github.com/bir3/gocompiler@v0.9.2202/extra/compress/fse/compress.go (about)

     1  // Copyright 2018 Klaus Post. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  // Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
     5  
     6  package fse
     7  
     8  import (
     9  	"errors"
    10  	"fmt"
    11  )
    12  
    13  // Compress the input bytes. Input must be < 2GB.
    14  // Provide a Scratch buffer to avoid memory allocations.
    15  // Note that the output is also kept in the scratch buffer.
    16  // If input is too hard to compress, ErrIncompressible is returned.
    17  // If input is a single byte value repeated ErrUseRLE is returned.
    18  func Compress(in []byte, s *Scratch) ([]byte, error) {
    19  	if len(in) <= 1 {
    20  		return nil, ErrIncompressible
    21  	}
    22  	if len(in) > (2<<30)-1 {
    23  		return nil, errors.New("input too big, must be < 2GB")
    24  	}
    25  	s, err := s.prepare(in)
    26  	if err != nil {
    27  		return nil, err
    28  	}
    29  
    30  	// Create histogram, if none was provided.
    31  	maxCount := s.maxCount
    32  	if maxCount == 0 {
    33  		maxCount = s.countSimple(in)
    34  	}
    35  	// Reset for next run.
    36  	s.clearCount = true
    37  	s.maxCount = 0
    38  	if maxCount == len(in) {
    39  		// One symbol, use RLE
    40  		return nil, ErrUseRLE
    41  	}
    42  	if maxCount == 1 || maxCount < (len(in)>>7) {
    43  		// Each symbol present maximum once or too well distributed.
    44  		return nil, ErrIncompressible
    45  	}
    46  	s.optimalTableLog()
    47  	err = s.normalizeCount()
    48  	if err != nil {
    49  		return nil, err
    50  	}
    51  	err = s.writeCount()
    52  	if err != nil {
    53  		return nil, err
    54  	}
    55  
    56  	if false {
    57  		err = s.validateNorm()
    58  		if err != nil {
    59  			return nil, err
    60  		}
    61  	}
    62  
    63  	err = s.buildCTable()
    64  	if err != nil {
    65  		return nil, err
    66  	}
    67  	err = s.compress(in)
    68  	if err != nil {
    69  		return nil, err
    70  	}
    71  	s.Out = s.bw.out
    72  	// Check if we compressed.
    73  	if len(s.Out) >= len(in) {
    74  		return nil, ErrIncompressible
    75  	}
    76  	return s.Out, nil
    77  }
    78  
    79  // cState contains the compression state of a stream.
    80  type cState struct {
    81  	bw         *bitWriter
    82  	stateTable []uint16
    83  	state      uint16
    84  }
    85  
    86  // init will initialize the compression state to the first symbol of the stream.
    87  func (c *cState) init(bw *bitWriter, ct *cTable, tableLog uint8, first symbolTransform) {
    88  	c.bw = bw
    89  	c.stateTable = ct.stateTable
    90  
    91  	nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
    92  	im := int32((nbBitsOut << 16) - first.deltaNbBits)
    93  	lu := (im >> nbBitsOut) + first.deltaFindState
    94  	c.state = c.stateTable[lu]
    95  }
    96  
    97  // encode the output symbol provided and write it to the bitstream.
    98  func (c *cState) encode(symbolTT symbolTransform) {
    99  	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
   100  	dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
   101  	c.bw.addBits16NC(c.state, uint8(nbBitsOut))
   102  	c.state = c.stateTable[dstState]
   103  }
   104  
   105  // encode the output symbol provided and write it to the bitstream.
   106  func (c *cState) encodeZero(symbolTT symbolTransform) {
   107  	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
   108  	dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
   109  	c.bw.addBits16ZeroNC(c.state, uint8(nbBitsOut))
   110  	c.state = c.stateTable[dstState]
   111  }
   112  
   113  // flush will write the tablelog to the output and flush the remaining full bytes.
