAP, token.LBRACK)
  1066  		p.expr(x.Key)
  1067  		p.print(token.RBRACK)
  1068  		p.expr(x.Value)
  1069  
  1070  	case *ast.ChanType:
  1071  		switch x.Dir {
  1072  		case ast.SEND | ast.RECV:
  1073  			p.print(token.CHAN)
  1074  		case ast.RECV:
  1075  			p.print(token.ARROW, token.CHAN) // x.Arrow and x.Pos() are the same
  1076  		case ast.SEND:
  1077  			p.print(token.CHAN)
  1078  			p.setPos(x.Arrow)
  1079  			p.print(token.ARROW)
  1080  		}
  1081  		p.print(blank)
  1082  		p.expr(x.Value)
  1083  
  1084  	default:
  1085  		panic("unreachable")
  1086  	}
  1087  }
  1088  
  1089  // normalizedNumber rewrites base prefixes and exponents
  1090  // of numbers to use lower-case letters (0X123 to 0x123 and 1.2E3 to 1.2e3),
  1091  // and removes leading 0's from integer imaginary literals (0765i to 765i).
  1092  // It leaves hexadecimal digits alone.
  1093  //
  1094  // normalizedNumber doesn't modify the ast.BasicLit value lit points to.
  1095  // If lit is not a number or a number in canonical format already,
  1096  // lit is returned as is. Otherwise a new ast.BasicLit is created.
  1097  func normalizedNumber(lit *ast.BasicLit) *ast.BasicLit {
  1098  	if lit.Kind != token.INT && lit.Kind != token.FLOAT && lit.Kind != token.IMAG {
  1099  		return lit // not a number - nothing to do
  1100  	}
  1101  	if len(lit.Value) < 2 {
  1102  		return lit // only one digit (common case) - nothing to do
  1103  	}
  1104  	// len(lit.Value) >= 2
  1105  
  1106  	// We ignore lit.Kind because for lit.Kind == token.IMAG the literal may be an integer
  1107  	// or floating-point value, decimal or not. Instead, just consider the literal pattern.
  1108  	x := lit.Value
  1109  	switch x[:2] {
  1110  	default:
  1111  		// 0-prefix octal, decimal int, or float (possibly with 'i' suffix)
  1112  		if i := strings.LastIndexByte(x, 'E'); i >= 0 {
  1113  			x = x[:i] + "e" + x[i+1:]
  1114  			break
  1115  		}
  1116  		// remove leading 0's from integer (but not floating-point) imaginary literals
  1117  		if x[len(x)-1] == 'i' && !strings.ContainsAny(x, ".e") {
  1118  			x = strings.TrimLeft(x, "0_")
  1119  			if x == "i" {
  1120  				x = "0i"
  1121  			}
  1122  		}
  1123  	case "0X":
  1124  		x = "0x" + x[2:]
  1125  		// possibly a hexadecimal float
  1126  		if i := strings.LastIndexByte(x, 'P'); i >= 0 {
  1127  			x = x[:i] + "p" + x[i+1:]
  1128  		}
  1129  	case "0x":
  1130  		// possibly a hexadecimal float
  1131  		i := strings.LastIndexByte(x, 'P')
  1132  		if i == -1 {
  1133  			return lit // nothing to do
  1134  		}
  1135  		x = x[:i] + "p" + x[i+1:]
  1136  	case "0O":
  1137  		x = "0o" + x[2:]
  1138  	case "0o":
  1139  		return lit // nothing to do
  1140  	case "0B":
  1141  		x = "0b" + x[2:]
  1142  	case "0b":
  1143  		return lit // nothing to do
  1144  	}
  1145  
  1146  	return &ast.BasicLit{ValuePos: lit.ValuePos, Kind: lit.Kind, Value: x}
  1147  }
  1148  
  1149  func (p *printer) possibleSelectorExpr(expr ast.Expr, prec1, depth int) bool {
  1150  	if x, ok := expr.(*ast.SelectorExpr); ok {
  1151  		return p.selectorExpr(x, depth, true)
  1152  	}
  1153  	p.expr1(expr, prec1, depth)
  1154  	return false
  1155  }
  1156  
  1157  // selectorExpr handles an *ast.SelectorExpr node and reports whether x spans
  1158  // multiple lines.
