github.com/bir3/gocompiler@v0.9.2202/src/cmd/cgo/out.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package cgo 6 7 import ( 8 "bytes" 9 "github.com/bir3/gocompiler/src/cmd/internal/pkgpath" 10 "debug/elf" 11 "debug/macho" 12 "debug/pe" 13 "fmt" 14 "github.com/bir3/gocompiler/src/go/ast" 15 "github.com/bir3/gocompiler/src/go/printer" 16 "github.com/bir3/gocompiler/src/go/token" 17 "github.com/bir3/gocompiler/src/internal/xcoff" 18 "io" 19 "os" 20 "github.com/bir3/gocompiler/exec" 21 "path/filepath" 22 "regexp" 23 "sort" 24 "strings" 25 "unicode" 26 ) 27 28 var ( 29 conf = printer.Config{Mode: printer.SourcePos, Tabwidth: 8} 30 noSourceConf = printer.Config{Tabwidth: 8} 31 ) 32 33 // writeDefs creates output files to be compiled by gc and gcc. 34 func (p *Package) writeDefs() { 35 var fgo2, fc io.Writer 36 f := creat(*objDir + "_cgo_gotypes.go") 37 defer f.Close() 38 fgo2 = f 39 if *gccgo { 40 f := creat(*objDir + "_cgo_defun.c") 41 defer f.Close() 42 fc = f 43 } 44 fm := creat(*objDir + "_cgo_main.c") 45 46 var gccgoInit strings.Builder 47 48 if !*gccgo { 49 for _, arg := range p.LdFlags { 50 fmt.Fprintf(fgo2, "//go:cgo_ldflag %q\n", arg) 51 } 52 } else { 53 fflg := creat(*objDir + "_cgo_flags") 54 for _, arg := range p.LdFlags { 55 fmt.Fprintf(fflg, "_CGO_LDFLAGS=%s\n", arg) 56 } 57 fflg.Close() 58 } 59 60 // Write C main file for using gcc to resolve imports. 61 fmt.Fprintf(fm, "#include <stddef.h>\n") // For size_t below. 62 fmt.Fprintf(fm, "int main() { return 0; }\n") 63 if *importRuntimeCgo { 64 fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*) __attribute__((unused)), void *a __attribute__((unused)), int c __attribute__((unused)), size_t ctxt __attribute__((unused))) { }\n") 65 fmt.Fprintf(fm, "size_t _cgo_wait_runtime_init_done(void) { return 0; }\n") 66 fmt.Fprintf(fm, "void _cgo_release_context(size_t ctxt __attribute__((unused))) { }\n") 67 fmt.Fprintf(fm, "char* _cgo_topofstack(void) { return (char*)0; }\n") 68 } else { 69 // If we're not importing runtime/cgo, we *are* runtime/cgo, 70 // which provides these functions. We just need a prototype. 71 fmt.Fprintf(fm, "void crosscall2(void(*fn)(void*), void *a, int c, size_t ctxt);\n") 72 fmt.Fprintf(fm, "size_t _cgo_wait_runtime_init_done(void);\n") 73 fmt.Fprintf(fm, "void _cgo_release_context(size_t);\n") 74 } 75 fmt.Fprintf(fm, "void _cgo_allocate(void *a __attribute__((unused)), int c __attribute__((unused))) { }\n") 76 fmt.Fprintf(fm, "void _cgo_panic(void *a __attribute__((unused)), int c __attribute__((unused))) { }\n") 77 fmt.Fprintf(fm, "void _cgo_reginit(void) { }\n") 78 79 // Write second Go output: definitions of _C_xxx. 80 // In a separate file so that the import of "unsafe" does not 81 // pollute the original file. 82 fmt.Fprintf(fgo2, "// Code generated by cmd/cgo; DO NOT EDIT.\n\n") 83 fmt.Fprintf(fgo2, "package %s\n\n", p.PackageName) 84 fmt.Fprintf(fgo2, "import \"unsafe\"\n\n") 85 if *importSyscall { 86 fmt.Fprintf(fgo2, "import \"syscall\"\n\n") 87 } 88 if *importRuntimeCgo { 89 if !*gccgoDefineCgoIncomplete { 90 fmt.Fprintf(fgo2, "import _cgopackage \"runtime/cgo\"\n\n") 91 fmt.Fprintf(fgo2, "type _ _cgopackage.Incomplete\n") // prevent import-not-used error 92 } else { 93 fmt.Fprintf(fgo2, "//go:notinheap\n") 94 fmt.Fprintf(fgo2, "type _cgopackage_Incomplete struct{ _ struct{ _ struct{} } }\n") 95 } 96 } 97 if *importSyscall { 98 fmt.Fprintf(fgo2, "var _ syscall.Errno\n") 99 } 100 fmt.Fprintf(fgo2, "func _Cgo_ptr(ptr unsafe.Pointer) unsafe.Pointer { return ptr }\n\n") 101 102 if !*gccgo { 103 fmt.Fprintf(fgo2, "//go:linkname _Cgo_always_false runtime.cgoAlwaysFalse\n") 104 fmt.Fprintf(fgo2, "var _Cgo_always_false bool\n") 105 fmt.Fprintf(fgo2, "//go:linkname _Cgo_use runtime.cgoUse\n") 106 fmt.Fprintf(fgo2, "func _Cgo_use(interface{})\n") 107 } 108 fmt.Fprintf(fgo2, "//go:linkname _Cgo_no_callback runtime.cgoNoCallback\n") 109 fmt.Fprintf(fgo2, "func _Cgo_no_callback(bool)\n") 110 111 typedefNames := make([]string, 0, len(typedef)) 112 for name := range typedef { 113 if name == "_Ctype_void" { 114 // We provide an appropriate declaration for 115 // _Ctype_void below (#39877). 116 continue 117 } 118 typedefNames = append(typedefNames, name) 119 } 120 sort.Strings(typedefNames) 121 for _, name := range typedefNames { 122 def := typedef[name] 123 fmt.Fprintf(fgo2, "type %s ", name) 124 // We don't have source info for these types, so write them out without source info. 125 // Otherwise types would look like: 126 // 127 // type _Ctype_struct_cb struct { 128 // //line :1 129 // on_test *[0]byte 130 // //line :1 131 // } 132 // 133 // Which is not useful. Moreover we never override source info, 134 // so subsequent source code uses the same source info. 135 // Moreover, empty file name makes compile emit no source debug info at all. 136 var buf bytes.Buffer 137 noSourceConf.Fprint(&buf, fset, def.Go) 138 if bytes.HasPrefix(buf.Bytes(), []byte("_Ctype_")) || 139 strings.HasPrefix(name, "_Ctype_enum_") || 140 strings.HasPrefix(name, "_Ctype_union_") { 141 // This typedef is of the form `typedef a b` and should be an alias. 142 fmt.Fprintf(fgo2, "= ") 143 } 144 fmt.Fprintf(fgo2, "%s", buf.Bytes()) 145 fmt.Fprintf(fgo2, "\n\n") 146 } 147 if *gccgo { 148 fmt.Fprintf(fgo2, "type _Ctype_void byte\n") 149 } else { 150 fmt.Fprintf(fgo2, "type _Ctype_void [0]byte\n") 151 } 152 153 if *gccgo { 154 fmt.Fprint(fgo2, gccgoGoProlog) 155 fmt.Fprint(fc, p.cPrologGccgo()) 156 } else { 157 fmt.Fprint(fgo2, goProlog) 158 } 159 160 if fc != nil { 161 fmt.Fprintf(fc, "#line 1 \"cgo-generated-wrappers\"\n") 162 } 163 if fm != nil { 164 fmt.Fprintf(fm, "#line 1 \"cgo-generated-wrappers\"\n") 165 } 166 167 gccgoSymbolPrefix := p.gccgoSymbolPrefix() 168 169 cVars := make(map[string]bool) 170 for _, key := range nameKeys(p.Name) { 171 n := p.Name[key] 172 if !n.IsVar() { 173 continue 174 } 175 176 if !cVars[n.C] { 177 if *gccgo { 178 fmt.Fprintf(fc, "extern byte *%s;\n", n.C) 179 } else { 180 // Force a reference to all symbols so that 181 // the external linker will add DT_NEEDED 182 // entries as needed on ELF systems. 183 // Treat function variables differently 184 // to avoid type conflict errors from LTO 185 // (Link Time Optimization). 186 if n.Kind == "fpvar" { 187 fmt.Fprintf(fm, "extern void %s();\n", n.C) 188 } else { 189 fmt.Fprintf(fm, "extern char %s[];\n", n.C) 190 fmt.Fprintf(fm, "void *_cgohack_%s = %s;\n\n", n.C, n.C) 191 } 192 fmt.Fprintf(fgo2, "//go:linkname __cgo_%s %s\n", n.C, n.C) 193 fmt.Fprintf(fgo2, "//go:cgo_import_static %s\n", n.C) 194 fmt.Fprintf(fgo2, "var __cgo_%s byte\n", n.C) 195 } 196 cVars[n.C] = true 197 } 198 199 var node ast.Node 200 if n.Kind == "var" { 201 node = &ast.StarExpr{X: n.Type.Go} 202 } else if n.Kind == "fpvar" { 203 node = n.Type.Go 204 } else { 205 panic(fmt.Errorf("invalid var kind %q", n.Kind)) 206 } 207 if *gccgo { 208 fmt.Fprintf(fc, `extern void *%s __asm__("%s.%s");`, n.Mangle, gccgoSymbolPrefix, gccgoToSymbol(n.Mangle)) 209 fmt.Fprintf(&gccgoInit, "\t%s = &%s;\n", n.Mangle, n.C) 210 fmt.Fprintf(fc, "\n") 211 } 212 213 fmt.Fprintf(fgo2, "var %s ", n.Mangle) 214 conf.Fprint(fgo2, fset, node) 215 if !*gccgo { 216 fmt.Fprintf(fgo2, " = (") 217 conf.Fprint(fgo2, fset, node) 218 fmt.Fprintf(fgo2, ")(unsafe.Pointer(&__cgo_%s))", n.C) 219 } 220 fmt.Fprintf(fgo2, "\n") 221 } 222 if *gccgo { 223 fmt.Fprintf(fc, "\n") 224 } 225 226 for _, key := range nameKeys(p.Name) { 227 n := p.Name[key] 228 if n.Const != "" { 229 fmt.Fprintf(fgo2, "const %s = %s\n", n.Mangle, n.Const) 230 } 231 } 232 fmt.Fprintf(fgo2, "\n") 233 234 callsMalloc := false 235 for _, key := range nameKeys(p.Name) { 236 n := p.Name[key] 237 if n.FuncType != nil { 238 p.writeDefsFunc(fgo2, n, &callsMalloc) 239 } 240 } 241 242 fgcc := creat(*objDir + "_cgo_export.c") 243 fgcch := creat(*objDir + "_cgo_export.h") 244 if *gccgo { 245 p.writeGccgoExports(fgo2, fm, fgcc, fgcch) 246 } else { 247 p.writeExports(fgo2, fm, fgcc, fgcch) 248 } 249 250 if callsMalloc && !