   114  func (c *cState) flush(tableLog uint8) {
   115  	c.bw.flush32()
   116  	c.bw.addBits16NC(c.state, tableLog)
   117  	c.bw.flush()
   118  }
   119  
   120  // compress is the main compression loop that will encode the input from the last byte to the first.
   121  func (s *Scratch) compress(src []byte) error {
   122  	if len(src) <= 2 {
   123  		return errors.New("compress: src too small")
   124  	}
   125  	tt := s.ct.symbolTT[:256]
   126  	s.bw.reset(s.Out)
   127  
   128  	// Our two states each encodes every second byte.
   129  	// Last byte encoded (first byte decoded) will always be encoded by c1.
   130  	var c1, c2 cState
   131  
   132  	// Encode so remaining size is divisible by 4.
   133  	ip := len(src)
   134  	if ip&1 == 1 {
   135  		c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
   136  		c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
   137  		c1.encodeZero(tt[src[ip-3]])
   138  		ip -= 3
   139  	} else {
   140  		c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
   141  		c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
   142  		ip -= 2
   143  	}
   144  	if ip&2 != 0 {
   145  		c2.encodeZero(tt[src[ip-1]])
   146  		c1.encodeZero(tt[src[ip-2]])
   147  		ip -= 2
   148  	}
   149  	src = src[:ip]
   150  
   151  	// Main compression loop.
   152  	switch {
   153  	case !s.zeroBits && s.actualTableLog <= 8:
   154  		// We can encode 4 symbols without requiring a flush.
   155  		// We do not need to check if any output is 0 bits.
   156  		for ; len(src) >= 4; src = src[:len(src)-4] {
   157  			s.bw.flush32()
   158  			v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
   159  			c2.encode(tt[v0])
   160  			c1.encode(tt[v1])
   161  			c2.encode(tt[v2])
   162  			c1.encode(tt[v3])
   163  		}
   164  	case !s.zeroBits:
   165  		// We do not need to check if any output is 0 bits.
   166  		for ; len(src) >= 4; src = src[:len(src)-4] {
   167  			s.bw.flush32()
   168  			v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
   169  			c2.encode(tt[v0])
   170  			c1.encode(tt[v1])
   171  			s.bw.flush32()
   172  			c2.encode(tt[v2])
   173  			c1.encode(tt[v3])
   174  		}
   175  	case s.actualTableLog <= 8:
   176  		// We can encode 4 symbols without requiring a flush
   177  		for ; len(src) >= 4; src = src[:len(src)-4] {
   178  			s.bw.flush32()
   179  			v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
   180  			c2.encodeZero(tt[v0])
   181  			c1.encodeZero(tt[v1])
   182  			c2.encodeZero(tt[v2])
   183  			c1.encodeZero(tt[v3])
   184  		}
   185  	default:
   186  		for ; len(src) >= 4; src = src[:len(src)-4] {
   187  			s.bw.flush32()
   188  			v3, v2, v1, v0 := src[len(src)-4], src[len(src)-3], src[len(src)-2], src[len(src)-1]
   189  			c2.encodeZero(tt[v0])
   190  			c1.encodeZero(tt[v1])
   191  			s.bw.flush32()
   192  			c2.encodeZero(tt[v2])
   193  			c1.encodeZero(tt[v3])
   194  		}
   195  	}
   196  
   197  	// Flush final state.
   198  	// Used to initialize state when decoding.
   199  	c2.flush(s.actualTableLog)
   200  	c1.flush(s.actualTableLog)
   201  
   202  	return s.bw.close()
   203  }
   204  
   205  // writeCount will write the normalized histogram count to header.
   206  // This is read back by readNCount.