  1159  func (p *printer) selectorExpr(x *ast.SelectorExpr, depth int, isMethod bool) bool {
  1160  	p.expr1(x.X, token.HighestPrec, depth)
  1161  	p.print(token.PERIOD)
  1162  	if line := p.lineFor(x.Sel.Pos()); p.pos.IsValid() && p.pos.Line < line {
  1163  		p.print(indent, newline)
  1164  		p.setPos(x.Sel.Pos())
  1165  		p.print(x.Sel)
  1166  		if !isMethod {
  1167  			p.print(unindent)
  1168  		}
  1169  		return true
  1170  	}
  1171  	p.setPos(x.Sel.Pos())
  1172  	p.print(x.Sel)
  1173  	return false
  1174  }
  1175  
  1176  func (p *printer) expr0(x ast.Expr, depth int) {
  1177  	p.expr1(x, token.LowestPrec, depth)
  1178  }
  1179  
  1180  func (p *printer) expr(x ast.Expr) {
  1181  	const depth = 1
  1182  	p.expr1(x, token.LowestPrec, depth)
  1183  }
  1184  
  1185  // ----------------------------------------------------------------------------
  1186  // Statements
  1187  
  1188  // Print the statement list indented, but without a newline after the last statement.
  1189  // Extra line breaks between statements in the source are respected but at most one
  1190  // empty line is printed between statements.
  1191  func (p *printer) stmtList(list []ast.Stmt, nindent int, nextIsRBrace bool) {
  1192  	if nindent > 0 {
  1193  		p.print(indent)
  1194  	}
  1195  	var line int
  1196  	i := 0
  1197  	for _, s := range list {
  1198  		// ignore empty statements (was issue 3466)
  1199  		if _, isEmpty := s.(*ast.EmptyStmt); !isEmpty {
  1200  			// nindent == 0 only for lists of switch/select case clauses;
  1201  			// in those cases each clause is a new section
  1202  			if len(p.output) > 0 {
  1203  				// only print line break if we are not at the beginning of the output
  1204  				// (i.e., we are not printing only a partial program)
  1205  				p.linebreak(p.lineFor(s.Pos()), 1, ignore, i == 0 || nindent == 0 || p.linesFrom(line) > 0)
  1206  			}
  1207  			p.recordLine(&line)
  1208  			p.stmt(s, nextIsRBrace && i == len(list)-1)
  1209  			// labeled statements put labels on a separate line, but here
  1210  			// we only care about the start line of the actual statement
  1211  			// without label - correct line for each label
  1212  			for t := s; ; {
  1213  				lt, _ := t.(*ast.LabeledStmt)
  1214  				if lt == nil {
  1215  					break
  1216  				}
  1217  				line++
  1218  				t = lt.Stmt
  1219  			}
  1220  			i++
  1221  		}
  1222  	}
  1223  	if nindent > 0 {
  1224  		p.print(unindent)
  1225  	}
  1226  }
  1227  
  1228  // block prints an *ast.BlockStmt; it always spans at least two lines.
  1229  func (p *printer) block(b *ast.BlockStmt, nindent int) {
  1230  	p.setPos(b.Lbrace)
  1231  	p.print(token.LBRACE)
  1232  	p.stmtList(b.List, nindent, true)
  1233  	p.linebreak(p.lineFor(b.Rbrace), 1, ignore, true)
  1234  	p.setPos(b.Rbrace)
  1235  	p.print(token.RBRACE)
  1236  }
  1237  
  1238  func isTypeName(x ast.Expr) bool {
  1239  	switch t := x.(type) {
  1240  	case *ast.Ident:
  1241  		return true
  1242  	case *ast.SelectorExpr:
  1243  		return isTypeName(t.X)
  1244  	}
  1245  	return false
  1246  }
  1247  
  1248  func stripParens(x ast.Expr) ast.Expr {
  1249  	if px, strip := x.(*ast.ParenExpr); strip {
  1250  		// parentheses must not be stripped if there are any
  1251  		// unparenthesized composite literals starting with
  1252  		// a type name
  1253  		ast.Inspect(px.X, func(node ast.Node) bool {
  1254  			switch x := node.(type) {
  1255  			case *ast.ParenExpr:
  1256  				// parentheses protect enclosed composite literals
  1257  				return false
  1258  			case *ast.CompositeLit:
  1259  				if isTypeName(x.Type) {
  1260  					strip = false // do not strip parentheses
  1261  				}
  1262  				return false
  1263  			}
  1264  			// in all other cases, keep inspecting
  1265  			return true
  1266  		})
  1267  		if strip {
  1268  			return stripParens(px.X)
  1269  		}
  1270  	}
  1271  	return x
  1272  }
  1273  
  1274  func stripParensAlways(x ast.Expr) ast.Expr {
  1275  	if x, ok := x.(*ast.ParenExpr); ok {
  1276  		return stripParensAlways(x.X)
  1277  	}
  1278  	return x
  1279  }
  1280  
  1281  func (p *printer) controlClause(isForStmt bool, init ast.Stmt, expr ast.Expr, post ast.Stmt) {
  1282  	p.print(blank)
  1283  	needsBlank := false
  1284  	if init == nil && post == nil {
  1285  		// no semicolons required
  1286  		if expr != nil {
  1287  			p.expr(stripParens(expr))
  1288  			needsBlank = true
  1289  		}
  1290  	} else {
  1291  		// all semicolons required
  1292  		// (they are not separators, print them explicitly)
  1293  		if init != nil {
  1294  			p.stmt(init, false)
  1295  		}
  1296  		p.print(token.SEMICOLON, blank)
  1297  		if expr != nil {
  1298  			p.expr(stripParens(expr))
  1299  			needsBlank = true
  1300  		}
  1301  		if isForStmt {
  1302  			p.print(token.SEMICOLON, blank)
  1303  			needsBlank = false
  1304  			if post != nil {
  1305  				p.stmt(post, false)
  1306  				needsBlank = true
  1307  			}
  1308  		}
  1309  	}
  1310  	if needsBlank {
  1311  		p.print(blank)
  1312  	}
  1313  }
  1314  
  1315  // indentList reports whether an expression list would look better if it
  1316  // were indented wholesale (starting with the very first element, rather
  1317  // than starting at the first line break).
