github.com/bir3/gocompiler@v0.3.205/src/go/types/predicates.go (about)

     1  // Copyright 2012 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements commonly used type predicates.
     6  
     7  package types
     8  
     9  import "github.com/bir3/gocompiler/src/go/token"
    10  
    11  // The isX predicates below report whether t is an X.
    12  // If t is a type parameter the result is false; i.e.,
    13  // these predicates don't look inside a type parameter.
    14  
    15  func isBoolean(t Type) bool        { return isBasic(t, IsBoolean) }
    16  func isInteger(t Type) bool        { return isBasic(t, IsInteger) }
    17  func isUnsigned(t Type) bool       { return isBasic(t, IsUnsigned) }
    18  func isFloat(t Type) bool          { return isBasic(t, IsFloat) }
    19  func isComplex(t Type) bool        { return isBasic(t, IsComplex) }
    20  func isNumeric(t Type) bool        { return isBasic(t, IsNumeric) }
    21  func isString(t Type) bool         { return isBasic(t, IsString) }
    22  func isIntegerOrFloat(t Type) bool { return isBasic(t, IsInteger|IsFloat) }
    23  func isConstType(t Type) bool      { return isBasic(t, IsConstType) }
    24  
    25  // isBasic reports whether under(t) is a basic type with the specified info.
    26  // If t is a type parameter the result is false; i.e.,
    27  // isBasic does not look inside a type parameter.
    28  func isBasic(t Type, info BasicInfo) bool {
    29  	u, _ := under(t).(*Basic)
    30  	return u != nil && u.info&info != 0
    31  }
    32  
    33  // The allX predicates below report whether t is an X.
    34  // If t is a type parameter the result is true if isX is true
    35  // for all specified types of the type parameter's type set.
    36  // allX is an optimized version of isX(coreType(t)) (which
    37  // is the same as underIs(t, isX)).
    38  
    39  func allBoolean(typ Type) bool         { return allBasic(typ, IsBoolean) }
    40  func allInteger(typ Type) bool         { return allBasic(typ, IsInteger) }
    41  func allUnsigned(typ Type) bool        { return allBasic(typ, IsUnsigned) }
    42  func allNumeric(typ Type) bool         { return allBasic(typ, IsNumeric) }
    43  func allString(typ Type) bool          { return allBasic(typ, IsString) }
    44  func allOrdered(typ Type) bool         { return allBasic(typ, IsOrdered) }
    45  func allNumericOrString(typ Type) bool { return allBasic(typ, IsNumeric|IsString) }
    46  
    47  // allBasic reports whether under(t) is a basic type with the specified info.
    48  // If t is a type parameter, the result is true if isBasic(t, info) is true
    49  // for all specific types of the type parameter's type set.
    50  // allBasic(t, info) is an optimized version of isBasic(coreType(t), info).
    51  func allBasic(t Type, info BasicInfo) bool {
    52  	if tpar, _ := t.(*TypeParam); tpar != nil {
    53  		return tpar.is(func(t *term) bool { return t != nil && isBasic(t.typ, info) })
    54  	}
    55  	return isBasic(t, info)
    56  }
    57  
    58  // hasName reports whether t has a name. This includes
    59  // predeclared types, defined types, and type parameters.
    60  // hasName may be called with types that are not fully set up.
    61  func hasName(t Type) bool {
    62  	switch t.(type) {
    63  	case *Basic, *Named, *TypeParam:
    64  		return true
    65  	}
    66  	return false
    67  }
    68  
    69  // isTyped reports whether t is typed; i.e., not an untyped
    70  // constant or boolean. isTyped may be called with types that
    71  // are not fully set up.
    72  func isTyped(t Type) bool {
    73  	// isTyped is called with types that are not fully
    74  	// set up. Must not call under()!
    75  	b, _ := t.(*Basic)
    76  	return b == nil || b.info&IsUntyped == 0
    77  }
    78  
    79  // isUntyped(t) is the same as !isTyped(t).
