github.com/bir3/gocompiler@v0.9.2202/src/cmd/compile/internal/noder/reader.go (about)

     1  // Copyright 2021 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package noder
     6  
     7  import (
     8  	"encoding/hex"
     9  	"fmt"
    10  	"github.com/bir3/gocompiler/src/go/constant"
    11  	"github.com/bir3/gocompiler/src/internal/buildcfg"
    12  	"github.com/bir3/gocompiler/src/internal/pkgbits"
    13  	"path/filepath"
    14  	"strings"
    15  
    16  	"github.com/bir3/gocompiler/src/cmd/compile/internal/base"
    17  	"github.com/bir3/gocompiler/src/cmd/compile/internal/dwarfgen"
    18  	"github.com/bir3/gocompiler/src/cmd/compile/internal/inline"
    19  	"github.com/bir3/gocompiler/src/cmd/compile/internal/inline/interleaved"
    20  	"github.com/bir3/gocompiler/src/cmd/compile/internal/ir"
    21  	"github.com/bir3/gocompiler/src/cmd/compile/internal/objw"
    22  	"github.com/bir3/gocompiler/src/cmd/compile/internal/reflectdata"
    23  	"github.com/bir3/gocompiler/src/cmd/compile/internal/staticinit"
    24  	"github.com/bir3/gocompiler/src/cmd/compile/internal/typecheck"
    25  	"github.com/bir3/gocompiler/src/cmd/compile/internal/types"
    26  	"github.com/bir3/gocompiler/src/cmd/internal/notsha256"
    27  	"github.com/bir3/gocompiler/src/cmd/internal/obj"
    28  	"github.com/bir3/gocompiler/src/cmd/internal/objabi"
    29  	"github.com/bir3/gocompiler/src/cmd/internal/src"
    30  )
    31  
    32  // This file implements cmd/compile backend's reader for the Unified
    33  // IR export data.
    34  
    35  // A pkgReader reads Unified IR export data.
    36  type pkgReader struct {
    37  	pkgbits.PkgDecoder
    38  
    39  	// Indices for encoded things; lazily populated as needed.
    40  	//
    41  	// Note: Objects (i.e., ir.Names) are lazily instantiated by
    42  	// populating their types.Sym.Def; see objReader below.
    43  
    44  	posBases	[]*src.PosBase
    45  	pkgs		[]*types.Pkg
    46  	typs		[]*types.Type
    47  
    48  	// offset for rewriting the given (absolute!) index into the output,
    49  	// but bitwise inverted so we can detect if we're missing the entry
    50  	// or not.
    51  	newindex	[]pkgbits.Index
    52  }
    53  
    54  func newPkgReader(pr pkgbits.PkgDecoder) *pkgReader {
    55  	return &pkgReader{
    56  		PkgDecoder:	pr,
    57  
    58  		posBases:	make([]*src.PosBase, pr.NumElems(pkgbits.RelocPosBase)),
    59  		pkgs:		make([]*types.Pkg, pr.NumElems(pkgbits.RelocPkg)),
    60  		typs:		make([]*types.Type, pr.NumElems(pkgbits.RelocType)),
    61  
    62  		newindex:	make([]pkgbits.Index, pr.TotalElems()),
    63  	}
    64  }
    65  
    66  // A pkgReaderIndex compactly identifies an index (and its
    67  // corresponding dictionary) within a package's export data.
    68  type pkgReaderIndex struct {
    69  	pr		*pkgReader
    70  	idx		pkgbits.Index
    71  	dict		*readerDict
    72  	methodSym	*types.Sym
    73  
    74  	synthetic	func(pos src.XPos, r *reader)
    75  }
    76  
    77  func (pri pkgReaderIndex) asReader(k pkgbits.RelocKind, marker pkgbits.SyncMarker) *reader {
    78  	if pri.synthetic != nil {
    79  		return &reader{synthetic: pri.synthetic}
    80  	}
    81  
    82  	r := pri.pr.newReader(k, pri.idx, marker)
    83  	r.dict = pri.dict
    84  	r.methodSym = pri.methodSym
    85  	return r
    86  }
    87  
    88  func (pr *pkgReader) newReader(k pkgbits.RelocKind, idx pkgbits.Index, marker pkgbits.SyncMarker) *reader {
    89  	return &reader{
    90  		Decoder:	pr.NewDecoder(k, idx, marker),
    91  		p:		pr,
    92  	}
    93  }
    94  
    95  // A reader provides APIs for reading an individual element.
