github.com/bir3/gocompiler@v0.9.2202/extra/compress/internal/snapref/encode_other.go (about) 1 // Copyright 2016 The Snappy-Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package snapref 6 7 func load32(b []byte, i int) uint32 { 8 b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line. 9 return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 10 } 11 12 func load64(b []byte, i int) uint64 { 13 b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line. 14 return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | 15 uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 16 } 17 18 // emitLiteral writes a literal chunk and returns the number of bytes written. 19 // 20 // It assumes that: 21 // 22 // dst is long enough to hold the encoded bytes 23 // 1 <= len(lit) && len(lit) <= 65536 24 func emitLiteral(dst, lit []byte) int { 25 i, n := 0, uint(len(lit)-1) 26 switch { 27 case n < 60: 28 dst[0] = uint8(n)<<2 | tagLiteral 29 i = 1 30 case n < 1<<8: 31 dst[0] = 60<<2 | tagLiteral 32 dst[1] = uint8(n) 33 i = 2 34 default: 35 dst[0] = 61<<2 | tagLiteral 36 dst[1] = uint8(n) 37 dst[2] = uint8(n >> 8) 38 i = 3 39 } 40 return i + copy(dst[i:], lit) 41 } 42 43 // emitCopy writes a copy chunk and returns the number of bytes written. 44 // 45 // It assumes that: 46 // 47 // dst is long enough to hold the encoded bytes 48 // 1 <= offset && offset <= 65535 49 // 4 <= length && length <= 65535 50 func emitCopy(dst []byte, offset, length int) int { 51 i := 0 52 // The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The 53 // threshold for this loop is a little higher (at 68 = 64 + 4), and the 54 // length emitted down below is is a little lower (at 60 = 64 - 4), because 55 // it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed 56 // by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as 57 // a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as 58 // 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a 59 // tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an 60 // encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1. 61 for length >= 68 { 62 // Emit a length 64 copy, encoded as 3 bytes. 63 dst[i+0] = 63<<2 | tagCopy2 64 dst[i+1] = uint8(offset) 65 dst[i+2] = uint8(offset >> 8) 66 i += 3 67 length -= 64 68 } 69 if length > 64 { 70 // Emit a length 60 copy, encoded as 3 bytes. 71 dst[i+0] = 59<<2 | tagCopy2 72 dst[i+1] = uint8(offset) 73 dst[i+2] = uint8(offset >> 8) 74 i += 3 75 length -= 60 76 } 77 if length >= 12 || offset >= 2048 { 78 // Emit the remaining copy, encoded as 3 bytes. 79 dst[i+0] = uint8(length-1)<<2 | tagCopy2 80 dst[i+1] = uint8(offset) 81 dst[i+2] = uint8(offset >> 8) 82 return i + 3 83 } 84 // Emit the remaining copy, encoded as 2 bytes. 85 dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1 86 dst[i+1] = uint8(offset) 87 return i + 2 88 } 89 90 // extendMatch returns the largest k such that k <= len(src) and that 91 // src[i:i+k-j] and src[j:k] have the same contents. 92 // 93 // It assumes that: 94 // 95 // 0 <= i && i < j && j <= len(src) 96 func extendMatch(src []byte, i, j int) int { 97 for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 { 98 } 99 return j 100 } 101 102 func hash(u, shift uint32) uint32 { 103 return (u * 0x1e35a7bd) >> shift 104 } 105 106 // EncodeBlockInto exposes encodeBlock but checks dst size. 107 func EncodeBlockInto(dst, src []byte) (d int) { 108 if MaxEncodedLen(len(src)) > len(dst) { 109 return 0 110 } 111 112 // encodeBlock breaks on too big blocks, so split. 113 for len(src) > 0 { 114 p := src 115 src = nil 116 if len(p) > maxBlockSize { 117 p, src = p[:maxBlockSize], p[maxBlockSize:] 118 } 119 if len(p) < minNonLiteralBlockSize { 120 d += emitLiteral(dst[d:], p) 121 } else { 122 d += encodeBlock(dst[d:], p) 123 } 124 } 125 return d 126 } 127 128 // encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It 129 // assumes that the varint-encoded length of the decompressed bytes has already 130 // been written. 131 // 132 // It also assumes that: 133 // 134 // len(dst) >= MaxEncodedLen(len(src)) && 135 // minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize 136 func encodeBlock(dst, src []byte) (d int) { 137 // Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive. 138 // The table element type is uint16, as s < sLimit and sLimit < len(src) 139 // and len(src) <= maxBlockSize and maxBlockSize == 65536. 140 const ( 141 maxTableSize = 1 << 14 142 // tableMask is redundant, but helps the compiler eliminate bounds 143 // checks. 