*gccgo { 251 fmt.Fprint(fgo2, strings.Replace(cMallocDefGo, "PREFIX", cPrefix, -1)) 252 fmt.Fprint(fgcc, strings.Replace(strings.Replace(cMallocDefC, "PREFIX", cPrefix, -1), "PACKED", p.packedAttribute(), -1)) 253 } 254 255 if err := fgcc.Close(); err != nil { 256 fatalf("%s", err) 257 } 258 if err := fgcch.Close(); err != nil { 259 fatalf("%s", err) 260 } 261 262 if *exportHeader != "" && len(p.ExpFunc) > 0 { 263 fexp := creat(*exportHeader) 264 fgcch, err := os.Open(*objDir + "_cgo_export.h") 265 if err != nil { 266 fatalf("%s", err) 267 } 268 defer fgcch.Close() 269 _, err = io.Copy(fexp, fgcch) 270 if err != nil { 271 fatalf("%s", err) 272 } 273 if err = fexp.Close(); err != nil { 274 fatalf("%s", err) 275 } 276 } 277 278 init := gccgoInit.String() 279 if init != "" { 280 // The init function does nothing but simple 281 // assignments, so it won't use much stack space, so 282 // it's OK to not split the stack. Splitting the stack 283 // can run into a bug in clang (as of 2018-11-09): 284 // this is a leaf function, and when clang sees a leaf 285 // function it won't emit the split stack prologue for 286 // the function. However, if this function refers to a 287 // non-split-stack function, which will happen if the 288 // cgo code refers to a C function not compiled with 289 // -fsplit-stack, then the linker will think that it 290 // needs to adjust the split stack prologue, but there 291 // won't be one. Marking the function explicitly 292 // no_split_stack works around this problem by telling 293 // the linker that it's OK if there is no split stack 294 // prologue. 295 fmt.Fprintln(fc, "static void init(void) __attribute__ ((constructor, no_split_stack));") 296 fmt.Fprintln(fc, "static void init(void) {") 297 fmt.Fprint(fc, init) 298 fmt.Fprintln(fc, "}") 299 } 300 } 301 302 // elfImportedSymbols is like elf.File.ImportedSymbols, but it 303 // includes weak symbols. 304 // 305 // A bug in some versions of LLD (at least LLD 8) cause it to emit 306 // several pthreads symbols as weak, but we need to import those. See 307 // issue #31912 or https://bugs.llvm.org/show_bug.cgi?id=42442. 308 // 309 // When doing external linking, we hand everything off to the external 310 // linker, which will create its own dynamic symbol tables. For 311 // internal linking, this may turn weak imports into strong imports, 312 // which could cause dynamic linking to fail if a symbol really isn't 313 // defined. However, the standard library depends on everything it 314 // imports, and this is the primary use of dynamic symbol tables with 315 // internal linking. 316 func elfImportedSymbols(f *elf.File) []elf.ImportedSymbol { 317 syms, _ := f.DynamicSymbols() 318 var imports []elf.ImportedSymbol 319 for _, s := range syms { 320 if (elf.ST_BIND(s.Info) == elf.STB_GLOBAL || elf.ST_BIND(s.Info) == elf.STB_WEAK) && s.Section == elf.SHN_UNDEF { 321 imports = append(imports, elf.ImportedSymbol{ 322 Name: s.Name, 323 Library: s.Library, 324 Version: s.Version, 325 }) 326 } 327 } 328 return imports 329 } 330 331 func dynimport(obj string) { 332 stdout := os.Stdout 333 if *dynout != "" { 334 f, err := os.Create(*dynout) 335 if err != nil { 336 fatalf("%s", err) 337 } 338 stdout = f 339 } 340 341 fmt.Fprintf(stdout, "package %s\n", *dynpackage) 342 343 if f, err := elf.Open(obj); err == nil { 344 if *dynlinker { 345 // Emit the cgo_dynamic_linker line. 346 if sec := f.Section(".interp"); sec != nil { 347 if data, err := sec.Data(); err == nil && len(data) > 1 { 348 // skip trailing \0 in data 349 fmt.Fprintf(stdout, "//go:cgo_dynamic_linker %q\n", string(data[:len(data)-1])) 350 } 351 } 352 } 353 sym := elfImportedSymbols(f) 354 for _, s := range sym { 355 targ := s.Name 356 if s.Version != "" { 357 targ += "#" + s.Version 358 } 359 checkImportSymName(s.Name) 360 checkImportSymName(targ) 361 fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s.Name, targ, s.Library) 362 } 363 lib, _ := f.ImportedLibraries() 364 for _, l := range lib { 365 fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) 366 } 367 return 368 } 369 370 if f, err := macho.Open(obj); err == nil { 371 sym, _ := f.ImportedSymbols() 372 for _, s := range sym { 373 if len(s) > 0 && s[0] == '_' { 374 s = s[1:] 375 } 376 checkImportSymName(s) 377 fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s, s, "") 378 } 379 lib, _ := f.ImportedLibraries() 380 for _, l := range lib { 381 fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) 382 } 383 return 384 } 385 386 if f, err := pe.Open(obj); err == nil { 387 sym, _ := f.ImportedSymbols() 388 for _, s := range sym { 389 ss := strings.Split(s, ":") 390 name := strings.Split(ss[0], "@")[0] 391 checkImportSymName(name) 392 checkImportSymName(ss[0]) 393 fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", name, ss[0], strings.ToLower(ss[1])) 394 } 395 return 396 } 397 398 if f, err := xcoff.Open(obj); err == nil { 399 sym, err := f.ImportedSymbols() 400 if err != nil { 401 fatalf("cannot load imported symbols from XCOFF file %s: %v", obj, err) 402 } 403 for _, s := range sym { 404 if s.Name == "runtime_rt0_go" || s.Name == "_rt0_ppc64_aix_lib" { 405 // These symbols are imported by runtime/cgo but 406 // must not be added to _cgo_import.go as there are 407 // Go symbols. 408 continue 409 } 410 checkImportSymName(s.Name) 411 fmt.Fprintf(stdout, "//go:cgo_import_dynamic %s %s %q\n", s.Name, s.Name, s.Library) 412 } 413 lib, err := f.ImportedLibraries() 414 if err != nil { 415 fatalf("cannot load imported libraries from XCOFF file %s: %v", obj, err) 416 } 417 for _, l := range lib { 418 fmt.Fprintf(stdout, "//go:cgo_import_dynamic _ _ %q\n", l) 419 } 420 return 421 } 422 423 fatalf("cannot parse %s as ELF, Mach-O, PE or XCOFF", obj) 424 } 425 426 // checkImportSymName checks a symbol name we are going to emit as part 427 // of a //go:cgo_import_dynamic pragma. These names come from object 428 // files, so they may be corrupt. We are going to emit them unquoted, 429 // so while they don't need to be valid symbol names (and in some cases, 430 // involving symbol versions, they won't be) they must contain only 431 // graphic characters and must not contain Go comments. 432 func checkImportSymName(s string) { 433 for _, c := range s { 434 if !unicode.IsGraphic(c) || unicode.IsSpace(c) { 435 fatalf("dynamic symbol %q contains unsupported character", s) 436 } 437 } 438 if strings.Contains(s, "//") || strings.Contains(s, "/*") { 439 fatalf("dynamic symbol %q contains Go comment") 440 } 441 } 442 443 // Construct a gcc struct matching the gc argument frame. 444 // Assumes that in gcc, char is 1 byte, short 2 bytes, int 4 bytes, long long 8 bytes. 445 // These assumptions are checked by the gccProlog. 446 // Also assumes that gc convention is to word-align the 447 // input and output parameters. 448 func (p *Package) structType(n *Name) (string, int64) { 449 var buf strings.Builder 450 fmt.Fprint(&buf, "struct {\n") 451 off := int64(0) 452 for i, t := range n.FuncType.Params { 453 if off%t.Align != 0 { 454 pad := t.Align - off%t.Align 455 fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) 456 off += pad 457 } 458 c := t.Typedef 459 if c == "" { 460 c = t.C.String() 461 } 462 fmt.Fprintf(&buf, "\t\t%s p%d;\n", c, i) 463 off += t.Size 464 } 465 if off%p.PtrSize != 0 { 466 pad := p.PtrSize - off%p.PtrSize 467 fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) 468 off += pad 469 } 470 if t := n.FuncType.Result; t != nil { 471 if off%t.Align != 0 { 472 pad := t.Align - off%t.Align 473 fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) 474 off += pad 475 } 476 fmt.Fprintf(&buf, "\t\t%s r;\n", t.C) 477 off += t.Size 478 } 479 if off%p.PtrSize != 0 { 480 pad := p.PtrSize - off%p.PtrSize 481 fmt.Fprintf(&buf, "\t\tchar __pad%d[%d];\n", off, pad) 482 off += pad 483 } 484 if off == 0 { 485 fmt.Fprintf(&buf, "\t\tchar unused;\n") // avoid empty struct 486 } 487 fmt.Fprintf(&buf, "\t}") 488 return buf.String(), off 489 } 490 491 func (p *Package) writeDefsFunc(fgo2 io.Writer, n *Name, callsMalloc *bool) { 492 name := n.Go 493 gtype := n.FuncType.Go 494 void := gtype.Results == nil || len(gtype.Results.List) == 0 495 if n.AddError { 496 // Add "error" to return type list. 497 // Type list is known to be 0 or 1 element - it's a C function. 498 err := &ast.Field{Type: ast.NewIdent("error")} 499 l := gtype.Results.List 500 if len(l) == 0 { 501 l = []*ast.Field{err} 502 } else { 503 l = []*ast.Field{l[0], err} 504 } 505 t := new(ast.FuncType) 506 *t = *gtype 507 t.Results = &ast.FieldList{List: l} 508 gtype = t 509 } 510 511 // Go func declaration. 512 d := &ast.FuncDecl{ 513 Name: ast.NewIdent(n.Mangle), 514 Type: gtype, 515 } 516 517 // Builtins defined in the C prolog. 