    96  type reader struct {
    97  	pkgbits.Decoder
    98  
    99  	p	*pkgReader
   100  
   101  	dict	*readerDict
   102  
   103  	// TODO(mdempsky): The state below is all specific to reading
   104  	// function bodies. It probably makes sense to split it out
   105  	// separately so that it doesn't take up space in every reader
   106  	// instance.
   107  
   108  	curfn		*ir.Func
   109  	locals		[]*ir.Name
   110  	closureVars	[]*ir.Name
   111  
   112  	// funarghack is used during inlining to suppress setting
   113  	// Field.Nname to the inlined copies of the parameters. This is
   114  	// necessary because we reuse the same types.Type as the original
   115  	// function, and most of the compiler still relies on field.Nname to
   116  	// find parameters/results.
   117  	funarghack	bool
   118  
   119  	// methodSym is the name of method's name, if reading a method.
   120  	// It's nil if reading a normal function or closure body.
   121  	methodSym	*types.Sym
   122  
   123  	// dictParam is the .dict param, if any.
   124  	dictParam	*ir.Name
   125  
   126  	// synthetic is a callback function to construct a synthetic
   127  	// function body. It's used for creating the bodies of function
   128  	// literals used to curry arguments to shaped functions.
   129  	synthetic	func(pos src.XPos, r *reader)
   130  
   131  	// scopeVars is a stack tracking the number of variables declared in
   132  	// the current function at the moment each open scope was opened.
   133  	scopeVars		[]int
   134  	marker			dwarfgen.ScopeMarker
   135  	lastCloseScopePos	src.XPos
   136  
   137  	// === details for handling inline body expansion ===
   138  
   139  	// If we're reading in a function body because of inlining, this is
   140  	// the call that we're inlining for.
   141  	inlCaller	*ir.Func
   142  	inlCall		*ir.CallExpr
   143  	inlFunc		*ir.Func
   144  	inlTreeIndex	int
   145  	inlPosBases	map[*src.PosBase]*src.PosBase
   146  
   147  	// suppressInlPos tracks whether position base rewriting for
   148  	// inlining should be suppressed. See funcLit.
   149  	suppressInlPos	int
   150  
   151  	delayResults	bool
   152  
   153  	// Label to return to.
   154  	retlabel	*types.Sym
   155  }
   156  
   157  // A readerDict represents an instantiated "compile-time dictionary,"
   158  // used for resolving any derived types needed for instantiating a
   159  // generic object.
   160  //
   161  // A compile-time dictionary can either be "shaped" or "non-shaped."
   162  // Shaped compile-time dictionaries are only used for instantiating
   163  // shaped type definitions and function bodies, while non-shaped
   164  // compile-time dictionaries are used for instantiating runtime
   165  // dictionaries.
   166  type readerDict struct {
   167  	shaped	bool	// whether this is a shaped dictionary
   168  
   169  	// baseSym is the symbol for the object this dictionary belongs to.
   170  	// If the object is an instantiated function or defined type, then
   171  	// baseSym is the mangled symbol, including any type arguments.
   172  	baseSym	*types.Sym
   173  
   174  	// For non-shaped dictionaries, shapedObj is a reference to the
   175  	// corresponding shaped object (always a function or defined type).
   176  	shapedObj	*ir.Name
   177  
   178  	// targs holds the implicit and explicit type arguments in use for
   179  	// reading the current object. For example:
   180  	//
   181  	//	func F[T any]() {
   182  	//		type X[U any] struct { t T; u U }
   183  	//		var _ X[string]
   184  	//	}
   185  	//
   186  	//	var _ = F[int]
   187  	//
   188  	// While instantiating F[int], we need to in turn instantiate
   189  	// X[string]. [int] and [string] are explicit type arguments for F
   190  	// and X, respectively; but [int] is also the implicit type
   191  	// arguments for X.
   192  	//
   193  	// (As an analogy to function literals, explicits are the function
   194  	// literal's formal parameters, while implicits are variables
   195  	// captured by the function literal.)
   196  	targs	[]*types.Type
   197  
   198  	// implicits counts how many of types within targs are implicit type
   199  	// arguments; the rest are explicit.