144 tableMask = maxTableSize - 1 145 ) 146 shift := uint32(32 - 8) 147 for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 { 148 shift-- 149 } 150 // In Go, all array elements are zero-initialized, so there is no advantage 151 // to a smaller tableSize per se. However, it matches the C++ algorithm, 152 // and in the asm versions of this code, we can get away with zeroing only 153 // the first tableSize elements. 154 var table [maxTableSize]uint16 155 156 // sLimit is when to stop looking for offset/length copies. The inputMargin 157 // lets us use a fast path for emitLiteral in the main loop, while we are 158 // looking for copies. 159 sLimit := len(src) - inputMargin 160 161 // nextEmit is where in src the next emitLiteral should start from. 162 nextEmit := 0 163 164 // The encoded form must start with a literal, as there are no previous 165 // bytes to copy, so we start looking for hash matches at s == 1. 166 s := 1 167 nextHash := hash(load32(src, s), shift) 168 169 for { 170 // Copied from the C++ snappy implementation: 171 // 172 // Heuristic match skipping: If 32 bytes are scanned with no matches 173 // found, start looking only at every other byte. If 32 more bytes are 174 // scanned (or skipped), look at every third byte, etc.. When a match 175 // is found, immediately go back to looking at every byte. This is a 176 // small loss (~5% performance, ~0.1% density) for compressible data 177 // due to more bookkeeping, but for non-compressible data (such as 178 // JPEG) it's a huge win since the compressor quickly "realizes" the 179 // data is incompressible and doesn't bother looking for matches 180 // everywhere. 181 // 182 // The "skip" variable keeps track of how many bytes there are since 183 // the last match; dividing it by 32 (ie. right-shifting by five) gives 184 // the number of bytes to move ahead for each iteration. 185 skip := 32 186 187 nextS := s 188 candidate := 0 189 for { 190 s = nextS 191 bytesBetweenHashLookups := skip >> 5 192 nextS = s + bytesBetweenHashLookups 193 skip += bytesBetweenHashLookups 194 if nextS > sLimit { 195 goto emitRemainder 196 } 197 candidate = int(table[nextHash&tableMask]) 198 table[nextHash&tableMask] = uint16(s) 199 nextHash = hash(load32(src, nextS), shift) 200 if load32(src, s) == load32(src, candidate) { 201 break 202 } 203 } 204 205 // A 4-byte match has been found. We'll later see if more than 4 bytes 206 // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit 207 // them as literal bytes. 208 d += emitLiteral(dst[d:], src[nextEmit:s]) 209 210 // Call emitCopy, and then see if another emitCopy could be our next 211 // move. Repeat until we find no match for the input immediately after 212 // what was consumed by the last emitCopy call. 213 // 214 // If we exit this loop normally then we need to call emitLiteral next, 215 // though we don't yet know how big the literal will be. We handle that 216 // by proceeding to the next iteration of the main loop. We also can 217 // exit this loop via goto if we get close to exhausting the input. 218 for { 219 // Invariant: we have a 4-byte match at s, and no need to emit any 220 // literal bytes prior to s. 221 base := s 222 223 // Extend the 4-byte match as long as possible. 224 // 225 // This is an inlined version of: 226 // s = extendMatch(src, candidate+4, s+4) 227 s += 4 228 for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 { 229 } 230 231 d += emitCopy(dst[d:], base-candidate, s-base) 232 nextEmit = s 233 if s >= sLimit { 234 goto emitRemainder 235 } 236 237 // We could immediately start working at s now, but to improve 238 // compression we first update the hash table at s-1 and at s. If 239 // another emitCopy is not our next move, also calculate nextHash 240 // at s+1. At least on GOARCH=amd64, these three hash calculations 241 // are faster as one load64 call (with some shifts) instead of 242 // three load32 calls. 243 x := load64(src, s-1) 244 prevHash := hash(uint32(x>>0), shift) 245 table[prevHash&tableMask] = uint16(s - 1) 246 currHash := hash(uint32(x>>8), shift) 247 candidate = int(table[currHash&tableMask]) 248 table[currHash&tableMask] = uint16(s) 249 if uint32(x>>8) != load32(src, candidate) { 250 nextHash = hash(uint32(x>>16), shift) 251 s++ 252 break 253 } 254 } 255 } 256 257 emitRemainder: 258 if nextEmit < len(src) { 259 d += emitLiteral(dst[d:], src[nextEmit:]) 260 } 261 return d 262 }