518 inProlog := builtinDefs[name] != "" 519 cname := fmt.Sprintf("_cgo%s%s", cPrefix, n.Mangle) 520 paramnames := []string(nil) 521 if d.Type.Params != nil { 522 for i, param := range d.Type.Params.List { 523 paramName := fmt.Sprintf("p%d", i) 524 param.Names = []*ast.Ident{ast.NewIdent(paramName)} 525 paramnames = append(paramnames, paramName) 526 } 527 } 528 529 if *gccgo { 530 // Gccgo style hooks. 531 fmt.Fprint(fgo2, "\n") 532 conf.Fprint(fgo2, fset, d) 533 fmt.Fprint(fgo2, " {\n") 534 if !inProlog { 535 fmt.Fprint(fgo2, "\tdefer syscall.CgocallDone()\n") 536 fmt.Fprint(fgo2, "\tsyscall.Cgocall()\n") 537 } 538 if n.AddError { 539 fmt.Fprint(fgo2, "\tsyscall.SetErrno(0)\n") 540 } 541 fmt.Fprint(fgo2, "\t") 542 if !void { 543 fmt.Fprint(fgo2, "r := ") 544 } 545 fmt.Fprintf(fgo2, "%s(%s)\n", cname, strings.Join(paramnames, ", ")) 546 547 if n.AddError { 548 fmt.Fprint(fgo2, "\te := syscall.GetErrno()\n") 549 fmt.Fprint(fgo2, "\tif e != 0 {\n") 550 fmt.Fprint(fgo2, "\t\treturn ") 551 if !void { 552 fmt.Fprint(fgo2, "r, ") 553 } 554 fmt.Fprint(fgo2, "e\n") 555 fmt.Fprint(fgo2, "\t}\n") 556 fmt.Fprint(fgo2, "\treturn ") 557 if !void { 558 fmt.Fprint(fgo2, "r, ") 559 } 560 fmt.Fprint(fgo2, "nil\n") 561 } else if !void { 562 fmt.Fprint(fgo2, "\treturn r\n") 563 } 564 565 fmt.Fprint(fgo2, "}\n") 566 567 // declare the C function. 568 fmt.Fprintf(fgo2, "//extern %s\n", cname) 569 d.Name = ast.NewIdent(cname) 570 if n.AddError { 571 l := d.Type.Results.List 572 d.Type.Results.List = l[:len(l)-1] 573 } 574 conf.Fprint(fgo2, fset, d) 575 fmt.Fprint(fgo2, "\n") 576 577 return 578 } 579 580 if inProlog { 581 fmt.Fprint(fgo2, builtinDefs[name]) 582 if strings.Contains(builtinDefs[name], "_cgo_cmalloc") { 583 *callsMalloc = true 584 } 585 return 586 } 587 588 // Wrapper calls into gcc, passing a pointer to the argument frame. 589 fmt.Fprintf(fgo2, "//go:cgo_import_static %s\n", cname) 590 fmt.Fprintf(fgo2, "//go:linkname __cgofn_%s %s\n", cname, cname) 591 fmt.Fprintf(fgo2, "var __cgofn_%s byte\n", cname) 592 fmt.Fprintf(fgo2, "var %s = unsafe.Pointer(&__cgofn_%s)\n", cname, cname) 593 594 nret := 0 595 if !void { 596 d.Type.Results.List[0].Names = []*ast.Ident{ast.NewIdent("r1")} 597 nret = 1 598 } 599 if n.AddError { 600 d.Type.Results.List[nret].Names = []*ast.Ident{ast.NewIdent("r2")} 601 } 602 603 fmt.Fprint(fgo2, "\n") 604 fmt.Fprint(fgo2, "//go:cgo_unsafe_args\n") 605 conf.Fprint(fgo2, fset, d) 606 fmt.Fprint(fgo2, " {\n") 607 608 // NOTE: Using uintptr to hide from escape analysis. 609 arg := "0" 610 if len(paramnames) > 0 { 611 arg = "uintptr(unsafe.Pointer(&p0))" 612 } else if !void { 613 arg = "uintptr(unsafe.Pointer(&r1))" 614 } 615 616 noCallback := p.noCallbacks[n.C] 617 if noCallback { 618 // disable cgocallback, will check it in runtime. 619 fmt.Fprintf(fgo2, "\t_Cgo_no_callback(true)\n") 620 } 621 622 prefix := "" 623 if n.AddError { 624 prefix = "errno := " 625 } 626 fmt.Fprintf(fgo2, "\t%s_cgo_runtime_cgocall(%s, %s)\n", prefix, cname, arg) 627 if n.AddError { 628 fmt.Fprintf(fgo2, "\tif errno != 0 { r2 = syscall.Errno(errno) }\n") 629 } 630 if noCallback { 631 fmt.Fprintf(fgo2, "\t_Cgo_no_callback(false)\n") 632 } 633 634 // skip _Cgo_use when noescape exist, 635 // so that the compiler won't force to escape them to heap. 636 if !p.noEscapes[n.C] { 637 fmt.Fprintf(fgo2, "\tif _Cgo_always_false {\n") 638 if d.Type.Params != nil { 639 for i := range d.Type.Params.List { 640 fmt.Fprintf(fgo2, "\t\t_Cgo_use(p%d)\n", i) 641 } 642 } 643 fmt.Fprintf(fgo2, "\t}\n") 644 } 645 fmt.Fprintf(fgo2, "\treturn\n") 646 fmt.Fprintf(fgo2, "}\n") 647 } 648 649 // writeOutput creates stubs for a specific source file to be compiled by gc 650 func (p *Package) writeOutput(f *File, srcfile string) { 651 base := srcfile 652 base = strings.TrimSuffix(base, ".go") 653 base = filepath.Base(base) 654 fgo1 := creat(*objDir + base + ".cgo1.go") 655 fgcc := creat(*objDir + base + ".cgo2.c") 656 657 p.GoFiles = append(p.GoFiles, base+".cgo1.go") 658 p.GccFiles = append(p.GccFiles, base+".cgo2.c") 659 660 // Write Go output: Go input with rewrites of C.xxx to _C_xxx. 661 fmt.Fprintf(fgo1, "// Code generated by cmd/cgo; DO NOT EDIT.\n\n") 662 if strings.ContainsAny(srcfile, "\r\n") { 663 // This should have been checked when the file path was first resolved, 664 // but we double check here just to be sure. 665 fatalf("internal error: writeOutput: srcfile contains unexpected newline character: %q", srcfile) 666 } 667 fmt.Fprintf(fgo1, "//line %s:1:1\n", srcfile) 668 fgo1.Write(f.Edit.Bytes()) 669 670 // While we process the vars and funcs, also write gcc output. 671 // Gcc output starts with the preamble. 672 fmt.Fprintf(fgcc, "%s\n", builtinProlog) 673 fmt.Fprintf(fgcc, "%s\n", f.Preamble) 674 fmt.Fprintf(fgcc, "%s\n", gccProlog) 675 fmt.Fprintf(fgcc, "%s\n", tsanProlog) 676 fmt.Fprintf(fgcc, "%s\n", msanProlog) 677 678 for _, key := range nameKeys(f.Name) { 679 n := f.Name[key] 680 if n.FuncType != nil { 681 p.writeOutputFunc(fgcc, n) 682 } 683 } 684 685 fgo1.Close() 686 fgcc.Close() 687 } 688 689 // fixGo converts the internal Name.Go field into the name we should show 690 // to users in error messages. There's only one for now: on input we rewrite 691 // C.malloc into C._CMalloc, so change it back here. 692 func fixGo(name string) string { 693 if name == "_CMalloc" { 694 return "malloc" 695 } 696 return name 697 } 698 699 var isBuiltin = map[string]bool{ 700 "_Cfunc_CString": true, 701 "_Cfunc_CBytes": true, 702 "_Cfunc_GoString": true, 703 "_Cfunc_GoStringN": true, 704 "_Cfunc_GoBytes": true, 705 "_Cfunc__CMalloc": true, 706 } 707 708 func (p *Package) writeOutputFunc(fgcc *os.File, n *Name) { 709 name := n.Mangle 710 if isBuiltin[name] || p.Written[name] { 711 // The builtins are already defined in the C prolog, and we don't 712 // want to duplicate function definitions we've already done. 713 return 714 } 715 p.Written[name] = true 716 717 if *gccgo { 718 p.writeGccgoOutputFunc(fgcc, n) 719 return 720 } 721 722 ctype, _ := p.structType(n) 723 724 // Gcc wrapper unpacks the C argument struct 725 // and calls the actual C function. 726 fmt.Fprintf(fgcc, "CGO_NO_SANITIZE_THREAD\n") 727 if n.AddError { 728 fmt.Fprintf(fgcc, "int\n") 729 } else { 730 fmt.Fprintf(fgcc, "void\n") 731 } 732 fmt.Fprintf(fgcc, "_cgo%s%s(void *v)\n", cPrefix, n.Mangle) 733 fmt.Fprintf(fgcc, "{\n") 734 if n.AddError { 735 fmt.Fprintf(fgcc, "\tint _cgo_errno;\n") 736 } 737 // We're trying to write a gcc struct that matches gc's layout. 738 // Use packed attribute to force no padding in this struct in case 739 // gcc has different packing requirements. 740 fmt.Fprintf(fgcc, "\t%s %v *_cgo_a = v;\n", ctype, p.packedAttribute()) 741 if n.FuncType.Result != nil { 742 // Save the stack top for use below. 743 fmt.Fprintf(fgcc, "\tchar *_cgo_stktop = _cgo_topofstack();\n") 744 } 745 tr := n.FuncType.Result 746 if tr != nil { 747 fmt.Fprintf(fgcc, "\t__typeof__(_cgo_a->r) _cgo_r;\n") 748 } 749 fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") 750 if n.AddError { 751 fmt.Fprintf(fgcc, "\terrno = 0;\n") 752 } 753 fmt.Fprintf(fgcc, "\t") 754 if tr != nil { 755 fmt.Fprintf(fgcc, "_cgo_r = ") 756 if c := tr.C.String(); c[len(c)-1] == '*' { 757 fmt.Fprint(fgcc, "(__typeof__(_cgo_a->r)) ") 758 } 759 } 760 if n.Kind == "macro" { 761 fmt.Fprintf(fgcc, "%s;\n", n.C) 762 } else { 763 fmt.Fprintf(fgcc, "%s(", n.C) 764 for i := range n.FuncType.Params { 765 if i > 0 { 766 fmt.Fprintf(fgcc, ", ") 767 } 768 fmt.Fprintf(fgcc, "_cgo_a->p%d", i) 769 } 770 fmt.Fprintf(fgcc, ");\n") 771 } 772 if n.AddError { 773 fmt.Fprintf(fgcc, "\t_cgo_errno = errno;\n") 774 } 775 fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") 776 if n.FuncType.Result != nil { 777 // The cgo call may have caused a stack copy (via a callback). 778 // Adjust the return value pointer appropriately. 779 fmt.Fprintf(fgcc, "\t_cgo_a = (void*)((char*)_cgo_a + (_cgo_topofstack() - _cgo_stktop));\n") 780 // Save the return value. 781 fmt.Fprintf(fgcc, "\t_cgo_a->r = _cgo_r;\n") 782 // The return value is on the Go stack. If we are using msan, 783 // and if the C value is partially or completely uninitialized, 784 // the assignment will mark the Go stack as uninitialized. 785 // The Go compiler does not update msan for changes to the 786 // stack. It is possible that the stack will remain 787 // uninitialized, and then later be used in a way that is 788 // visible to msan, possibly leading to a false positive. 