    80  func isUntyped(t Type) bool {
    81  	return !isTyped(t)
    82  }
    83  
    84  // IsInterface reports whether t is an interface type.
    85  func IsInterface(t Type) bool {
    86  	_, ok := under(t).(*Interface)
    87  	return ok
    88  }
    89  
    90  // isNonTypeParamInterface reports whether t is an interface type but not a type parameter.
    91  func isNonTypeParamInterface(t Type) bool {
    92  	return !isTypeParam(t) && IsInterface(t)
    93  }
    94  
    95  // isTypeParam reports whether t is a type parameter.
    96  func isTypeParam(t Type) bool {
    97  	_, ok := t.(*TypeParam)
    98  	return ok
    99  }
   100  
   101  // hasEmptyTypeset reports whether t is a type parameter with an empty type set.
   102  // The function does not force the computation of the type set and so is safe to
   103  // use anywhere, but it may report a false negative if the type set has not been
   104  // computed yet.
   105  func hasEmptyTypeset(t Type) bool {
   106  	if tpar, _ := t.(*TypeParam); tpar != nil && tpar.bound != nil {
   107  		iface, _ := safeUnderlying(tpar.bound).(*Interface)
   108  		return iface != nil && iface.tset != nil && iface.tset.IsEmpty()
   109  	}
   110  	return false
   111  }
   112  
   113  // isGeneric reports whether a type is a generic, uninstantiated type
   114  // (generic signatures are not included).
   115  // TODO(gri) should we include signatures or assert that they are not present?
   116  func isGeneric(t Type) bool {
   117  	// A parameterized type is only generic if it doesn't have an instantiation already.
   118  	named, _ := t.(*Named)
   119  	return named != nil && named.obj != nil && named.inst == nil && named.TypeParams().Len() > 0
   120  }
   121  
   122  // Comparable reports whether values of type T are comparable.
   123  func Comparable(T Type) bool {
   124  	return comparable(T, true, nil, nil)
   125  }
   126  
   127  // If dynamic is set, non-type parameter interfaces are always comparable.
   128  // If reportf != nil, it may be used to report why T is not comparable.
   129  func comparable(T Type, dynamic bool, seen map[Type]bool, reportf func(string, ...interface{})) bool {
   130  	if seen[T] {
   131  		return true
   132  	}
   133  	if seen == nil {
   134  		seen = make(map[Type]bool)
   135  	}
   136  	seen[T] = true
   137  
   138  	switch t := under(T).(type) {
   139  	case *Basic:
   140  		// assume invalid types to be comparable
   141  		// to avoid follow-up errors
   142  		return t.kind != UntypedNil
   143  	case *Pointer, *Chan:
   144  		return true
   145  	case *Struct:
   146  		for _, f := range t.fields {
   147  			if !comparable(f.typ, dynamic, seen, nil) {
   148  				if reportf != nil {
   149  					reportf("struct containing %s cannot be compared", f.typ)
   150  				}
   151  				return false
   152  			}
   153  		}
   154  		return true
   155  	case *Array:
   156  		if !comparable(t.elem, dynamic, seen, nil) {
   157  			if reportf != nil {
   158  				reportf("%s cannot be compared", t)
   159  			}
   160  			return false
   161  		}
   162  		return true
   163  	case *Interface:
   164  		if dynamic && !isTypeParam(T) || t.typeSet().IsComparable(seen) {
   165  			return true
   166  		}
   167  		if reportf != nil {
   168  			if t.typeSet().IsEmpty() {
   169  				reportf("empty type set")
   170  			} else {
   171  				reportf("incomparable types in type set")
   172  			}
   173  		}
   174  		// fallthrough
   175  	}
   176  	return false
   177  }
   178  
   179  // hasNil reports whether type t includes the nil value.