  1318  func (p *printer) indentList(list []ast.Expr) bool {
  1319  	// Heuristic: indentList reports whether there are more than one multi-
  1320  	// line element in the list, or if there is any element that is not
  1321  	// starting on the same line as the previous one ends.
  1322  	if len(list) >= 2 {
  1323  		var b = p.lineFor(list[0].Pos())
  1324  		var e = p.lineFor(list[len(list)-1].End())
  1325  		if 0 < b && b < e {
  1326  			// list spans multiple lines
  1327  			n := 0 // multi-line element count
  1328  			line := b
  1329  			for _, x := range list {
  1330  				xb := p.lineFor(x.Pos())
  1331  				xe := p.lineFor(x.End())
  1332  				if line < xb {
  1333  					// x is not starting on the same
  1334  					// line as the previous one ended
  1335  					return true
  1336  				}
  1337  				if xb < xe {
  1338  					// x is a multi-line element
  1339  					n++
  1340  				}
  1341  				line = xe
  1342  			}
  1343  			return n > 1
  1344  		}
  1345  	}
  1346  	return false
  1347  }
  1348  
  1349  func (p *printer) stmt(stmt ast.Stmt, nextIsRBrace bool) {
  1350  	p.setPos(stmt.Pos())
  1351  
  1352  	switch s := stmt.(type) {
  1353  	case *ast.BadStmt:
  1354  		p.print("BadStmt")
  1355  
  1356  	case *ast.DeclStmt:
  1357  		p.decl(s.Decl)
  1358  
  1359  	case *ast.EmptyStmt:
  1360  		// nothing to do
  1361  
  1362  	case *ast.LabeledStmt:
  1363  		// a "correcting" unindent immediately following a line break
  1364  		// is applied before the line break if there is no comment
  1365  		// between (see writeWhitespace)
  1366  		p.print(unindent)
  1367  		p.expr(s.Label)
  1368  		p.setPos(s.Colon)
  1369  		p.print(token.COLON, indent)
  1370  		if e, isEmpty := s.Stmt.(*ast.EmptyStmt); isEmpty {
  1371  			if !nextIsRBrace {
  1372  				p.print(newline)
  1373  				p.setPos(e.Pos())
  1374  				p.print(token.SEMICOLON)
  1375  				break
  1376  			}
  1377  		} else {
  1378  			p.linebreak(p.lineFor(s.Stmt.Pos()), 1, ignore, true)
  1379  		}
  1380  		p.stmt(s.Stmt, nextIsRBrace)
  1381  
  1382  	case *ast.ExprStmt:
  1383  		const depth = 1
  1384  		p.expr0(s.X, depth)
  1385  
  1386  	case *ast.SendStmt:
  1387  		const depth = 1
  1388  		p.expr0(s.Chan, depth)
  1389  		p.print(blank)
  1390  		p.setPos(s.Arrow)
  1391  		p.print(token.ARROW, blank)
  1392  		p.expr0(s.Value, depth)
  1393  
  1394  	case *ast.IncDecStmt:
  1395  		const depth = 1
  1396  		p.expr0(s.X, depth+1)
  1397  		p.setPos(s.TokPos)
  1398  		p.print(s.Tok)
  1399  
  1400  	case *ast.AssignStmt:
  1401  		var depth = 1
  1402  		if len(s.Lhs) > 1 && len(s.Rhs) > 1 {
  1403  			depth++
  1404  		}
  1405  		p.exprList(s.Pos(), s.Lhs, depth, 0, s.TokPos, false)
  1406  		p.print(blank)
  1407  		p.setPos(s.TokPos)
  1408  		p.print(s.Tok, blank)
  1409  		p.exprList(s.TokPos, s.Rhs, depth, 0, token.NoPos, false)
  1410  
  1411  	case *ast.GoStmt:
  1412  		p.print(token.GO, blank)
  1413  		p.expr(s.Call)
  1414  
  1415  	case *ast.DeferStmt:
  1416  		p.print(token.DEFER, blank)
  1417  		p.expr(s.Call)
  1418  
  1419  	case *ast.ReturnStmt:
  1420  		p.print(token.RETURN)
  1421  		if s.Results != nil {
  1422  			p.print(blank)
  1423  			// Use indentList heuristic to make corner cases look
  1424  			// better (issue 1207). A more systematic approach would
  1425  			// always indent, but this would cause significant
  1426  			// reformatting of the code base and not necessarily
  1427  			// lead to more nicely formatted code in general.