   200  	implicits	int
   201  
   202  	derived		[]derivedInfo	// reloc index of the derived type's descriptor
   203  	derivedTypes	[]*types.Type	// slice of previously computed derived types
   204  
   205  	// These slices correspond to entries in the runtime dictionary.
   206  	typeParamMethodExprs	[]readerMethodExprInfo
   207  	subdicts		[]objInfo
   208  	rtypes			[]typeInfo
   209  	itabs			[]itabInfo
   210  }
   211  
   212  type readerMethodExprInfo struct {
   213  	typeParamIdx	int
   214  	method		*types.Sym
   215  }
   216  
   217  func setType(n ir.Node, typ *types.Type) {
   218  	n.SetType(typ)
   219  	n.SetTypecheck(1)
   220  }
   221  
   222  func setValue(name *ir.Name, val constant.Value) {
   223  	name.SetVal(val)
   224  	name.Defn = nil
   225  }
   226  
   227  // @@@ Positions
   228  
   229  // pos reads a position from the bitstream.
   230  func (r *reader) pos() src.XPos {
   231  	return base.Ctxt.PosTable.XPos(r.pos0())
   232  }
   233  
   234  // origPos reads a position from the bitstream, and returns both the
   235  // original raw position and an inlining-adjusted position.
   236  func (r *reader) origPos() (origPos, inlPos src.XPos) {
   237  	r.suppressInlPos++
   238  	origPos = r.pos()
   239  	r.suppressInlPos--
   240  	inlPos = r.inlPos(origPos)
   241  	return
   242  }
   243  
   244  func (r *reader) pos0() src.Pos {
   245  	r.Sync(pkgbits.SyncPos)
   246  	if !r.Bool() {
   247  		return src.NoPos
   248  	}
   249  
   250  	posBase := r.posBase()
   251  	line := r.Uint()
   252  	col := r.Uint()
   253  	return src.MakePos(posBase, line, col)
   254  }
   255  
   256  // posBase reads a position base from the bitstream.
   257  func (r *reader) posBase() *src.PosBase {
   258  	return r.inlPosBase(r.p.posBaseIdx(r.Reloc(pkgbits.RelocPosBase)))
   259  }
   260  
   261  // posBaseIdx returns the specified position base, reading it first if
   262  // needed.
   263  func (pr *pkgReader) posBaseIdx(idx pkgbits.Index) *src.PosBase {
   264  	if b := pr.posBases[idx]; b != nil {
   265  		return b
   266  	}
   267  
   268  	r := pr.newReader(pkgbits.RelocPosBase, idx, pkgbits.SyncPosBase)
   269  	var b *src.PosBase
   270  
   271  	absFilename := r.String()
   272  	filename := absFilename
   273  
   274  	// For build artifact stability, the export data format only
   275  	// contains the "absolute" filename as returned by objabi.AbsFile.
   276  	// However, some tests (e.g., test/run.go's asmcheck tests) expect
   277  	// to see the full, original filename printed out. Re-expanding
   278  	// "$GOROOT" to buildcfg.GOROOT is a close-enough approximation to
   279  	// satisfy this.
   280  	//
   281  	// The export data format only ever uses slash paths
   282  	// (for cross-operating-system reproducible builds),
   283  	// but error messages need to use native paths (backslash on Windows)
   284  	// as if they had been specified on the command line.
   285  	// (The go command always passes native paths to the compiler.)
   286  	const dollarGOROOT = "$GOROOT"
   287  	if buildcfg.GOROOT != "" && strings.HasPrefix(filename, dollarGOROOT) {
   288  		filename = filepath.FromSlash(buildcfg.GOROOT + filename[len(dollarGOROOT):])
   289  	}
   290  
   291  	if r.Bool() {
   292  		b = src.NewFileBase(filename, absFilename)
   293  	} else {
   294  		pos := r.pos0()
   295  		line := r.Uint()
   296  		col := r.Uint()
   297  		b = src.NewLinePragmaBase(pos, filename, absFilename, line, col)
   298  	}
   299  
   300  	pr.posBases[idx] = b
   301  	return b
   302  }
   303  
   304  // inlPosBase returns the inlining-adjusted src.PosBase corresponding
   305  // to oldBase, which must be a non-inlined position. When not
   306  // inlining, this is just oldBase.