789 // Mark the stack space as written, to avoid this problem. 790 // See issue 26209. 791 fmt.Fprintf(fgcc, "\t_cgo_msan_write(&_cgo_a->r, sizeof(_cgo_a->r));\n") 792 } 793 if n.AddError { 794 fmt.Fprintf(fgcc, "\treturn _cgo_errno;\n") 795 } 796 fmt.Fprintf(fgcc, "}\n") 797 fmt.Fprintf(fgcc, "\n") 798 } 799 800 // Write out a wrapper for a function when using gccgo. This is a 801 // simple wrapper that just calls the real function. We only need a 802 // wrapper to support static functions in the prologue--without a 803 // wrapper, we can't refer to the function, since the reference is in 804 // a different file. 805 func (p *Package) writeGccgoOutputFunc(fgcc *os.File, n *Name) { 806 fmt.Fprintf(fgcc, "CGO_NO_SANITIZE_THREAD\n") 807 if t := n.FuncType.Result; t != nil { 808 fmt.Fprintf(fgcc, "%s\n", t.C.String()) 809 } else { 810 fmt.Fprintf(fgcc, "void\n") 811 } 812 fmt.Fprintf(fgcc, "_cgo%s%s(", cPrefix, n.Mangle) 813 for i, t := range n.FuncType.Params { 814 if i > 0 { 815 fmt.Fprintf(fgcc, ", ") 816 } 817 c := t.Typedef 818 if c == "" { 819 c = t.C.String() 820 } 821 fmt.Fprintf(fgcc, "%s p%d", c, i) 822 } 823 fmt.Fprintf(fgcc, ")\n") 824 fmt.Fprintf(fgcc, "{\n") 825 if t := n.FuncType.Result; t != nil { 826 fmt.Fprintf(fgcc, "\t%s _cgo_r;\n", t.C.String()) 827 } 828 fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") 829 fmt.Fprintf(fgcc, "\t") 830 if t := n.FuncType.Result; t != nil { 831 fmt.Fprintf(fgcc, "_cgo_r = ") 832 // Cast to void* to avoid warnings due to omitted qualifiers. 833 if c := t.C.String(); c[len(c)-1] == '*' { 834 fmt.Fprintf(fgcc, "(void*)") 835 } 836 } 837 if n.Kind == "macro" { 838 fmt.Fprintf(fgcc, "%s;\n", n.C) 839 } else { 840 fmt.Fprintf(fgcc, "%s(", n.C) 841 for i := range n.FuncType.Params { 842 if i > 0 { 843 fmt.Fprintf(fgcc, ", ") 844 } 845 fmt.Fprintf(fgcc, "p%d", i) 846 } 847 fmt.Fprintf(fgcc, ");\n") 848 } 849 fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") 850 if t := n.FuncType.Result; t != nil { 851 fmt.Fprintf(fgcc, "\treturn ") 852 // Cast to void* to avoid warnings due to omitted qualifiers 853 // and explicit incompatible struct types. 854 if c := t.C.String(); c[len(c)-1] == '*' { 855 fmt.Fprintf(fgcc, "(void*)") 856 } 857 fmt.Fprintf(fgcc, "_cgo_r;\n") 858 } 859 fmt.Fprintf(fgcc, "}\n") 860 fmt.Fprintf(fgcc, "\n") 861 } 862 863 // packedAttribute returns host compiler struct attribute that will be 864 // used to match gc's struct layout. For example, on 386 Windows, 865 // gcc wants to 8-align int64s, but gc does not. 866 // Use __gcc_struct__ to work around https://gcc.gnu.org/PR52991 on x86, 867 // and https://golang.org/issue/5603. 868 func (p *Package) packedAttribute() string { 869 s := "__attribute__((__packed__" 870 if !p.GccIsClang && (goarch == "amd64" || goarch == "386") { 871 s += ", __gcc_struct__" 872 } 873 return s + "))" 874 } 875 876 // exportParamName returns the value of param as it should be 877 // displayed in a c header file. If param contains any non-ASCII 878 // characters, this function will return the character p followed by 879 // the value of position; otherwise, this function will return the 880 // value of param. 881 func exportParamName(param string, position int) string { 882 if param == "" { 883 return fmt.Sprintf("p%d", position) 884 } 885 886 pname := param 887 888 for i := 0; i < len(param); i++ { 889 if param[i] > unicode.MaxASCII { 890 pname = fmt.Sprintf("p%d", position) 891 break 892 } 893 } 894 895 return pname 896 } 897 898 // Write out the various stubs we need to support functions exported 899 // from Go so that they are callable from C. 900 func (p *Package) writeExports(fgo2, fm, fgcc, fgcch io.Writer) { 901 p.writeExportHeader(fgcch) 902 903 fmt.Fprintf(fgcc, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") 904 fmt.Fprintf(fgcc, "#include <stdlib.h>\n") 905 fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n\n") 906 907 // We use packed structs, but they are always aligned. 908 // The pragmas and address-of-packed-member are only recognized as 909 // warning groups in clang 4.0+, so ignore unknown pragmas first. 910 fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wunknown-pragmas\"\n") 911 fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wpragmas\"\n") 912 fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Waddress-of-packed-member\"\n") 913 fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wunknown-warning-option\"\n") 914 fmt.Fprintf(fgcc, "#pragma GCC diagnostic ignored \"-Wunaligned-access\"\n") 915 916 fmt.Fprintf(fgcc, "extern void crosscall2(void (*fn)(void *), void *, int, size_t);\n") 917 fmt.Fprintf(fgcc, "extern size_t _cgo_wait_runtime_init_done(void);\n") 918 fmt.Fprintf(fgcc, "extern void _cgo_release_context(size_t);\n\n") 919 fmt.Fprintf(fgcc, "extern char* _cgo_topofstack(void);") 920 fmt.Fprintf(fgcc, "%s\n", tsanProlog) 921 fmt.Fprintf(fgcc, "%s\n", msanProlog) 922 923 for _, exp := range p.ExpFunc { 924 fn := exp.Func 925 926 // Construct a struct that will be used to communicate 927 // arguments from C to Go. The C and Go definitions 928 // just have to agree. The gcc struct will be compiled 929 // with __attribute__((packed)) so all padding must be 930 // accounted for explicitly. 931 ctype := "struct {\n" 932 gotype := new(bytes.Buffer) 933 fmt.Fprintf(gotype, "struct {\n") 934 off := int64(0) 935 npad := 0 936 argField := func(typ ast.Expr, namePat string, args ...interface{}) { 937 name := fmt.Sprintf(namePat, args...) 938 t := p.cgoType(typ) 939 if off%t.Align != 0 { 940 pad := t.Align - off%t.Align 941 ctype += fmt.Sprintf("\t\tchar __pad%d[%d];\n", npad, pad) 942 off += pad 943 npad++ 944 } 945 ctype += fmt.Sprintf("\t\t%s %s;\n", t.C, name) 946 fmt.Fprintf(gotype, "\t\t%s ", name) 947 noSourceConf.Fprint(gotype, fset, typ) 948 fmt.Fprintf(gotype, "\n") 949 off += t.Size 950 } 951 if fn.Recv != nil { 952 argField(fn.Recv.List[0].Type, "recv") 953 } 954 fntype := fn.Type 955 forFieldList(fntype.Params, 956 func(i int, aname string, atype ast.Expr) { 957 argField(atype, "p%d", i) 958 }) 959 forFieldList(fntype.Results, 960 func(i int, aname string, atype ast.Expr) { 961 argField(atype, "r%d", i) 962 }) 963 if ctype == "struct {\n" { 964 ctype += "\t\tchar unused;\n" // avoid empty struct 965 } 966 ctype += "\t}" 967 fmt.Fprintf(gotype, "\t}") 968 969 // Get the return type of the wrapper function 970 // compiled by gcc. 971 gccResult := "" 972 if fntype.Results == nil || len(fntype.Results.List) == 0 { 973 gccResult = "void" 974 } else if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { 975 gccResult = p.cgoType(fntype.Results.List[0].Type).C.String() 976 } else { 977 fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName) 978 fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName) 979 forFieldList(fntype.Results, 980 func(i int, aname string, atype ast.Expr) { 981 fmt.Fprintf(fgcch, "\t%s r%d;", p.cgoType(atype).C, i) 982 if len(aname) > 0 { 983 fmt.Fprintf(fgcch, " /* %s */", aname) 984 } 985 fmt.Fprint(fgcch, "\n") 986 }) 987 fmt.Fprintf(fgcch, "};\n") 988 gccResult = "struct " + exp.ExpName + "_return" 989 } 990 991 // Build the wrapper function compiled by gcc. 992 gccExport := "" 993 if goos == "windows" { 994 gccExport = "__declspec(dllexport) " 995 } 996 s := fmt.Sprintf("%s%s %s(", gccExport, gccResult, exp.ExpName) 997 if fn.Recv != nil { 998 s += p.cgoType(fn.Recv.List[0].Type).C.String() 999 s += " recv" 1000 } 1001 forFieldList(fntype.Params, 1002 func(i int, aname string, atype ast.Expr) { 1003 if i > 0 || fn.Recv != nil { 1004 s += ", " 1005 } 1006 s += fmt.Sprintf("%s %s", p.cgoType(atype).C, exportParamName(aname, i)) 1007 }) 1008 s += ")" 1009 1010 if len(exp.Doc) > 0 { 1011 fmt.Fprintf(fgcch, "\n%s", exp.Doc) 1012 if !strings.HasSuffix(exp.Doc, "\n") { 1013 fmt.Fprint(fgcch, "\n") 1014 } 1015 } 1016 fmt.Fprintf(fgcch, "extern %s;\n", s) 1017 1018 fmt.Fprintf(fgcc, "extern void _cgoexp%s_%s(void *);\n", cPrefix, exp.ExpName) 1019 fmt.Fprintf(fgcc, "\nCGO_NO_SANITIZE_THREAD") 1020 fmt.Fprintf(fgcc, "\n%s\n", s) 1021 fmt.Fprintf(fgcc, "{\n") 1022 fmt.Fprintf(fgcc, "\tsize_t _cgo_ctxt = _cgo_wait_runtime_init_done();\n") 1023 // The results part of the argument structure must be 1024 // initialized to 0 so the write barriers generated by 1025 // the assignments to these fields in Go are safe. 1026 // 1027 // We use a local static variable to get the zeroed 1028 // value of the argument type. This avoids including 1029 // string.h for memset, and is also robust to C++ 1030 // types with constructors. Both GCC and LLVM optimize 1031 // this into just zeroing _cgo_a. 1032 fmt.Fprintf(fgcc, "\ttypedef %s %v _cgo_argtype;\n", ctype, p.packedAttribute()) 1033 fmt.Fprintf(fgcc, "\tstatic _cgo_argtype _cgo_zero;\n") 1034 fmt.Fprintf(fgcc, "\t_cgo_argtype _cgo_a = _cgo_zero;\n") 1035 if gccResult != "void" && (len(fntype.Results.List) > 1 || len(fntype.Results.List[0].Names) > 1) { 1036 fmt.Fprintf(fgcc, "\t%s r;\n", gccResult) 1037 } 1038 if fn.Recv != nil { 1039 fmt.Fprintf(fgcc, "\t_cgo_a.recv = recv;\n") 1040 } 1041 forFieldList(fntype.Params, 1042 func(i int, aname string, atype ast.Expr) { 1043 fmt.Fprintf(fgcc, "\t_cgo_a.p%d = %s;\n", i, exportParamName(aname, i)) 1044 }) 1045 fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") 1046 fmt.Fprintf(fgcc, "\tcrosscall2(_cgoexp%s_%s, &_cgo_a, %d, _cgo_ctxt);\n", cPrefix, exp.ExpName, off) 1047 fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") 1048 fmt.Fprintf(fgcc, "\t_cgo_release_context(_cgo_ctxt);\n") 1049 if gccResult != "void" { 1050 if len(fntype.Results.List) == 1 && len(fntype.Results.List[0].Names) <= 1 { 1051 fmt.Fprintf(fgcc, "\treturn _cgo_a.r0;\n") 1052 } else { 1053 forFieldList(fntype.Results, 1054 func(i int, aname string, atype ast.Expr) { 1055 fmt.Fprintf(fgcc, "\tr.r%d = _cgo_a.r%d;\n", i, i) 1056 }) 1057 fmt.Fprintf(fgcc, "\treturn r;\n") 1058 } 1059 } 1060 fmt.Fprintf(fgcc, "}\n") 1061 1062 // In internal linking mode, the Go linker sees both 1063 // the C wrapper written above and the Go wrapper it 1064 // references. Hence, export the C wrapper (e.g., for 1065 // if we're building a shared object). The Go linker 1066 // will resolve the C wrapper's reference to the Go 1067 // wrapper without a separate export. 1068 fmt.Fprintf(fgo2, "//go:cgo_export_dynamic %s\n", exp.ExpName) 1069 // cgo_export_static refers to a symbol by its linker 1070 // name, so set the linker name of the Go wrapper. 1071 fmt.Fprintf(fgo2, "//go:linkname _cgoexp%s_%s _cgoexp%s_%s\n", cPrefix, exp.ExpName, cPrefix, exp.ExpName) 1072 // In external linking mode, the Go linker sees the Go 1073 // wrapper, but not the C wrapper. For this case, 1074 // export the Go wrapper so the host linker can 1075 // resolve the reference from the C wrapper to the Go 1076 // wrapper. 1077 fmt.Fprintf(fgo2, "//go:cgo_export_static _cgoexp%s_%s\n", cPrefix, exp.ExpName) 1078 1079 // Build the wrapper function compiled by cmd/compile. 1080 // This unpacks the argument struct above and calls the Go function. 1081 fmt.Fprintf(fgo2, "func _cgoexp%s_%s(a *%s) {\n", cPrefix, exp.ExpName, gotype) 1082 1083 fmt.Fprintf(fm, "void _cgoexp%s_%s(void* p){}\n", cPrefix, exp.ExpName) 1084 1085 fmt.Fprintf(fgo2, "\t") 1086 1087 if gccResult != "void" { 1088 // Write results back to frame. 1089 forFieldList(fntype.Results, 1090 func(i int, aname string, atype ast.Expr) { 1091 if i > 0 { 1092 fmt.Fprintf(fgo2, ", ") 1093 } 1094 fmt.Fprintf(fgo2, "a.r%d", i) 1095 }) 1096 fmt.Fprintf(fgo2, " = ") 1097 } 1098 if fn.Recv != nil { 1099 fmt.Fprintf(fgo2, "a.recv.") 1100 } 1101 fmt.Fprintf(fgo2, "%s(", exp.Func.Name) 1102 forFieldList(fntype.Params, 1103 func(i int, aname string, atype ast.Expr) { 1104 if i > 0 { 1105 fmt.Fprint(fgo2, ", ") 1106 } 1107 fmt.Fprintf(fgo2, "a.p%d", i) 1108 }) 1109 fmt.Fprint(fgo2, ")\n") 1110 if gccResult != "void" { 1111 // Verify that any results don't contain any 1112 // Go pointers. 1113 forFieldList(fntype.Results, 1114 func(i int, aname string, atype ast.Expr) { 1115 if !p.hasPointer(nil, atype, false) { 1116 return 1117 } 1118 fmt.Fprintf(fgo2, "\t_cgoCheckResult(a.r%d)\n", i) 1119 }) 1120 } 1121 fmt.Fprint(fgo2, "}\n") 1122 } 1123 1124 fmt.Fprintf(fgcch, "%s", gccExportHeaderEpilog) 1125 } 1126 1127 // Write out the C header allowing C code to call exported gccgo functions. 1128 func (p *Package) writeGccgoExports(fgo2, fm, fgcc, fgcch io.Writer) { 1129 gccgoSymbolPrefix := p.gccgoSymbolPrefix() 1130 1131 p.writeExportHeader(fgcch) 1132 1133 fmt.Fprintf(fgcc, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") 1134 fmt.Fprintf(fgcc, "#include \"_cgo_export.h\"\n") 1135 1136 fmt.Fprintf(fgcc, "%s\n", gccgoExportFileProlog) 1137 fmt.Fprintf(fgcc, "%s\n", tsanProlog) 1138 fmt.Fprintf(fgcc, "%s\n", msanProlog) 1139 1140 for _, exp := range p.ExpFunc { 1141 fn := exp.Func 1142 fntype := fn.Type 1143 1144 cdeclBuf := new(strings.Builder) 1145 resultCount := 0 1146 forFieldList(fntype.Results, 1147 func(i int, aname string, atype ast.Expr) { resultCount++ }) 1148 switch resultCount { 1149 case 0: 1150 fmt.Fprintf(cdeclBuf, "void") 1151 case 1: 1152 forFieldList(fntype.Results, 1153 func(i int, aname string, atype ast.Expr) { 1154 t := p.cgoType(atype) 1155 fmt.Fprintf(cdeclBuf, "%s", t.C) 1156 }) 1157 default: 1158 // Declare a result struct. 1159 fmt.Fprintf(fgcch, "\n/* Return type for %s */\n", exp.ExpName) 1160 fmt.Fprintf(fgcch, "struct %s_return {\n", exp.ExpName) 1161 forFieldList(fntype.Results, 1162 func(i int, aname string, atype ast.Expr) { 1163 t := p.cgoType(atype) 1164 fmt.Fprintf(fgcch, "\t%s r%d;", t.C, i) 1165 if len(aname) > 0 { 1166 fmt.Fprintf(fgcch, " /* %s */", aname) 1167 } 1168 fmt.Fprint(fgcch, "\n") 1169 }) 1170 fmt.Fprintf(fgcch, "};\n") 1171 fmt.Fprintf(cdeclBuf, "struct %s_return", exp.ExpName) 1172 } 1173 1174 cRet := cdeclBuf.String() 1175 1176 cdeclBuf = new(strings.Builder) 1177 fmt.Fprintf(cdeclBuf, "(") 1178 if fn.Recv != nil { 1179 fmt.Fprintf(cdeclBuf, "%s recv", p.cgoType(fn.Recv.List[0].Type).C.String()) 1180 } 1181 // Function parameters. 1182 forFieldList(fntype.Params, 1183 func(i int, aname string, atype ast.Expr) { 1184 if i > 0 || fn.Recv != nil { 1185 fmt.Fprintf(cdeclBuf, ", ") 1186 } 1187 t := p.cgoType(atype) 1188 fmt.Fprintf(cdeclBuf, "%s p%d", t.C, i) 1189 }) 1190 fmt.Fprintf(cdeclBuf, ")") 1191 cParams := cdeclBuf.String() 1192 1193 if len(exp.Doc) > 0 { 1194 fmt.Fprintf(fgcch, "\n%s", exp.Doc) 1195 } 1196 1197 fmt.Fprintf(fgcch, "extern %s %s%s;\n", cRet, exp.ExpName, cParams) 1198 1199 // We need to use a name that will be exported by the 1200 // Go code; otherwise gccgo will make it static and we 1201 // will not be able to link against it from the C 1202 // code. 1203 goName := "Cgoexp_" + exp.ExpName 1204 fmt.Fprintf(fgcc, `extern %s %s %s __asm__("%s.%s");`, cRet, goName, cParams, gccgoSymbolPrefix, gccgoToSymbol(goName)) 1205 fmt.Fprint(fgcc, "\n") 1206 1207 fmt.Fprint(fgcc, "\nCGO_NO_SANITIZE_THREAD\n") 1208 fmt.Fprintf(fgcc, "%s %s %s {\n", cRet, exp.ExpName, cParams) 1209 if resultCount > 0 { 1210 fmt.Fprintf(fgcc, "\t%s r;\n", cRet) 1211 } 1212 fmt.Fprintf(fgcc, "\tif(_cgo_wait_runtime_init_done)\n") 1213 fmt.Fprintf(fgcc, "\t\t_cgo_wait_runtime_init_done();\n") 1214 fmt.Fprintf(fgcc, "\t_cgo_tsan_release();\n") 1215 fmt.Fprint(fgcc, "\t") 1216 if resultCount > 0 { 1217 fmt.Fprint(fgcc, "r = ") 1218 } 1219 fmt.Fprintf(fgcc, "%s(", goName) 1220 if fn.Recv != nil { 1221 fmt.Fprint(fgcc, "recv") 1222 } 1223 forFieldList(fntype.Params, 1224 func(i int, aname string, atype ast.Expr) { 1225 if i > 0 || fn.Recv != nil { 1226 fmt.Fprintf(fgcc, ", ") 1227 } 1228 fmt.Fprintf(fgcc, "p%d", i) 1229 }) 1230 fmt.Fprint(fgcc, ");\n") 1231 fmt.Fprintf(fgcc, "\t_cgo_tsan_acquire();\n") 1232 if resultCount > 0 { 1233 fmt.Fprint(fgcc, "\treturn r;\n") 1234 } 1235 fmt.Fprint(fgcc, "}\n") 1236 1237 // Dummy declaration for _cgo_main.c 1238 fmt.Fprintf(fm, `char %s[1] __asm__("%s.%s");`, goName, gccgoSymbolPrefix, gccgoToSymbol(goName)) 1239 fmt.Fprint(fm, "\n") 1240 1241 // For gccgo we use a wrapper function in Go, in order 1242 // to call CgocallBack and CgocallBackDone. 1243 1244 // This code uses printer.Fprint, not conf.Fprint, 1245 // because we don't want //line comments in the middle 1246 // of the function types. 