  1428  			if p.indentList(s.Results) {
  1429  				p.print(indent)
  1430  				// Use NoPos so that a newline never goes before
  1431  				// the results (see issue #32854).
  1432  				p.exprList(token.NoPos, s.Results, 1, noIndent, token.NoPos, false)
  1433  				p.print(unindent)
  1434  			} else {
  1435  				p.exprList(token.NoPos, s.Results, 1, 0, token.NoPos, false)
  1436  			}
  1437  		}
  1438  
  1439  	case *ast.BranchStmt:
  1440  		p.print(s.Tok)
  1441  		if s.Label != nil {
  1442  			p.print(blank)
  1443  			p.expr(s.Label)
  1444  		}
  1445  
  1446  	case *ast.BlockStmt:
  1447  		p.block(s, 1)
  1448  
  1449  	case *ast.IfStmt:
  1450  		p.print(token.IF)
  1451  		p.controlClause(false, s.Init, s.Cond, nil)
  1452  		p.block(s.Body, 1)
  1453  		if s.Else != nil {
  1454  			p.print(blank, token.ELSE, blank)
  1455  			switch s.Else.(type) {
  1456  			case *ast.BlockStmt, *ast.IfStmt:
  1457  				p.stmt(s.Else, nextIsRBrace)
  1458  			default:
  1459  				// This can only happen with an incorrectly
  1460  				// constructed AST. Permit it but print so
  1461  				// that it can be parsed without errors.
  1462  				p.print(token.LBRACE, indent, formfeed)
  1463  				p.stmt(s.Else, true)
  1464  				p.print(unindent, formfeed, token.RBRACE)
  1465  			}
  1466  		}
  1467  
  1468  	case *ast.CaseClause:
  1469  		if s.List != nil {
  1470  			p.print(token.CASE, blank)
  1471  			p.exprList(s.Pos(), s.List, 1, 0, s.Colon, false)
  1472  		} else {
  1473  			p.print(token.DEFAULT)
  1474  		}
  1475  		p.setPos(s.Colon)
  1476  		p.print(token.COLON)
  1477  		p.stmtList(s.Body, 1, nextIsRBrace)
  1478  
  1479  	case *ast.SwitchStmt:
  1480  		p.print(token.SWITCH)
  1481  		p.controlClause(false, s.Init, s.Tag, nil)
  1482  		p.block(s.Body, 0)
  1483  
  1484  	case *ast.TypeSwitchStmt:
  1485  		p.print(token.SWITCH)
  1486  		if s.Init != nil {
  1487  			p.print(blank)
  1488  			p.stmt(s.Init, false)
  1489  			p.print(token.SEMICOLON)
  1490  		}
  1491  		p.print(blank)
  1492  		p.stmt(s.Assign, false)
  1493  		p.print(blank)
  1494  		p.block(s.Body, 0)
  1495  
  1496  	case *ast.CommClause:
  1497  		if s.Comm != nil {
  1498  			p.print(token.CASE, blank)
  1499  			p.stmt(s.Comm, false)
  1500  		} else {
  1501  			p.print(token.DEFAULT)
  1502  		}
  1503  		p.setPos(s.Colon)
  1504  		p.print(token.COLON)
  1505  		p.stmtList(s.Body, 1, nextIsRBrace)
  1506  
  1507  	case *ast.SelectStmt:
  1508  		p.print(token.SELECT, blank)
  1509  		body := s.Body
  1510  		if len(body.List) == 0 && !p.commentBefore(p.posFor(body.Rbrace)) {
  1511  			// print empty select statement w/o comments on one line
  1512  			p.setPos(body.Lbrace)
  1513  			p.print(token.LBRACE)
  1514  			p.setPos(body.Rbrace)
  1515  			p.print(token.RBRACE)
  1516  		} else {
  1517  			p.block(body, 0)
  1518  		}
  1519  
  1520  	case *ast.ForStmt:
  1521  		p.print(token.FOR)
  1522  		p.controlClause(true, s.Init, s.Cond, s.Post)
  1523  		p.block(s.Body, 1)
  1524  
  1525  	case *ast.RangeStmt:
  1526  		p.print(token.FOR, blank)
  1527  		if s.Key != nil {
  1528  			p.expr(s.Key)
  1529  			if s.Value != nil {
  1530  				// use position of value following the comma as
  1531  				// comma position for correct comment placement
  1532  				p.setPos(s.Value.Pos())
  1533  				p.print(token.COMMA, blank)
  1534  				p.expr(s.Value)
  1535  			}
  1536  			p.print(blank)
  1537  			p.setPos(s.TokPos)
  1538  			p.print(s.Tok, blank)
  1539  		}
  1540  		p.print(token.RANGE, blank)
  1541  		p.expr(stripParens(s.X))
  1542  		p.print(blank)
  1543  		p.block(s.Body, 1)
  1544  
  1545  	default:
  1546  		panic("unreachable")
  1547  	}
  1548  }
  1549  
  1550  // ----------------------------------------------------------------------------
  1551  // Declarations
  1552  
  1553  // The keepTypeColumn function determines if the type column of a series of
  1554  // consecutive const or var declarations must be kept, or if initialization
  1555  // values (V) can be placed in the type column (T) instead. The i'th entry
  1556  // in the result slice is true if the type column in spec[i] must be kept.