   180  func hasNil(t Type) bool {
   181  	switch u := under(t).(type) {
   182  	case *Basic:
   183  		return u.kind == UnsafePointer
   184  	case *Slice, *Pointer, *Signature, *Map, *Chan:
   185  		return true
   186  	case *Interface:
   187  		return !isTypeParam(t) || u.typeSet().underIs(func(u Type) bool {
   188  			return u != nil && hasNil(u)
   189  		})
   190  	}
   191  	return false
   192  }
   193  
   194  // An ifacePair is a node in a stack of interface type pairs compared for identity.
   195  type ifacePair struct {
   196  	x, y *Interface
   197  	prev *ifacePair
   198  }
   199  
   200  func (p *ifacePair) identical(q *ifacePair) bool {
   201  	return p.x == q.x && p.y == q.y || p.x == q.y && p.y == q.x
   202  }
   203  
   204  // For changes to this code the corresponding changes should be made to unifier.nify.
   205  func identical(x, y Type, cmpTags bool, p *ifacePair) bool {
   206  	if x == y {
   207  		return true
   208  	}
   209  
   210  	switch x := x.(type) {
   211  	case *Basic:
   212  		// Basic types are singletons except for the rune and byte
   213  		// aliases, thus we cannot solely rely on the x == y check
   214  		// above. See also comment in TypeName.IsAlias.
   215  		if y, ok := y.(*Basic); ok {
   216  			return x.kind == y.kind
   217  		}
   218  
   219  	case *Array:
   220  		// Two array types are identical if they have identical element types
   221  		// and the same array length.
   222  		if y, ok := y.(*Array); ok {
   223  			// If one or both array lengths are unknown (< 0) due to some error,
   224  			// assume they are the same to avoid spurious follow-on errors.
   225  			return (x.len < 0 || y.len < 0 || x.len == y.len) && identical(x.elem, y.elem, cmpTags, p)
   226  		}
   227  
   228  	case *Slice:
   229  		// Two slice types are identical if they have identical element types.
   230  		if y, ok := y.(*Slice); ok {
   231  			return identical(x.elem, y.elem, cmpTags, p)
   232  		}
   233  
   234  	case *Struct:
   235  		// Two struct types are identical if they have the same sequence of fields,
   236  		// and if corresponding fields have the same names, and identical types,
   237  		// and identical tags. Two embedded fields are considered to have the same
   238  		// name. Lower-case field names from different packages are always different.
   239  		if y, ok := y.(*Struct); ok {
   240  			if x.NumFields() == y.NumFields() {
   241  				for i, f := range x.fields {
   242  					g := y.fields[i]
   243  					if f.embedded != g.embedded ||
   244  						cmpTags && x.Tag(i) != y.Tag(i) ||
   245  						!f.sameId(g.pkg, g.name) ||
   246  						!identical(f.typ, g.typ, cmpTags, p) {
   247  						return false
   248  					}
   249  				}
   250  				return true
   251  			}
   252  		}
   253  
   254  	case *Pointer:
   255  		// Two pointer types are identical if they have identical base types.
   256  		if y, ok := y.(*Pointer); ok {
   257  			return identical(x.base, y.base, cmpTags, p)
   258  		}
   259  
   260  	case *Tuple:
   261  		// Two tuples types are identical if they have the same number of elements
   262  		// and corresponding elements have identical types.
   263  		if y, ok := y.(*Tuple); ok {
   264  			if x.Len() == y.Len() {
   265  				if x != nil {
   266  					for i, v := range x.vars {
   267  						w := y.vars[i]
   268  						if !identical(v.typ, w.typ, cmpTags, p) {
   269  							return false
   270  						}
   271  					}
   272  				}
   273  				return true
   274  			}
   275  		}
   276  
   277  	case *Signature:
   278  		y, _ := y.(*Signature)
   279  		if y == nil {
   280  			return false
   281  		}
   282  
   283  		// Two function types are identical if they have the same number of
   284  		// parameters and result values, corresponding parameter and result types
   285  		// are identical, and either both functions are variadic or neither is.