   207  func (s *Scratch) writeCount() error {
   208  	var (
   209  		tableLog  = s.actualTableLog
   210  		tableSize = 1 << tableLog
   211  		previous0 bool
   212  		charnum   uint16
   213  
   214  		maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3
   215  
   216  		// Write Table Size
   217  		bitStream = uint32(tableLog - minTablelog)
   218  		bitCount  = uint(4)
   219  		remaining = int16(tableSize + 1) /* +1 for extra accuracy */
   220  		threshold = int16(tableSize)
   221  		nbBits    = uint(tableLog + 1)
   222  	)
   223  	if cap(s.Out) < maxHeaderSize {
   224  		s.Out = make([]byte, 0, s.br.remain()+maxHeaderSize)
   225  	}
   226  	outP := uint(0)
   227  	out := s.Out[:maxHeaderSize]
   228  
   229  	// stops at 1
   230  	for remaining > 1 {
   231  		if previous0 {
   232  			start := charnum
   233  			for s.norm[charnum] == 0 {
   234  				charnum++
   235  			}
   236  			for charnum >= start+24 {
   237  				start += 24
   238  				bitStream += uint32(0xFFFF) << bitCount
   239  				out[outP] = byte(bitStream)
   240  				out[outP+1] = byte(bitStream >> 8)
   241  				outP += 2
   242  				bitStream >>= 16
   243  			}
   244  			for charnum >= start+3 {
   245  				start += 3
   246  				bitStream += 3 << bitCount
   247  				bitCount += 2
   248  			}
   249  			bitStream += uint32(charnum-start) << bitCount
   250  			bitCount += 2
   251  			if bitCount > 16 {
   252  				out[outP] = byte(bitStream)
   253  				out[outP+1] = byte(bitStream >> 8)
   254  				outP += 2
   255  				bitStream >>= 16
   256  				bitCount -= 16
   257  			}
   258  		}
   259  
   260  		count := s.norm[charnum]
   261  		charnum++
   262  		max := (2*threshold - 1) - remaining
   263  		if count < 0 {
   264  			remaining += count
   265  		} else {
   266  			remaining -= count
   267  		}
   268  		count++ // +1 for extra accuracy
   269  		if count >= threshold {
   270  			count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
   271  		}
   272  		bitStream += uint32(count) << bitCount
   273  		bitCount += nbBits
   274  		if count < max {
   275  			bitCount--
   276  		}
   277  
   278  		previous0 = count == 1
   279  		if remaining < 1 {
   280  			return errors.New("internal error: remaining<1")
   281  		}
   282  		for remaining < threshold {
   283  			nbBits--
   284  			threshold >>= 1
   285  		}
   286  
   287  		if bitCount > 16 {
   288  			out[outP] = byte(bitStream)
   289  			out[outP+1] = byte(bitStream >> 8)
   290  			outP += 2
   291  			bitStream >>= 16
   292  			bitCount -= 16
   293  		}
   294  	}
   295  
   296  	out[outP] = byte(bitStream)
   297  	out[outP+1] = byte(bitStream >> 8)
   298  	outP += (bitCount + 7) / 8
   299  
   300  	if charnum > s.symbolLen {
   301  		return errors.New("internal error: charnum > s.symbolLen")
   302  	}
   303  	s.Out = out[:outP]
   304  	return nil
   305  }
   306  
   307  // symbolTransform contains the state transform for a symbol.
   308  type symbolTransform struct {
   309  	deltaFindState int32
   310  	deltaNbBits    uint32
   311  }
   312  
   313  // String prints values as a human readable string.
   314  func (s symbolTransform) String() string {
   315  	return fmt.Sprintf("dnbits: %08x, fs:%d", s.deltaNbBits, s.deltaFindState)
   316  }
   317  
   318  // cTable contains tables used for compression.
   319  type cTable struct {
   320  	tableSymbol []byte
   321  	stateTable  []uint16
   322  	symbolTT    []symbolTransform
   323  }
   324  
   325  // allocCtable will allocate tables needed for compression.
   326  // If existing tables a re big enough, they are simply re-used.
   327  func (s *Scratch) allocCtable() {
   328  	tableSize := 1 << s.actualTableLog
   329  	// get tableSymbol that is big enough.