  1557  //
  1558  // For example, the declaration:
  1559  //
  1560  //		const (
  1561  //			foobar int = 42 // comment
  1562  //			x          = 7  // comment
  1563  //			foo
  1564  //	             bar = 991
  1565  //		)
  1566  //
  1567  // leads to the type/values matrix below. A run of value columns (V) can
  1568  // be moved into the type column if there is no type for any of the values
  1569  // in that column (we only move entire columns so that they align properly).
  1570  //
  1571  //		matrix        formatted     result
  1572  //	                   matrix
  1573  //		T  V    ->    T  V     ->   true      there is a T and so the type
  1574  //		-  V          -  V          true      column must be kept
  1575  //		-  -          -  -          false
  1576  //		-  V          V  -          false     V is moved into T column
  1577  func keepTypeColumn(specs []ast.Spec) []bool {
  1578  	m := make([]bool, len(specs))
  1579  
  1580  	populate := func(i, j int, keepType bool) {
  1581  		if keepType {
  1582  			for ; i < j; i++ {
  1583  				m[i] = true
  1584  			}
  1585  		}
  1586  	}
  1587  
  1588  	i0 := -1 // if i0 >= 0 we are in a run and i0 is the start of the run
  1589  	var keepType bool
  1590  	for i, s := range specs {
  1591  		t := s.(*ast.ValueSpec)
  1592  		if t.Values != nil {
  1593  			if i0 < 0 {
  1594  				// start of a run of ValueSpecs with non-nil Values
  1595  				i0 = i
  1596  				keepType = false
  1597  			}
  1598  		} else {
  1599  			if i0 >= 0 {
  1600  				// end of a run
  1601  				populate(i0, i, keepType)
  1602  				i0 = -1
  1603  			}
  1604  		}
  1605  		if t.Type != nil {
  1606  			keepType = true
  1607  		}
  1608  	}
  1609  	if i0 >= 0 {
  1610  		// end of a run
  1611  		populate(i0, len(specs), keepType)
  1612  	}
  1613  
  1614  	return m
  1615  }
  1616  
  1617  func (p *printer) valueSpec(s *ast.ValueSpec, keepType bool) {
  1618  	p.setComment(s.Doc)
  1619  	p.identList(s.Names, false) // always present
  1620  	extraTabs := 3
  1621  	if s.Type != nil || keepType {
  1622  		p.print(vtab)
  1623  		extraTabs--
  1624  	}
  1625  	if s.Type != nil {
  1626  		p.expr(s.Type)
  1627  	}
  1628  	if s.Values != nil {
  1629  		p.print(vtab, token.ASSIGN, blank)
  1630  		p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos, false)
  1631  		extraTabs--
  1632  	}
  1633  	if s.Comment != nil {
  1634  		for ; extraTabs > 0; extraTabs-- {
  1635  			p.print(vtab)
  1636  		}
  1637  		p.setComment(s.Comment)
  1638  	}
  1639  }
  1640  
  1641  func sanitizeImportPath(lit *ast.BasicLit) *ast.BasicLit {
  1642  	// Note: An unmodified AST generated by go/parser will already
  1643  	// contain a backward- or double-quoted path string that does
  1644  	// not contain any invalid characters, and most of the work
  1645  	// here is not needed. However, a modified or generated AST
  1646  	// may possibly contain non-canonical paths. Do the work in
  1647  	// all cases since it's not too hard and not speed-critical.