   307  func (r *reader) inlPosBase(oldBase *src.PosBase) *src.PosBase {
   308  	if index := oldBase.InliningIndex(); index >= 0 {
   309  		base.Fatalf("oldBase %v already has inlining index %v", oldBase, index)
   310  	}
   311  
   312  	if r.inlCall == nil || r.suppressInlPos != 0 {
   313  		return oldBase
   314  	}
   315  
   316  	if newBase, ok := r.inlPosBases[oldBase]; ok {
   317  		return newBase
   318  	}
   319  
   320  	newBase := src.NewInliningBase(oldBase, r.inlTreeIndex)
   321  	r.inlPosBases[oldBase] = newBase
   322  	return newBase
   323  }
   324  
   325  // inlPos returns the inlining-adjusted src.XPos corresponding to
   326  // xpos, which must be a non-inlined position. When not inlining, this
   327  // is just xpos.
   328  func (r *reader) inlPos(xpos src.XPos) src.XPos {
   329  	pos := base.Ctxt.PosTable.Pos(xpos)
   330  	pos.SetBase(r.inlPosBase(pos.Base()))
   331  	return base.Ctxt.PosTable.XPos(pos)
   332  }
   333  
   334  // @@@ Packages
   335  
   336  // pkg reads a package reference from the bitstream.
   337  func (r *reader) pkg() *types.Pkg {
   338  	r.Sync(pkgbits.SyncPkg)
   339  	return r.p.pkgIdx(r.Reloc(pkgbits.RelocPkg))
   340  }
   341  
   342  // pkgIdx returns the specified package from the export data, reading
   343  // it first if needed.
   344  func (pr *pkgReader) pkgIdx(idx pkgbits.Index) *types.Pkg {
   345  	if pkg := pr.pkgs[idx]; pkg != nil {
   346  		return pkg
   347  	}
   348  
   349  	pkg := pr.newReader(pkgbits.RelocPkg, idx, pkgbits.SyncPkgDef).doPkg()
   350  	pr.pkgs[idx] = pkg
   351  	return pkg
   352  }
   353  
   354  // doPkg reads a package definition from the bitstream.
   355  func (r *reader) doPkg() *types.Pkg {
   356  	path := r.String()
   357  	switch path {
   358  	case "":
   359  		path = r.p.PkgPath()
   360  	case "builtin":
   361  		return types.BuiltinPkg
   362  	case "unsafe":
   363  		return types.UnsafePkg
   364  	}
   365  
   366  	name := r.String()
   367  
   368  	pkg := types.NewPkg(path, "")
   369  
   370  	if pkg.Name == "" {
   371  		pkg.Name = name
   372  	} else {
   373  		base.Assertf(pkg.Name == name, "package %q has name %q, but want %q", pkg.Path, pkg.Name, name)
   374  	}
   375  
   376  	return pkg
   377  }
   378  
   379  // @@@ Types
   380  
   381  func (r *reader) typ() *types.Type {
   382  	return r.typWrapped(true)
   383  }
   384  
   385  // typWrapped is like typ, but allows suppressing generation of
   386  // unnecessary wrappers as a compile-time optimization.
   387  func (r *reader) typWrapped(wrapped bool) *types.Type {
   388  	return r.p.typIdx(r.typInfo(), r.dict, wrapped)
   389  }
   390  
   391  func (r *reader) typInfo() typeInfo {
   392  	r.Sync(pkgbits.SyncType)
   393  	if r.Bool() {
   394  		return typeInfo{idx: pkgbits.Index(r.Len()), derived: true}
   395  	}
   396  	return typeInfo{idx: r.Reloc(pkgbits.RelocType), derived: false}
   397  }
   398  
   399  // typListIdx returns a list of the specified types, resolving derived
   400  // types within the given dictionary.
   401  func (pr *pkgReader) typListIdx(infos []typeInfo, dict *readerDict) []*types.Type {
   402  	typs := make([]*types.Type, len(infos))
   403  	for i, info := range infos {
   404  		typs[i] = pr.typIdx(info, dict, true)
   405  	}
   406  	return typs
   407  }
   408  
   409  // typIdx returns the specified type. If info specifies a derived
   410  // type, it's resolved within the given dictionary. If wrapped is
   411  // true, then method wrappers will be generated, if appropriate.