   286  		// Parameter and result names are not required to match, and type
   287  		// parameters are considered identical modulo renaming.
   288  
   289  		if x.TypeParams().Len() != y.TypeParams().Len() {
   290  			return false
   291  		}
   292  
   293  		// In the case of generic signatures, we will substitute in yparams and
   294  		// yresults.
   295  		yparams := y.params
   296  		yresults := y.results
   297  
   298  		if x.TypeParams().Len() > 0 {
   299  			// We must ignore type parameter names when comparing x and y. The
   300  			// easiest way to do this is to substitute x's type parameters for y's.
   301  			xtparams := x.TypeParams().list()
   302  			ytparams := y.TypeParams().list()
   303  
   304  			var targs []Type
   305  			for i := range xtparams {
   306  				targs = append(targs, x.TypeParams().At(i))
   307  			}
   308  			smap := makeSubstMap(ytparams, targs)
   309  
   310  			var check *Checker   // ok to call subst on a nil *Checker
   311  			ctxt := NewContext() // need a non-nil Context for the substitution below
   312  
   313  			// Constraints must be pair-wise identical, after substitution.
   314  			for i, xtparam := range xtparams {
   315  				ybound := check.subst(token.NoPos, ytparams[i].bound, smap, nil, ctxt)
   316  				if !identical(xtparam.bound, ybound, cmpTags, p) {
   317  					return false
   318  				}
   319  			}
   320  
   321  			yparams = check.subst(token.NoPos, y.params, smap, nil, ctxt).(*Tuple)
   322  			yresults = check.subst(token.NoPos, y.results, smap, nil, ctxt).(*Tuple)
   323  		}
   324  
   325  		return x.variadic == y.variadic &&
   326  			identical(x.params, yparams, cmpTags, p) &&
   327  			identical(x.results, yresults, cmpTags, p)
   328  
   329  	case *Union:
   330  		if y, _ := y.(*Union); y != nil {
   331  			// TODO(rfindley): can this be reached during type checking? If so,
   332  			// consider passing a type set map.
   333  			unionSets := make(map[*Union]*_TypeSet)
   334  			xset := computeUnionTypeSet(nil, unionSets, token.NoPos, x)
   335  			yset := computeUnionTypeSet(nil, unionSets, token.NoPos, y)
   336  			return xset.terms.equal(yset.terms)
   337  		}
   338  
   339  	case *Interface:
   340  		// Two interface types are identical if they describe the same type sets.
   341  		// With the existing implementation restriction, this simplifies to:
   342  		//
   343  		// Two interface types are identical if they have the same set of methods with
   344  		// the same names and identical function types, and if any type restrictions
   345  		// are the same. Lower-case method names from different packages are always
   346  		// different. The order of the methods is irrelevant.
   347  		if y, ok := y.(*Interface); ok {
   348  			xset := x.typeSet()
   349  			yset := y.typeSet()
   350  			if xset.comparable != yset.comparable {
   351  				return false
   352  			}
   353  			if !xset.terms.equal(yset.terms) {
   354  				return false
   355  			}
   356  			a := xset.methods
   357  			b := yset.methods
   358  			if len(a) == len(b) {
   359  				// Interface types are the only types where cycles can occur
   360  				// that are not "terminated" via named types; and such cycles
   361  				// can only be created via method parameter types that are
   362  				// anonymous interfaces (directly or indirectly) embedding
   363  				// the current interface. Example:
   364  				//
   365  				//    type T interface {
   366  				//        m() interface{T}
   367  				//    }
   368  				//
   369  				// If two such (differently named) interfaces are compared,
   370  				// endless recursion occurs if the cycle is not detected.
   371  				//
   372  				// If x and y were compared before, they must be equal
   373  				// (if they were not, the recursion would have stopped);
   374  				// search the ifacePair stack for the same pair.
   375  				//
   376  				// This is a quadratic algorithm, but in practice these stacks
   377  				// are extremely short (bounded by the nesting depth of interface
   378  				// type declarations that recur via parameter types, an extremely
   379  				// rare occurrence). An alternative implementation might use a
   380  				// "visited" map, but that is probably less efficient overall.