   330  	if cap(s.ct.tableSymbol) < tableSize {
   331  		s.ct.tableSymbol = make([]byte, tableSize)
   332  	}
   333  	s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
   334  
   335  	ctSize := tableSize
   336  	if cap(s.ct.stateTable) < ctSize {
   337  		s.ct.stateTable = make([]uint16, ctSize)
   338  	}
   339  	s.ct.stateTable = s.ct.stateTable[:ctSize]
   340  
   341  	if cap(s.ct.symbolTT) < 256 {
   342  		s.ct.symbolTT = make([]symbolTransform, 256)
   343  	}
   344  	s.ct.symbolTT = s.ct.symbolTT[:256]
   345  }
   346  
   347  // buildCTable will populate the compression table so it is ready to be used.
   348  func (s *Scratch) buildCTable() error {
   349  	tableSize := uint32(1 << s.actualTableLog)
   350  	highThreshold := tableSize - 1
   351  	var cumul [maxSymbolValue + 2]int16
   352  
   353  	s.allocCtable()
   354  	tableSymbol := s.ct.tableSymbol[:tableSize]
   355  	// symbol start positions
   356  	{
   357  		cumul[0] = 0
   358  		for ui, v := range s.norm[:s.symbolLen-1] {
   359  			u := byte(ui) // one less than reference
   360  			if v == -1 {
   361  				// Low proba symbol
   362  				cumul[u+1] = cumul[u] + 1
   363  				tableSymbol[highThreshold] = u
   364  				highThreshold--
   365  			} else {
   366  				cumul[u+1] = cumul[u] + v
   367  			}
   368  		}
   369  		// Encode last symbol separately to avoid overflowing u
   370  		u := int(s.symbolLen - 1)
   371  		v := s.norm[s.symbolLen-1]
   372  		if v == -1 {
   373  			// Low proba symbol
   374  			cumul[u+1] = cumul[u] + 1
   375  			tableSymbol[highThreshold] = byte(u)
   376  			highThreshold--
   377  		} else {
   378  			cumul[u+1] = cumul[u] + v
   379  		}
   380  		if uint32(cumul[s.symbolLen]) != tableSize {
   381  			return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
   382  		}
   383  		cumul[s.symbolLen] = int16(tableSize) + 1
   384  	}
   385  	// Spread symbols
   386  	s.zeroBits = false
   387  	{
   388  		step := tableStep(tableSize)
   389  		tableMask := tableSize - 1
   390  		var position uint32
   391  		// if any symbol > largeLimit, we may have 0 bits output.
   392  		largeLimit := int16(1 << (s.actualTableLog - 1))
   393  		for ui, v := range s.norm[:s.symbolLen] {
   394  			symbol := byte(ui)
   395  			if v > largeLimit {
   396  				s.zeroBits = true
   397  			}
   398  			for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
   399  				tableSymbol[position] = symbol
   400  				position = (position + step) & tableMask
   401  				for position > highThreshold {
   402  					position = (position + step) & tableMask
   403  				} /* Low proba area */
   404  			}
   405  		}
   406  
   407  		// Check if we have gone through all positions
   408  		if position != 0 {
   409  			return errors.New("position!=0")
   410  		}
   411  	}
   412  
   413  	// Build table
   414  	table := s.ct.stateTable
   415  	{
   416  		tsi := int(tableSize)
   417  		for u, v := range tableSymbol {
   418  			// TableU16 : sorted by symbol order; gives next state value
   419  			table[cumul[v]] = uint16(tsi + u)
   420  			cumul[v]++
   421  		}
   422  	}
   423  
   424  	// Build Symbol Transformation Table
   425  	{
   426  		total := int16(0)
   427  		symbolTT := s.ct.symbolTT[:s.symbolLen]
   428  		tableLog := s.actualTableLog
   429  		tl := (uint32(tableLog) << 16) - (1 << tableLog)
   430  		for i, v := range s.norm[:s.symbolLen] {
   431  			switch v {
   432  			case 0:
   433  			case -1, 1:
   434  				symbolTT[i].deltaNbBits = tl
   435  				symbolTT[i].deltaFindState = int32(total - 1)
   436  				total++
   437  			default:
   438  				maxBitsOut := uint32(tableLog) - highBits(uint32(v-1))
   439  				minStatePlus := uint32(v) << maxBitsOut
   440  				symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
   441  				symbolTT[i].deltaFindState = int32(total - v)
   442  				total += v
   443  			}
   444  		}
   445  		if total != int16(tableSize) {
   446  			return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
   447  		}
   448  	}
   449  	return nil
   450  }
   451  
   452  // countSimple will create a simple histogram in s.count.