1247 fmt.Fprint(fgo2, "\n") 1248 fmt.Fprintf(fgo2, "func %s(", goName) 1249 if fn.Recv != nil { 1250 fmt.Fprint(fgo2, "recv ") 1251 printer.Fprint(fgo2, fset, fn.Recv.List[0].Type) 1252 } 1253 forFieldList(fntype.Params, 1254 func(i int, aname string, atype ast.Expr) { 1255 if i > 0 || fn.Recv != nil { 1256 fmt.Fprintf(fgo2, ", ") 1257 } 1258 fmt.Fprintf(fgo2, "p%d ", i) 1259 printer.Fprint(fgo2, fset, atype) 1260 }) 1261 fmt.Fprintf(fgo2, ")") 1262 if resultCount > 0 { 1263 fmt.Fprintf(fgo2, " (") 1264 forFieldList(fntype.Results, 1265 func(i int, aname string, atype ast.Expr) { 1266 if i > 0 { 1267 fmt.Fprint(fgo2, ", ") 1268 } 1269 printer.Fprint(fgo2, fset, atype) 1270 }) 1271 fmt.Fprint(fgo2, ")") 1272 } 1273 fmt.Fprint(fgo2, " {\n") 1274 fmt.Fprint(fgo2, "\tsyscall.CgocallBack()\n") 1275 fmt.Fprint(fgo2, "\tdefer syscall.CgocallBackDone()\n") 1276 fmt.Fprint(fgo2, "\t") 1277 if resultCount > 0 { 1278 fmt.Fprint(fgo2, "return ") 1279 } 1280 if fn.Recv != nil { 1281 fmt.Fprint(fgo2, "recv.") 1282 } 1283 fmt.Fprintf(fgo2, "%s(", exp.Func.Name) 1284 forFieldList(fntype.Params, 1285 func(i int, aname string, atype ast.Expr) { 1286 if i > 0 { 1287 fmt.Fprint(fgo2, ", ") 1288 } 1289 fmt.Fprintf(fgo2, "p%d", i) 1290 }) 1291 fmt.Fprint(fgo2, ")\n") 1292 fmt.Fprint(fgo2, "}\n") 1293 } 1294 1295 fmt.Fprintf(fgcch, "%s", gccExportHeaderEpilog) 1296 } 1297 1298 // writeExportHeader writes out the start of the _cgo_export.h file. 1299 func (p *Package) writeExportHeader(fgcch io.Writer) { 1300 fmt.Fprintf(fgcch, "/* Code generated by cmd/cgo; DO NOT EDIT. */\n\n") 1301 pkg := *importPath 1302 if pkg == "" { 1303 pkg = p.PackagePath 1304 } 1305 fmt.Fprintf(fgcch, "/* package %s */\n\n", pkg) 1306 fmt.Fprintf(fgcch, "%s\n", builtinExportProlog) 1307 1308 // Remove absolute paths from #line comments in the preamble. 1309 // They aren't useful for people using the header file, 1310 // and they mean that the header files change based on the 1311 // exact location of GOPATH. 1312 re := regexp.MustCompile(`(?m)^(#line\s+\d+\s+")[^"]*[/\\]([^"]*")`) 1313 preamble := re.ReplaceAllString(p.Preamble, "$1$2") 1314 1315 fmt.Fprintf(fgcch, "/* Start of preamble from import \"C\" comments. */\n\n") 1316 fmt.Fprintf(fgcch, "%s\n", preamble) 1317 fmt.Fprintf(fgcch, "\n/* End of preamble from import \"C\" comments. */\n\n") 1318 1319 fmt.Fprintf(fgcch, "%s\n", p.gccExportHeaderProlog()) 1320 } 1321 1322 // gccgoToSymbol converts a name to a mangled symbol for gccgo. 1323 func gccgoToSymbol(ppath string) string { 1324 if gccgoMangler == nil { 1325 var err error 1326 cmd := os.Getenv("GCCGO") 1327 if cmd == "" { 1328 cmd, err = exec.LookPath("gccgo") 1329 if err != nil { 1330 fatalf("unable to locate gccgo: %v", err) 1331 } 1332 } 1333 gccgoMangler, err = pkgpath.ToSymbolFunc(cmd, *objDir) 1334 if err != nil { 1335 fatalf("%v", err) 1336 } 1337 } 1338 return gccgoMangler(ppath) 1339 } 1340 1341 // Return the package prefix when using gccgo. 1342 func (p *Package) gccgoSymbolPrefix() string { 1343 if !*gccgo { 1344 return "" 1345 } 1346 1347 if *gccgopkgpath != "" { 1348 return gccgoToSymbol(*gccgopkgpath) 1349 } 1350 if *gccgoprefix == "" && p.PackageName == "main" { 1351 return "main" 1352 } 1353 prefix := gccgoToSymbol(*gccgoprefix) 1354 if prefix == "" { 1355 prefix = "go" 1356 } 1357 return prefix + "." + p.PackageName 1358 } 1359 1360 // Call a function for each entry in an ast.FieldList, passing the 1361 // index into the list, the name if any, and the type. 1362 func forFieldList(fl *ast.FieldList, fn func(int, string, ast.Expr)) { 1363 if fl == nil { 1364 return 1365 } 1366 i := 0 1367 for _, r := range fl.List { 1368 if r.Names == nil { 1369 fn(i, "", r.Type) 1370 i++ 1371 } else { 1372 for _, n := range r.Names { 1373 fn(i, n.Name, r.Type) 1374 i++ 1375 } 1376 } 1377 } 1378 } 1379 1380 func c(repr string, args ...interface{}) *TypeRepr { 1381 return &TypeRepr{repr, args} 1382 } 1383 1384 // Map predeclared Go types to Type. 1385 var goTypes = map[string]*Type{ 1386 "bool": {Size: 1, Align: 1, C: c("GoUint8")}, 1387 "byte": {Size: 1, Align: 1, C: c("GoUint8")}, 1388 "int": {Size: 0, Align: 0, C: c("GoInt")}, 1389 "uint": {Size: 0, Align: 0, C: c("GoUint")}, 1390 "rune": {Size: 4, Align: 4, C: c("GoInt32")}, 1391 "int8": {Size: 1, Align: 1, C: c("GoInt8")}, 1392 "uint8": {Size: 1, Align: 1, C: c("GoUint8")}, 1393 "int16": {Size: 2, Align: 2, C: c("GoInt16")}, 1394 "uint16": {Size: 2, Align: 2, C: c("GoUint16")}, 1395 "int32": {Size: 4, Align: 4, C: c("GoInt32")}, 1396 "uint32": {Size: 4, Align: 4, C: c("GoUint32")}, 1397 "int64": {Size: 8, Align: 8, C: c("GoInt64")}, 1398 "uint64": {Size: 8, Align: 8, C: c("GoUint64")}, 1399 "float32": {Size: 4, Align: 4, C: c("GoFloat32")}, 1400 "float64": {Size: 8, Align: 8, C: c("GoFloat64")}, 1401 "complex64": {Size: 8, Align: 4, C: c("GoComplex64")}, 1402 "complex128": {Size: 16, Align: 8, C: c("GoComplex128")}, 1403 } 1404 1405 // Map an ast type to a Type. 1406 func (p *Package) cgoType(e ast.Expr) *Type { 1407 switch t := e.(type) { 1408 case *ast.StarExpr: 1409 x := p.cgoType(t.X) 1410 return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("%s*", x.C)} 1411 case *ast.ArrayType: 1412 if t.Len == nil { 1413 // Slice: pointer, len, cap. 1414 return &Type{Size: p.PtrSize * 3, Align: p.PtrSize, C: c("GoSlice")} 1415 } 1416 // Non-slice array types are not supported. 1417 case *ast.StructType: 1418 // Not supported. 1419 case *ast.FuncType: 1420 return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")} 1421 case *ast.InterfaceType: 1422 return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")} 1423 case *ast.MapType: 1424 return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoMap")} 1425 case *ast.ChanType: 1426 return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoChan")} 1427 case *ast.Ident: 1428 goTypesFixup := func(r *Type) *Type { 1429 if r.Size == 0 { // int or uint 1430 rr := new(Type) 1431 *rr = *r 1432 rr.Size = p.IntSize 1433 rr.Align = p.IntSize 1434 r = rr 1435 } 1436 if r.Align > p.PtrSize { 1437 r.Align = p.PtrSize 1438 } 1439 return r 1440 } 1441 // Look up the type in the top level declarations. 1442 // TODO: Handle types defined within a function. 1443 for _, d := range p.Decl { 1444 gd, ok := d.(*ast.GenDecl) 1445 if !ok || gd.Tok != token.TYPE { 1446 continue 1447 } 1448 for _, spec := range gd.Specs { 1449 ts, ok := spec.(*ast.TypeSpec) 1450 if !ok { 1451 continue 1452 } 1453 if ts.Name.Name == t.Name { 1454 return p.cgoType(ts.Type) 1455 } 1456 } 1457 } 1458 if def := typedef[t.Name]; def != nil { 1459 if defgo, ok := def.Go.(*ast.Ident); ok { 1460 switch defgo.Name { 1461 case "complex64", "complex128": 1462 // MSVC does not support the _Complex keyword 1463 // nor the complex macro. 1464 // Use GoComplex64 and GoComplex128 instead, 1465 // which are typedef-ed to a compatible type. 1466 // See go.dev/issues/36233. 1467 return goTypesFixup(goTypes[defgo.Name]) 1468 } 1469 } 1470 return def 1471 } 1472 if t.Name == "uintptr" { 1473 return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("GoUintptr")} 1474 } 1475 if t.Name == "string" { 1476 // The string data is 1 pointer + 1 (pointer-sized) int. 1477 return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoString")} 1478 } 1479 if t.Name == "error" { 1480 return &Type{Size: 2 * p.PtrSize, Align: p.PtrSize, C: c("GoInterface")} 1481 } 1482 if r, ok := goTypes[t.Name]; ok { 1483 return goTypesFixup(r) 1484 } 1485 error_(e.Pos(), "unrecognized Go type %s", t.Name) 1486 return &Type{Size: 4, Align: 4, C: c("int")} 1487 case *ast.SelectorExpr: 1488 id, ok := t.X.(*ast.Ident) 1489 if ok && id.Name == "unsafe" && t.Sel.Name == "Pointer" { 1490 return &Type{Size: p.PtrSize, Align: p.PtrSize, C: c("void*")} 1491 } 1492 } 1493 error_(e.Pos(), "Go type not supported in export: %s", gofmt(e)) 1494 return &Type{Size: 4, Align: 4, C: c("int")} 1495 } 1496 1497 const gccProlog = ` 1498 #line 1 "cgo-gcc-prolog" 1499 /* 1500 If x and y are not equal, the type will be invalid 1501 (have a negative array count) and an inscrutable error will come 1502 out of the compiler and hopefully mention "name". 1503 */ 1504 #define __cgo_compile_assert_eq(x, y, name) typedef char name[(x-y)*(x-y)*-2UL+1UL]; 1505 1506 /* Check at compile time that the sizes we use match our expectations. */ 1507 #define __cgo_size_assert(t, n) __cgo_compile_assert_eq(sizeof(t), (size_t)n, _cgo_sizeof_##t##_is_not_##n) 1508 1509 __cgo_size_assert(char, 1) 1510 __cgo_size_assert(short, 2) 1511 __cgo_size_assert(int, 4) 1512 typedef long long __cgo_long_long; 1513 __cgo_size_assert(__cgo_long_long, 8) 1514 __cgo_size_assert(float, 4) 1515 __cgo_size_assert(double, 8) 1516 1517 extern char* _cgo_topofstack(void); 1518 1519 /* 1520 We use packed structs, but they are always aligned. 