  1648  
  1649  	// if we don't have a proper string, be conservative and return whatever we have
  1650  	if lit.Kind != token.STRING {
  1651  		return lit
  1652  	}
  1653  	s, err := strconv.Unquote(lit.Value)
  1654  	if err != nil {
  1655  		return lit
  1656  	}
  1657  
  1658  	// if the string is an invalid path, return whatever we have
  1659  	//
  1660  	// spec: "Implementation restriction: A compiler may restrict
  1661  	// ImportPaths to non-empty strings using only characters belonging
  1662  	// to Unicode's L, M, N, P, and S general categories (the Graphic
  1663  	// characters without spaces) and may also exclude the characters
  1664  	// !"#$%&'()*,:;<=>?[\]^`{|} and the Unicode replacement character
  1665  	// U+FFFD."
  1666  	if s == "" {
  1667  		return lit
  1668  	}
  1669  	const illegalChars = `!"#$%&'()*,:;<=>?[\]^{|}` + "`\uFFFD"
  1670  	for _, r := range s {
  1671  		if !unicode.IsGraphic(r) || unicode.IsSpace(r) || strings.ContainsRune(illegalChars, r) {
  1672  			return lit
  1673  		}
  1674  	}
  1675  
  1676  	// otherwise, return the double-quoted path
  1677  	s = strconv.Quote(s)
  1678  	if s == lit.Value {
  1679  		return lit // nothing wrong with lit
  1680  	}
  1681  	return &ast.BasicLit{ValuePos: lit.ValuePos, Kind: token.STRING, Value: s}
  1682  }
  1683  
  1684  // The parameter n is the number of specs in the group. If doIndent is set,
  1685  // multi-line identifier lists in the spec are indented when the first
  1686  // linebreak is encountered.
  1687  func (p *printer) spec(spec ast.Spec, n int, doIndent bool) {
  1688  	switch s := spec.(type) {
  1689  	case *ast.ImportSpec:
  1690  		p.setComment(s.Doc)
  1691  		if s.Name != nil {
  1692  			p.expr(s.Name)
  1693  			p.print(blank)
  1694  		}
  1695  		p.expr(sanitizeImportPath(s.Path))
  1696  		p.setComment(s.Comment)
  1697  		p.setPos(s.EndPos)
  1698  
  1699  	case *ast.ValueSpec:
  1700  		if n != 1 {
  1701  			p.internalError("expected n = 1; got", n)
  1702  		}
  1703  		p.setComment(s.Doc)
  1704  		p.identList(s.Names, doIndent) // always present
  1705  		if s.Type != nil {
  1706  			p.print(blank)
  1707  			p.expr(s.Type)
  1708  		}
  1709  		if s.Values != nil {
  1710  			p.print(blank, token.ASSIGN, blank)
  1711  			p.exprList(token.NoPos, s.Values, 1, 0, token.NoPos, false)
  1712  		}
  1713  		p.setComment(s.Comment)
  1714  
  1715  	case *ast.TypeSpec:
  1716  		p.setComment(s.Doc)
  1717  		p.expr(s.Name)
  1718  		if s.TypeParams != nil {
  1719  			p.parameters(s.TypeParams, typeTParam)
  1720  		}
  1721  		if n == 1 {
  1722  			p.print(blank)
  1723  		} else {
  1724  			p.print(vtab)
  1725  		}
  1726  		if s.Assign.IsValid() {
  1727  			p.print(token.ASSIGN, blank)
  1728  		}
  1729  		p.expr(s.Type)
  1730  		p.setComment(s.Comment)
  1731  
  1732  	default:
  1733  		panic("unreachable")
  1734  	}
  1735  }
  1736  
  1737  func (p *printer) genDecl(d *ast.GenDecl) {
  1738  	p.setComment(d.Doc)
  1739  	p.setPos(d.Pos())
  1740  	p.print(d.Tok, blank)
  1741  
  1742  	if d.Lparen.IsValid() || len(d.Specs) > 1 {
  1743  		// group of parenthesized declarations
  1744  		p.setPos(d.Lparen)
  1745  		p.print(token.LPAREN)
  1746  		if n := len(d.Specs); n > 0 {
  1747  			p.print(indent, formfeed)
  1748  			if n > 1 && (d.Tok == token.CONST || d.Tok == token.VAR) {
  1749  				// two or more grouped const/var declarations:
  1750  				// determine if the type column must be kept
  1751  				keepType := keepTypeColumn(d.Specs)
  1752  				var line int
  1753  				for i, s := range d.Specs {
  1754  					if i > 0 {
  1755  						p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0)
  1756  					}
  1757  					p.recordLine(&line)
  1758  					p.valueSpec(s.(*ast.ValueSpec), keepType[i])
  1759  				}
  1760  			} else {
  1761  				var line int
  1762  				for i, s := range d.Specs {
  1763  					if i > 0 {
  1764  						p.linebreak(p.lineFor(s.Pos()), 1, ignore, p.linesFrom(line) > 0)
  1765  					}
  1766  					p.recordLine(&line)
  1767  					p.spec(s, n, false)
  1768  				}
  1769  			}
  1770  			p.print(unindent, formfeed)
  1771  		}
  1772  		p.setPos(d.Rparen)
  1773  		p.print(token.RPAREN)
  1774  
  1775  	} else if len(d.Specs) > 0 {
  1776  		// single declaration
  1777  		p.spec(d.Specs[0], 1, true)
  1778  	}
  1779  }
  1780  
  1781  // sizeCounter is an io.Writer which counts the number of bytes written,
  1782  // as well as whether a newline character was seen.