   453  // Returns the biggest count.
   454  // Does not update s.clearCount.
   455  func (s *Scratch) countSimple(in []byte) (max int) {
   456  	for _, v := range in {
   457  		s.count[v]++
   458  	}
   459  	m, symlen := uint32(0), s.symbolLen
   460  	for i, v := range s.count[:] {
   461  		if v == 0 {
   462  			continue
   463  		}
   464  		if v > m {
   465  			m = v
   466  		}
   467  		symlen = uint16(i) + 1
   468  	}
   469  	s.symbolLen = symlen
   470  	return int(m)
   471  }
   472  
   473  // minTableLog provides the minimum logSize to safely represent a distribution.
   474  func (s *Scratch) minTableLog() uint8 {
   475  	minBitsSrc := highBits(uint32(s.br.remain()-1)) + 1
   476  	minBitsSymbols := highBits(uint32(s.symbolLen-1)) + 2
   477  	if minBitsSrc < minBitsSymbols {
   478  		return uint8(minBitsSrc)
   479  	}
   480  	return uint8(minBitsSymbols)
   481  }
   482  
   483  // optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
   484  func (s *Scratch) optimalTableLog() {
   485  	tableLog := s.TableLog
   486  	minBits := s.minTableLog()
   487  	maxBitsSrc := uint8(highBits(uint32(s.br.remain()-1))) - 2
   488  	if maxBitsSrc < tableLog {
   489  		// Accuracy can be reduced
   490  		tableLog = maxBitsSrc
   491  	}
   492  	if minBits > tableLog {
   493  		tableLog = minBits
   494  	}
   495  	// Need a minimum to safely represent all symbol values
   496  	if tableLog < minTablelog {
   497  		tableLog = minTablelog
   498  	}
   499  	if tableLog > maxTableLog {
   500  		tableLog = maxTableLog
   501  	}
   502  	s.actualTableLog = tableLog
   503  }
   504  
   505  var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
   506  
   507  // normalizeCount will normalize the count of the symbols so
   508  // the total is equal to the table size.
   509  func (s *Scratch) normalizeCount() error {
   510  	var (
   511  		tableLog          = s.actualTableLog
   512  		scale             = 62 - uint64(tableLog)
   513  		step              = (1 << 62) / uint64(s.br.remain())
   514  		vStep             = uint64(1) << (scale - 20)
   515  		stillToDistribute = int16(1 << tableLog)
   516  		largest           int
   517  		largestP          int16
   518  		lowThreshold      = (uint32)(s.br.remain() >> tableLog)
   519  	)
   520  
   521  	for i, cnt := range s.count[:s.symbolLen] {
   522  		// already handled
   523  		// if (count[s] == s.length) return 0;   /* rle special case */
   524  
   525  		if cnt == 0 {
   526  			s.norm[i] = 0
   527  			continue
   528  		}
   529  		if cnt <= lowThreshold {
   530  			s.norm[i] = -1
   531  			stillToDistribute--
   532  		} else {
   533  			proba := (int16)((uint64(cnt) * step) >> scale)
   534  			if proba < 8 {
   535  				restToBeat := vStep * uint64(rtbTable[proba])
   536  				v := uint64(cnt)*step - (uint64(proba) << scale)
   537  				if v > restToBeat {
   538  					proba++
   539  				}
   540  			}
   541  			if proba > largestP {
   542  				largestP = proba
   543  				largest = i
   544  			}
   545  			s.norm[i] = proba
   546  			stillToDistribute -= proba
   547  		}
   548  	}
   549  
   550  	if -stillToDistribute >= (s.norm[largest] >> 1) {
   551  		// corner case, need another normalization method
   552  		return s.normalizeCount2()
   553  	}
   554  	s.norm[largest] += stillToDistribute
   555  	return nil
   556  }
   557  
   558  // Secondary normalization method.