   381  				q := &ifacePair{x, y, p}
   382  				for p != nil {
   383  					if p.identical(q) {
   384  						return true // same pair was compared before
   385  					}
   386  					p = p.prev
   387  				}
   388  				if debug {
   389  					assertSortedMethods(a)
   390  					assertSortedMethods(b)
   391  				}
   392  				for i, f := range a {
   393  					g := b[i]
   394  					if f.Id() != g.Id() || !identical(f.typ, g.typ, cmpTags, q) {
   395  						return false
   396  					}
   397  				}
   398  				return true
   399  			}
   400  		}
   401  
   402  	case *Map:
   403  		// Two map types are identical if they have identical key and value types.
   404  		if y, ok := y.(*Map); ok {
   405  			return identical(x.key, y.key, cmpTags, p) && identical(x.elem, y.elem, cmpTags, p)
   406  		}
   407  
   408  	case *Chan:
   409  		// Two channel types are identical if they have identical value types
   410  		// and the same direction.
   411  		if y, ok := y.(*Chan); ok {
   412  			return x.dir == y.dir && identical(x.elem, y.elem, cmpTags, p)
   413  		}
   414  
   415  	case *Named:
   416  		// Two named types are identical if their type names originate
   417  		// in the same type declaration.
   418  		if y, ok := y.(*Named); ok {
   419  			xargs := x.TypeArgs().list()
   420  			yargs := y.TypeArgs().list()
   421  
   422  			if len(xargs) != len(yargs) {
   423  				return false
   424  			}
   425  
   426  			if len(xargs) > 0 {
   427  				// Instances are identical if their original type and type arguments
   428  				// are identical.
   429  				if !Identical(x.Origin(), y.Origin()) {
   430  					return false
   431  				}
   432  				for i, xa := range xargs {
   433  					if !Identical(xa, yargs[i]) {
   434  						return false
   435  					}
   436  				}
   437  				return true
   438  			}
   439  
   440  			// TODO(gri) Why is x == y not sufficient? And if it is,
   441  			//           we can just return false here because x == y
   442  			//           is caught in the very beginning of this function.
   443  			return x.obj == y.obj
   444  		}
   445  
   446  	case *TypeParam:
   447  		// nothing to do (x and y being equal is caught in the very beginning of this function)
   448  
   449  	case nil:
   450  		// avoid a crash in case of nil type
   451  
   452  	default:
   453  		unreachable()
   454  	}
   455  
   456  	return false
   457  }
   458  
   459  // identicalInstance reports if two type instantiations are identical.
   460  // Instantiations are identical if their origin and type arguments are
   461  // identical.
   462  func identicalInstance(xorig Type, xargs []Type, yorig Type, yargs []Type) bool {
   463  	if len(xargs) != len(yargs) {
   464  		return false
   465  	}
   466  
   467  	for i, xa := range xargs {
   468  		if !Identical(xa, yargs[i]) {
   469  			return false
   470  		}
   471  	}
   472  
   473  	return Identical(xorig, yorig)
   474  }
   475  
   476  // Default returns the default "typed" type for an "untyped" type;
   477  // it returns the incoming type for all other types. The default type
   478  // for untyped nil is untyped nil.
   479  func Default(t Type) Type {
   480  	if t, ok := t.(*Basic); ok {
   481  		switch t.kind {
   482  		case UntypedBool:
   483  			return Typ[Bool]
   484  		case UntypedInt:
   485  			return Typ[Int]
   486  		case UntypedRune:
   487  			return universeRune // use 'rune' name
   488  		case UntypedFloat:
   489  			return Typ[Float64]
   490  		case UntypedComplex:
   491  			return Typ[Complex128]
   492  		case UntypedString:
   493  			return Typ[String]
   494  		}
   495  	}
   496  	return t
   497  }