  1783  type sizeCounter struct {
  1784  	hasNewline bool
  1785  	size       int
  1786  }
  1787  
  1788  func (c *sizeCounter) Write(p []byte) (int, error) {
  1789  	if !c.hasNewline {
  1790  		for _, b := range p {
  1791  			if b == '\n' || b == '\f' {
  1792  				c.hasNewline = true
  1793  				break
  1794  			}
  1795  		}
  1796  	}
  1797  	c.size += len(p)
  1798  	return len(p), nil
  1799  }
  1800  
  1801  // nodeSize determines the size of n in chars after formatting.
  1802  // The result is <= maxSize if the node fits on one line with at
  1803  // most maxSize chars and the formatted output doesn't contain
  1804  // any control chars. Otherwise, the result is > maxSize.
  1805  func (p *printer) nodeSize(n ast.Node, maxSize int) (size int) {
  1806  	// nodeSize invokes the printer, which may invoke nodeSize
  1807  	// recursively. For deep composite literal nests, this can
  1808  	// lead to an exponential algorithm. Remember previous
  1809  	// results to prune the recursion (was issue 1628).
  1810  	if size, found := p.nodeSizes[n]; found {
  1811  		return size
  1812  	}
  1813  
  1814  	size = maxSize + 1 // assume n doesn't fit
  1815  	p.nodeSizes[n] = size
  1816  
  1817  	// nodeSize computation must be independent of particular
  1818  	// style so that we always get the same decision; print
  1819  	// in RawFormat
  1820  	cfg := Config{Mode: RawFormat}
  1821  	var counter sizeCounter
  1822  	if err := cfg.fprint(&counter, p.fset, n, p.nodeSizes); err != nil {
  1823  		return
  1824  	}
  1825  	if counter.size <= maxSize && !counter.hasNewline {
  1826  		// n fits in a single line
  1827  		size = counter.size
  1828  		p.nodeSizes[n] = size
  1829  	}
  1830  	return
  1831  }
  1832  
  1833  // numLines returns the number of lines spanned by node n in the original source.
  1834  func (p *printer) numLines(n ast.Node) int {
  1835  	if from := n.Pos(); from.IsValid() {
  1836  		if to := n.End(); to.IsValid() {
  1837  			return p.lineFor(to) - p.lineFor(from) + 1
  1838  		}
  1839  	}
  1840  	return infinity
  1841  }
  1842  
  1843  // bodySize is like nodeSize but it is specialized for *ast.BlockStmt's.
  1844  func (p *printer) bodySize(b *ast.BlockStmt, maxSize int) int {
  1845  	pos1 := b.Pos()
  1846  	pos2 := b.Rbrace
  1847  	if pos1.IsValid() && pos2.IsValid() && p.lineFor(pos1) != p.lineFor(pos2) {
  1848  		// opening and closing brace are on different lines - don't make it a one-liner
  1849  		return maxSize + 1
  1850  	}
  1851  	if len(b.List) > 5 {
  1852  		// too many statements - don't make it a one-liner
  1853  		return maxSize + 1
  1854  	}
  1855  	// otherwise, estimate body size
  1856  	bodySize := p.commentSizeBefore(p.posFor(pos2))
  1857  	for i, s := range b.List {
  1858  		if bodySize > maxSize {
  1859  			break // no need to continue
  1860  		}
  1861  		if i > 0 {
  1862  			bodySize += 2 // space for a semicolon and blank
  1863  		}
  1864  		bodySize += p.nodeSize(s, maxSize)
  1865  	}
  1866  	return bodySize
  1867  }
  1868  
  1869  // funcBody prints a function body following a function header of given headerSize.
  1870  // If the header's and block's size are "small enough" and the block is "simple enough",
  1871  // the block is printed on the current line, without line breaks, spaced from the header
  1872  // by sep. Otherwise the block's opening "{" is printed on the current line, followed by
  1873  // lines for the block's statements and its closing "}".