   559  // To be used when primary method fails.
   560  func (s *Scratch) normalizeCount2() error {
   561  	const notYetAssigned = -2
   562  	var (
   563  		distributed  uint32
   564  		total        = uint32(s.br.remain())
   565  		tableLog     = s.actualTableLog
   566  		lowThreshold = total >> tableLog
   567  		lowOne       = (total * 3) >> (tableLog + 1)
   568  	)
   569  	for i, cnt := range s.count[:s.symbolLen] {
   570  		if cnt == 0 {
   571  			s.norm[i] = 0
   572  			continue
   573  		}
   574  		if cnt <= lowThreshold {
   575  			s.norm[i] = -1
   576  			distributed++
   577  			total -= cnt
   578  			continue
   579  		}
   580  		if cnt <= lowOne {
   581  			s.norm[i] = 1
   582  			distributed++
   583  			total -= cnt
   584  			continue
   585  		}
   586  		s.norm[i] = notYetAssigned
   587  	}
   588  	toDistribute := (1 << tableLog) - distributed
   589  
   590  	if (total / toDistribute) > lowOne {
   591  		// risk of rounding to zero
   592  		lowOne = (total * 3) / (toDistribute * 2)
   593  		for i, cnt := range s.count[:s.symbolLen] {
   594  			if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
   595  				s.norm[i] = 1
   596  				distributed++
   597  				total -= cnt
   598  				continue
   599  			}
   600  		}
   601  		toDistribute = (1 << tableLog) - distributed
   602  	}
   603  	if distributed == uint32(s.symbolLen)+1 {
   604  		// all values are pretty poor;
   605  		//   probably incompressible data (should have already been detected);
   606  		//   find max, then give all remaining points to max
   607  		var maxV int
   608  		var maxC uint32
   609  		for i, cnt := range s.count[:s.symbolLen] {
   610  			if cnt > maxC {
   611  				maxV = i
   612  				maxC = cnt
   613  			}
   614  		}
   615  		s.norm[maxV] += int16(toDistribute)
   616  		return nil
   617  	}
   618  
   619  	if total == 0 {
   620  		// all of the symbols were low enough for the lowOne or lowThreshold
   621  		for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
   622  			if s.norm[i] > 0 {
   623  				toDistribute--
   624  				s.norm[i]++
   625  			}
   626  		}
   627  		return nil
   628  	}
   629  
   630  	var (
   631  		vStepLog = 62 - uint64(tableLog)
   632  		mid      = uint64((1 << (vStepLog - 1)) - 1)
   633  		rStep    = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
   634  		tmpTotal = mid
   635  	)
   636  	for i, cnt := range s.count[:s.symbolLen] {
   637  		if s.norm[i] == notYetAssigned {
   638  			var (
   639  				end    = tmpTotal + uint64(cnt)*rStep
   640  				sStart = uint32(tmpTotal >> vStepLog)
   641  				sEnd   = uint32(end >> vStepLog)
   642  				weight = sEnd - sStart
   643  			)
   644  			if weight < 1 {
   645  				return errors.New("weight < 1")
   646  			}
   647  			s.norm[i] = int16(weight)
   648  			tmpTotal = end
   649  		}
   650  	}
   651  	return nil
   652  }
   653  
   654  // validateNorm validates the normalized histogram table.
   655  func (s *Scratch) validateNorm() (err error) {
   656  	var total int
   657  	for _, v := range s.norm[:s.symbolLen] {
   658  		if v >= 0 {
   659  			total += int(v)
   660  		} else {
   661  			total -= int(v)
   662  		}
   663  	}
   664  	defer func() {
   665  		if err == nil {
   666  			return
   667  		}
   668  		fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
   669  		for i, v := range s.norm[:s.symbolLen] {
   670  			fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
   671  		}
   672  	}()
   673  	if total != (1 << s.actualTableLog) {
   674  		return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
   675  	}
   676  	for i, v := range s.count[s.symbolLen:] {
   677  		if v != 0 {
   678  			return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
   679  		}
   680  	}
   681  	return nil
   682  }