1521 The pragmas and address-of-packed-member are only recognized as warning 1522 groups in clang 4.0+, so ignore unknown pragmas first. 1523 */ 1524 #pragma GCC diagnostic ignored "-Wunknown-pragmas" 1525 #pragma GCC diagnostic ignored "-Wpragmas" 1526 #pragma GCC diagnostic ignored "-Waddress-of-packed-member" 1527 #pragma GCC diagnostic ignored "-Wunknown-warning-option" 1528 #pragma GCC diagnostic ignored "-Wunaligned-access" 1529 1530 #include <errno.h> 1531 #include <string.h> 1532 ` 1533 1534 // Prologue defining TSAN functions in C. 1535 const noTsanProlog = ` 1536 #define CGO_NO_SANITIZE_THREAD 1537 #define _cgo_tsan_acquire() 1538 #define _cgo_tsan_release() 1539 ` 1540 1541 // This must match the TSAN code in runtime/cgo/libcgo.h. 1542 // This is used when the code is built with the C/C++ Thread SANitizer, 1543 // which is not the same as the Go race detector. 1544 // __tsan_acquire tells TSAN that we are acquiring a lock on a variable, 1545 // in this case _cgo_sync. __tsan_release releases the lock. 1546 // (There is no actual lock, we are just telling TSAN that there is.) 1547 // 1548 // When we call from Go to C we call _cgo_tsan_acquire. 1549 // When the C function returns we call _cgo_tsan_release. 1550 // Similarly, when C calls back into Go we call _cgo_tsan_release 1551 // and then call _cgo_tsan_acquire when we return to C. 1552 // These calls tell TSAN that there is a serialization point at the C call. 1553 // 1554 // This is necessary because TSAN, which is a C/C++ tool, can not see 1555 // the synchronization in the Go code. Without these calls, when 1556 // multiple goroutines call into C code, TSAN does not understand 1557 // that the calls are properly synchronized on the Go side. 1558 // 1559 // To be clear, if the calls are not properly synchronized on the Go side, 1560 // we will be hiding races. But when using TSAN on mixed Go C/C++ code 1561 // it is more important to avoid false positives, which reduce confidence 1562 // in the tool, than to avoid false negatives. 1563 const yesTsanProlog = ` 1564 #line 1 "cgo-tsan-prolog" 1565 #define CGO_NO_SANITIZE_THREAD __attribute__ ((no_sanitize_thread)) 1566 1567 long long _cgo_sync __attribute__ ((common)); 1568 1569 extern void __tsan_acquire(void*); 1570 extern void __tsan_release(void*); 1571 1572 __attribute__ ((unused)) 1573 static void _cgo_tsan_acquire() { 1574 __tsan_acquire(&_cgo_sync); 1575 } 1576 1577 __attribute__ ((unused)) 1578 static void _cgo_tsan_release() { 1579 __tsan_release(&_cgo_sync); 1580 } 1581 ` 1582 1583 // Set to yesTsanProlog if we see -fsanitize=thread in the flags for gcc. 1584 var tsanProlog = noTsanProlog 1585 1586 // noMsanProlog is a prologue defining an MSAN function in C. 1587 // This is used when not compiling with -fsanitize=memory. 1588 const noMsanProlog = ` 1589 #define _cgo_msan_write(addr, sz) 1590 ` 1591 1592 // yesMsanProlog is a prologue defining an MSAN function in C. 1593 // This is used when compiling with -fsanitize=memory. 1594 // See the comment above where _cgo_msan_write is called. 1595 const yesMsanProlog = ` 1596 extern void __msan_unpoison(const volatile void *, size_t); 1597 1598 #define _cgo_msan_write(addr, sz) __msan_unpoison((addr), (sz)) 1599 ` 1600 1601 // msanProlog is set to yesMsanProlog if we see -fsanitize=memory in the flags 1602 // for the C compiler. 1603 var msanProlog = noMsanProlog 1604 1605 const builtinProlog = ` 1606 #line 1 "cgo-builtin-prolog" 1607 #include <stddef.h> 1608 1609 /* Define intgo when compiling with GCC. */ 1610 typedef ptrdiff_t intgo; 1611 1612 #define GO_CGO_GOSTRING_TYPEDEF 1613 typedef struct { const char *p; intgo n; } _GoString_; 1614 typedef struct { char *p; intgo n; intgo c; } _GoBytes_; 1615 _GoString_ GoString(char *p); 1616 _GoString_ GoStringN(char *p, int l); 1617 _GoBytes_ GoBytes(void *p, int n); 1618 char *CString(_GoString_); 1619 void *CBytes(_GoBytes_); 1620 void *_CMalloc(size_t); 1621 1622 __attribute__ ((unused)) 1623 static size_t _GoStringLen(_GoString_ s) { return (size_t)s.n; } 1624 1625 __attribute__ ((unused)) 1626 static const char *_GoStringPtr(_GoString_ s) { return s.p; } 1627 ` 1628 1629 const goProlog = ` 1630 //go:linkname _cgo_runtime_cgocall runtime.cgocall 1631 func _cgo_runtime_cgocall(unsafe.Pointer, uintptr) int32 1632 1633 //go:linkname _cgoCheckPointer runtime.cgoCheckPointer 1634 //go:noescape 1635 func _cgoCheckPointer(interface{}, interface{}) 1636 1637 //go:linkname _cgoCheckResult runtime.cgoCheckResult 1638 //go:noescape 1639 func _cgoCheckResult(interface{}) 1640 ` 1641 1642 const gccgoGoProlog = ` 1643 func _cgoCheckPointer(interface{}, interface{}) 1644 1645 func _cgoCheckResult(interface{}) 1646 ` 1647 1648 const goStringDef = ` 1649 //go:linkname _cgo_runtime_gostring runtime.gostring 1650 func _cgo_runtime_gostring(*_Ctype_char) string 1651 1652 // GoString converts the C string p into a Go string. 1653 func _Cfunc_GoString(p *_Ctype_char) string { 1654 return _cgo_runtime_gostring(p) 1655 } 1656 ` 1657 1658 const goStringNDef = ` 1659 //go:linkname _cgo_runtime_gostringn runtime.gostringn 1660 func _cgo_runtime_gostringn(*_Ctype_char, int) string 1661 1662 // GoStringN converts the C data p with explicit length l to a Go string. 1663 func _Cfunc_GoStringN(p *_Ctype_char, l _Ctype_int) string { 1664 return _cgo_runtime_gostringn(p, int(l)) 1665 } 1666 ` 1667 1668 const goBytesDef = ` 1669 //go:linkname _cgo_runtime_gobytes runtime.gobytes 1670 func _cgo_runtime_gobytes(unsafe.Pointer, int) []byte 1671 1672 // GoBytes converts the C data p with explicit length l to a Go []byte. 1673 func _Cfunc_GoBytes(p unsafe.Pointer, l _Ctype_int) []byte { 1674 return _cgo_runtime_gobytes(p, int(l)) 1675 } 1676 ` 1677 1678 const cStringDef = ` 1679 // CString converts the Go string s to a C string. 1680 // 1681 // The C string is allocated in the C heap using malloc. 1682 // It is the caller's responsibility to arrange for it to be 1683 // freed, such as by calling C.free (be sure to include stdlib.h 1684 // if C.free is needed). 1685 func _Cfunc_CString(s string) *_Ctype_char { 1686 if len(s)+1 <= 0 { 1687 panic("string too large") 1688 } 1689 p := _cgo_cmalloc(uint64(len(s)+1)) 1690 sliceHeader := struct { 1691 p unsafe.Pointer 1692 len int 1693 cap int 1694 }{p, len(s)+1, len(s)+1} 1695 b := *(*[]byte)(unsafe.Pointer(&sliceHeader)) 1696 copy(b, s) 1697 b[len(s)] = 0 1698 return (*_Ctype_char)(p) 1699 } 1700 ` 1701 1702 const cBytesDef = ` 1703 // CBytes converts the Go []byte slice b to a C array. 1704 // 1705 // The C array is allocated in the C heap using malloc. 1706 // It is the caller's responsibility to arrange for it to be 1707 // freed, such as by calling C.free (be sure to include stdlib.h 1708 // if C.free is needed). 1709 func _Cfunc_CBytes(b []byte) unsafe.Pointer { 1710 p := _cgo_cmalloc(uint64(len(b))) 1711 sliceHeader := struct { 1712 p unsafe.Pointer 1713 len int 1714 cap int 1715 }{p, len(b), len(b)} 1716 s := *(*[]byte)(unsafe.Pointer(&sliceHeader)) 1717 copy(s, b) 1718 return p 1719 } 1720 ` 1721 1722 const cMallocDef = ` 1723 func _Cfunc__CMalloc(n _Ctype_size_t) unsafe.Pointer { 1724 return _cgo_cmalloc(uint64(n)) 1725 } 1726 ` 1727 1728 var builtinDefs = map[string]string{ 1729 "GoString": goStringDef, 1730 "GoStringN": goStringNDef, 1731 "GoBytes": goBytesDef, 1732 "CString": cStringDef, 1733 "CBytes": cBytesDef, 1734 "_CMalloc": cMallocDef, 1735 } 1736 1737 // Definitions for C.malloc in Go and in C. We define it ourselves 1738 // since we call it from functions we define, such as C.CString. 1739 // Also, we have historically ensured that C.malloc does not return 1740 // nil even for an allocation of 0. 1741 1742 const cMallocDefGo = ` 1743 //go:cgo_import_static _cgoPREFIX_Cfunc__Cmalloc 1744 //go:linkname __cgofn__cgoPREFIX_Cfunc__Cmalloc _cgoPREFIX_Cfunc__Cmalloc 1745 var __cgofn__cgoPREFIX_Cfunc__Cmalloc byte 1746 var _cgoPREFIX_Cfunc__Cmalloc = unsafe.Pointer(&__cgofn__cgoPREFIX_Cfunc__Cmalloc) 1747 1748 //go:linkname runtime_throw runtime.throw 1749 func runtime_throw(string) 1750 1751 //go:cgo_unsafe_args 1752 func _cgo_cmalloc(p0 uint64) (r1 unsafe.Pointer) { 1753 _cgo_runtime_cgocall(_cgoPREFIX_Cfunc__Cmalloc, uintptr(unsafe.Pointer(&p0))) 1754 if r1 == nil { 1755 runtime_throw("runtime: C malloc failed") 1756 } 1757 return 1758 } 1759 ` 1760 1761 // cMallocDefC defines the C version of C.malloc for the gc compiler. 