  1874  func (p *printer) funcBody(headerSize int, sep whiteSpace, b *ast.BlockStmt) {
  1875  	if b == nil {
  1876  		return
  1877  	}
  1878  
  1879  	// save/restore composite literal nesting level
  1880  	defer func(level int) {
  1881  		p.level = level
  1882  	}(p.level)
  1883  	p.level = 0
  1884  
  1885  	const maxSize = 100
  1886  	if headerSize+p.bodySize(b, maxSize) <= maxSize {
  1887  		p.print(sep)
  1888  		p.setPos(b.Lbrace)
  1889  		p.print(token.LBRACE)
  1890  		if len(b.List) > 0 {
  1891  			p.print(blank)
  1892  			for i, s := range b.List {
  1893  				if i > 0 {
  1894  					p.print(token.SEMICOLON, blank)
  1895  				}
  1896  				p.stmt(s, i == len(b.List)-1)
  1897  			}
  1898  			p.print(blank)
  1899  		}
  1900  		p.print(noExtraLinebreak)
  1901  		p.setPos(b.Rbrace)
  1902  		p.print(token.RBRACE, noExtraLinebreak)
  1903  		return
  1904  	}
  1905  
  1906  	if sep != ignore {
  1907  		p.print(blank) // always use blank
  1908  	}
  1909  	p.block(b, 1)
  1910  }
  1911  
  1912  // distanceFrom returns the column difference between p.out (the current output
  1913  // position) and startOutCol. If the start position is on a different line from
  1914  // the current position (or either is unknown), the result is infinity.
  1915  func (p *printer) distanceFrom(startPos token.Pos, startOutCol int) int {
  1916  	if startPos.IsValid() && p.pos.IsValid() && p.posFor(startPos).Line == p.pos.Line {
  1917  		return p.out.Column - startOutCol
  1918  	}
  1919  	return infinity
  1920  }
  1921  
  1922  func (p *printer) funcDecl(d *ast.FuncDecl) {
  1923  	p.setComment(d.Doc)
  1924  	p.setPos(d.Pos())
  1925  	p.print(token.FUNC, blank)
  1926  	// We have to save startCol only after emitting FUNC; otherwise it can be on a
  1927  	// different line (all whitespace preceding the FUNC is emitted only when the
  1928  	// FUNC is emitted).
  1929  	startCol := p.out.Column - len("func ")
  1930  	if d.Recv != nil {
  1931  		p.parameters(d.Recv, funcParam) // method: print receiver
  1932  		p.print(blank)
  1933  	}
  1934  	p.expr(d.Name)
  1935  	p.signature(d.Type)
  1936  	p.funcBody(p.distanceFrom(d.Pos(), startCol), vtab, d.Body)
  1937  }
  1938  
  1939  func (p *printer) decl(decl ast.Decl) {
  1940  	switch d := decl.(type) {
  1941  	case *ast.BadDecl:
  1942  		p.setPos(d.Pos())
  1943  		p.print("BadDecl")
  1944  	case *ast.GenDecl:
  1945  		p.genDecl(d)
  1946  	case *ast.FuncDecl:
  1947  		p.funcDecl(d)
  1948  	default:
  1949  		panic("unreachable")
  1950  	}
  1951  }
  1952  
  1953  // ----------------------------------------------------------------------------
  1954  // Files
  1955  
  1956  func declToken(decl ast.Decl) (tok token.Token) {
  1957  	tok = token.ILLEGAL
  1958  	switch d := decl.(type) {
  1959  	case *ast.GenDecl:
  1960  		tok = d.Tok
  1961  	case *ast.FuncDecl:
  1962  		tok = token.FUNC
  1963  	}
  1964  	return
  1965  }
  1966  
  1967  func (p *printer) declList(list []ast.Decl) {
  1968  	tok := token.ILLEGAL
  1969  	for _, d := range list {
  1970  		prev := tok
  1971  		tok = declToken(d)
  1972  		// If the declaration token changed (e.g., from CONST to TYPE)
  1973  		// or the next declaration has documentation associated with it,
  1974  		// print an empty line between top-level declarations.
  1975  		// (because p.linebreak is called with the position of d, which
  1976  		// is past any documentation, the minimum requirement is satisfied
  1977  		// even w/o the extra getDoc(d) nil-check - leave it in case the
  1978  		// linebreak logic improves - there's already a TODO).
  1979  		if len(p.output) > 0 {
  1980  			// only print line break if we are not at the beginning of the output
  1981  			// (i.e., we are not printing only a partial program)
  1982  			min := 1
  1983  			if prev != tok || getDoc(d) != nil {
  1984  				min = 2
  1985  			}
  1986  			// start a new section if the next declaration is a function
  1987  			// that spans multiple lines (see also issue #19544)
  1988  			p.linebreak(p.lineFor(d.Pos()), min, ignore, tok == token.FUNC && p.numLines(d) > 1)
  1989  		}
  1990  		p.decl(d)
  1991  	}
  1992  }
  1993  
  1994  func (p *printer) file(src *ast.File) {
  1995  	p.setComment(src.Doc)
  1996  	p.setPos(src.Pos())
  1997  	p.print(token.PACKAGE, blank)
  1998  	p.expr(src.Name)
  1999  	p.declList(src.Decls)
  2000  	p.print(newline)
  2001  }