1762 // It is defined here because C.CString and friends need a definition. 1763 // We define it by hand, rather than simply inventing a reference to 1764 // C.malloc, because <stdlib.h> may not have been included. 1765 // This is approximately what writeOutputFunc would generate, but 1766 // skips the cgo_topofstack code (which is only needed if the C code 1767 // calls back into Go). This also avoids returning nil for an 1768 // allocation of 0 bytes. 1769 const cMallocDefC = ` 1770 CGO_NO_SANITIZE_THREAD 1771 void _cgoPREFIX_Cfunc__Cmalloc(void *v) { 1772 struct { 1773 unsigned long long p0; 1774 void *r1; 1775 } PACKED *a = v; 1776 void *ret; 1777 _cgo_tsan_acquire(); 1778 ret = malloc(a->p0); 1779 if (ret == 0 && a->p0 == 0) { 1780 ret = malloc(1); 1781 } 1782 a->r1 = ret; 1783 _cgo_tsan_release(); 1784 } 1785 ` 1786 1787 func (p *Package) cPrologGccgo() string { 1788 r := strings.NewReplacer( 1789 "PREFIX", cPrefix, 1790 "GCCGOSYMBOLPREF", p.gccgoSymbolPrefix(), 1791 "_cgoCheckPointer", gccgoToSymbol("_cgoCheckPointer"), 1792 "_cgoCheckResult", gccgoToSymbol("_cgoCheckResult")) 1793 return r.Replace(cPrologGccgo) 1794 } 1795 1796 const cPrologGccgo = ` 1797 #line 1 "cgo-c-prolog-gccgo" 1798 #include <stdint.h> 1799 #include <stdlib.h> 1800 #include <string.h> 1801 1802 typedef unsigned char byte; 1803 typedef intptr_t intgo; 1804 1805 struct __go_string { 1806 const unsigned char *__data; 1807 intgo __length; 1808 }; 1809 1810 typedef struct __go_open_array { 1811 void* __values; 1812 intgo __count; 1813 intgo __capacity; 1814 } Slice; 1815 1816 struct __go_string __go_byte_array_to_string(const void* p, intgo len); 1817 struct __go_open_array __go_string_to_byte_array (struct __go_string str); 1818 1819 extern void runtime_throw(const char *); 1820 1821 const char *_cgoPREFIX_Cfunc_CString(struct __go_string s) { 1822 char *p = malloc(s.__length+1); 1823 if(p == NULL) 1824 runtime_throw("runtime: C malloc failed"); 1825 memmove(p, s.__data, s.__length); 1826 p[s.__length] = 0; 1827 return p; 1828 } 1829 1830 void *_cgoPREFIX_Cfunc_CBytes(struct __go_open_array b) { 1831 char *p = malloc(b.__count); 1832 if(p == NULL) 1833 runtime_throw("runtime: C malloc failed"); 1834 memmove(p, b.__values, b.__count); 1835 return p; 1836 } 1837 1838 struct __go_string _cgoPREFIX_Cfunc_GoString(char *p) { 1839 intgo len = (p != NULL) ? strlen(p) : 0; 1840 return __go_byte_array_to_string(p, len); 1841 } 1842 1843 struct __go_string _cgoPREFIX_Cfunc_GoStringN(char *p, int32_t n) { 1844 return __go_byte_array_to_string(p, n); 1845 } 1846 1847 Slice _cgoPREFIX_Cfunc_GoBytes(char *p, int32_t n) { 1848 struct __go_string s = { (const unsigned char *)p, n }; 1849 return __go_string_to_byte_array(s); 1850 } 1851 1852 void *_cgoPREFIX_Cfunc__CMalloc(size_t n) { 1853 void *p = malloc(n); 1854 if(p == NULL && n == 0) 1855 p = malloc(1); 1856 if(p == NULL) 1857 runtime_throw("runtime: C malloc failed"); 1858 return p; 1859 } 1860 1861 struct __go_type_descriptor; 1862 typedef struct __go_empty_interface { 1863 const struct __go_type_descriptor *__type_descriptor; 1864 void *__object; 1865 } Eface; 1866 1867 extern void runtimeCgoCheckPointer(Eface, Eface) 1868 __asm__("runtime.cgoCheckPointer") 1869 __attribute__((weak)); 1870 1871 extern void localCgoCheckPointer(Eface, Eface) 1872 __asm__("GCCGOSYMBOLPREF._cgoCheckPointer"); 1873 1874 void localCgoCheckPointer(Eface ptr, Eface arg) { 1875 if(runtimeCgoCheckPointer) { 1876 runtimeCgoCheckPointer(ptr, arg); 1877 } 1878 } 1879 1880 extern void runtimeCgoCheckResult(Eface) 1881 __asm__("runtime.cgoCheckResult") 1882 __attribute__((weak)); 1883 1884 extern void localCgoCheckResult(Eface) 1885 __asm__("GCCGOSYMBOLPREF._cgoCheckResult"); 1886 1887 void localCgoCheckResult(Eface val) { 1888 if(runtimeCgoCheckResult) { 1889 runtimeCgoCheckResult(val); 1890 } 1891 } 1892 ` 1893 1894 // builtinExportProlog is a shorter version of builtinProlog, 1895 // to be put into the _cgo_export.h file. 1896 // For historical reasons we can't use builtinProlog in _cgo_export.h, 1897 // because _cgo_export.h defines GoString as a struct while builtinProlog 1898 // defines it as a function. We don't change this to avoid unnecessarily 1899 // breaking existing code. 1900 // The test of GO_CGO_GOSTRING_TYPEDEF avoids a duplicate definition 1901 // error if a Go file with a cgo comment #include's the export header 1902 // generated by a different package. 1903 const builtinExportProlog = ` 1904 #line 1 "cgo-builtin-export-prolog" 1905 1906 #include <stddef.h> 1907 1908 #ifndef GO_CGO_EXPORT_PROLOGUE_H 1909 #define GO_CGO_EXPORT_PROLOGUE_H 1910 1911 #ifndef GO_CGO_GOSTRING_TYPEDEF 1912 typedef struct { const char *p; ptrdiff_t n; } _GoString_; 1913 #endif 1914 1915 #endif 1916 ` 1917 1918 func (p *Package) gccExportHeaderProlog() string { 1919 return strings.Replace(gccExportHeaderProlog, "GOINTBITS", fmt.Sprint(8*p.IntSize), -1) 1920 } 1921 1922 // gccExportHeaderProlog is written to the exported header, after the 1923 // import "C" comment preamble but before the generated declarations 1924 // of exported functions. This permits the generated declarations to 1925 // use the type names that appear in goTypes, above. 1926 // 1927 // The test of GO_CGO_GOSTRING_TYPEDEF avoids a duplicate definition 1928 // error if a Go file with a cgo comment #include's the export header 1929 // generated by a different package. Unfortunately GoString means two 1930 // different things: in this prolog it means a C name for the Go type, 1931 // while in the prolog written into the start of the C code generated 1932 // from a cgo-using Go file it means the C.GoString function. There is 1933 // no way to resolve this conflict, but it also doesn't make much 1934 // difference, as Go code never wants to refer to the latter meaning. 1935 const gccExportHeaderProlog = ` 1936 /* Start of boilerplate cgo prologue. */ 1937 #line 1 "cgo-gcc-export-header-prolog" 1938 1939 #ifndef GO_CGO_PROLOGUE_H 1940 #define GO_CGO_PROLOGUE_H 1941 1942 typedef signed char GoInt8; 1943 typedef unsigned char GoUint8; 1944 typedef short GoInt16; 1945 typedef unsigned short GoUint16; 1946 typedef int GoInt32; 1947 typedef unsigned int GoUint32; 1948 typedef long long GoInt64; 1949 typedef unsigned long long GoUint64; 1950 typedef GoIntGOINTBITS GoInt; 1951 typedef GoUintGOINTBITS GoUint; 1952 typedef size_t GoUintptr; 1953 typedef float GoFloat32; 1954 typedef double GoFloat64; 1955 #ifdef _MSC_VER 1956 #include <complex.h> 1957 typedef _Fcomplex GoComplex64; 1958 typedef _Dcomplex GoComplex128; 1959 #else 1960 typedef float _Complex GoComplex64; 1961 typedef double _Complex GoComplex128; 1962 #endif 1963 1964 /* 1965 static assertion to make sure the file is being used on architecture 1966 at least with matching size of GoInt. 1967 */ 1968 typedef char _check_for_GOINTBITS_bit_pointer_matching_GoInt[sizeof(void*)==GOINTBITS/8 ? 1:-1]; 1969 1970 #ifndef GO_CGO_GOSTRING_TYPEDEF 1971 typedef _GoString_ GoString; 1972 #endif 1973 typedef void *GoMap; 1974 typedef void *GoChan; 1975 typedef struct { void *t; void *v; } GoInterface; 1976 typedef struct { void *data; GoInt len; GoInt cap; } GoSlice; 1977 1978 #endif 1979 1980 /* End of boilerplate cgo prologue. */ 1981 1982 #ifdef __cplusplus 1983 extern "C" { 1984 #endif 1985 ` 1986 1987 // gccExportHeaderEpilog goes at the end of the generated header file. 1988 const gccExportHeaderEpilog = ` 1989 #ifdef __cplusplus 1990 } 1991 #endif 1992 ` 1993 1994 // gccgoExportFileProlog is written to the _cgo_export.c file when 1995 // using gccgo. 1996 // We use weak declarations, and test the addresses, so that this code 1997 // works with older versions of gccgo. 1998 const gccgoExportFileProlog = ` 1999 #line 1 "cgo-gccgo-export-file-prolog" 2000 extern _Bool runtime_iscgo __attribute__ ((weak)); 2001 2002 static void GoInit(void) __attribute__ ((constructor)); 2003 static void GoInit(void) { 2004 if(&runtime_iscgo) 2005 runtime_iscgo = 1; 2006 } 2007 2008 extern size_t _cgo_wait_runtime_init_done(void) __attribute__ ((weak)); 2009 `