   412  func (pr *pkgReader) typIdx(info typeInfo, dict *readerDict, wrapped bool) *types.Type {
   413  	idx := info.idx
   414  	var where **types.Type
   415  	if info.derived {
   416  		where = &dict.derivedTypes[idx]
   417  		idx = dict.derived[idx].idx
   418  	} else {
   419  		where = &pr.typs[idx]
   420  	}
   421  
   422  	if typ := *where; typ != nil {
   423  		return typ
   424  	}
   425  
   426  	r := pr.newReader(pkgbits.RelocType, idx, pkgbits.SyncTypeIdx)
   427  	r.dict = dict
   428  
   429  	typ := r.doTyp()
   430  	assert(typ != nil)
   431  
   432  	// For recursive type declarations involving interfaces and aliases,
   433  	// above r.doTyp() call may have already set pr.typs[idx], so just
   434  	// double check and return the type.
   435  	//
   436  	// Example:
   437  	//
   438  	//     type F = func(I)
   439  	//
   440  	//     type I interface {
   441  	//         m(F)
   442  	//     }
   443  	//
   444  	// The writer writes data types in following index order:
   445  	//
   446  	//     0: func(I)
   447  	//     1: I
   448  	//     2: interface{m(func(I))}
   449  	//
   450  	// The reader resolves it in following index order:
   451  	//
   452  	//     0 -> 1 -> 2 -> 0 -> 1
   453  	//
   454  	// and can divide in logically 2 steps:
   455  	//
   456  	//  - 0 -> 1     : first time the reader reach type I,
   457  	//                 it creates new named type with symbol I.
   458  	//
   459  	//  - 2 -> 0 -> 1: the reader ends up reaching symbol I again,
   460  	//                 now the symbol I was setup in above step, so
   461  	//                 the reader just return the named type.
   462  	//
   463  	// Now, the functions called return, the pr.typs looks like below:
   464  	//
   465  	//  - 0 -> 1 -> 2 -> 0 : [<T> I <T>]
   466  	//  - 0 -> 1 -> 2      : [func(I) I <T>]
   467  	//  - 0 -> 1           : [func(I) I interface { "".m(func("".I)) }]
   468  	//
   469  	// The idx 1, corresponding with type I was resolved successfully
   470  	// after r.doTyp() call.
   471  
   472  	if prev := *where; prev != nil {
   473  		return prev
   474  	}
   475  
   476  	if wrapped {
   477  		// Only cache if we're adding wrappers, so that other callers that
   478  		// find a cached type know it was wrapped.
   479  		*where = typ
   480  
   481  		r.needWrapper(typ)
   482  	}
   483  
   484  	if !typ.IsUntyped() {
   485  		types.CheckSize(typ)
   486  	}
   487  
   488  	return typ
   489  }
   490  
   491  func (r *reader) doTyp() *types.Type {
   492  	switch tag := pkgbits.CodeType(r.Code(pkgbits.SyncType)); tag {
   493  	default:
   494  		panic(fmt.Sprintf("unexpected type: %v", tag))
   495  
   496  	case pkgbits.TypeBasic:
   497  		return *basics[r.Len()]
   498  
   499  	case pkgbits.TypeNamed:
   500  		obj := r.obj()
   501  		assert(obj.Op() == ir.OTYPE)
   502  		return obj.Type()
   503  
   504  	case pkgbits.TypeTypeParam:
   505  		return r.dict.targs[r.Len()]
   506  
   507  	case pkgbits.TypeArray:
   508  		len := int64(r.Uint64())
   509  		return types.NewArray(r.typ(), len)
   510  	case pkgbits.TypeChan:
   511  		dir := dirs[r.Len()]
   512  		return types.NewChan(r.typ(), dir)
   513  	case pkgbits.TypeMap:
   514  		return types.NewMap(r.typ(), r.typ())
   515  	case pkgbits.TypePointer:
   516  		return types.NewPtr(r.typ())
   517  	case pkgbits.TypeSignature:
   518  		return r.signature(nil)
   519  	case pkgbits.TypeSlice:
   520  		return types.NewSlice(r.typ())
   521  	case pkgbits.TypeStruct:
   522  		return r.structType()
   523  	case pkgbits.TypeInterface:
   524  		return r.interfaceType()
   525  	case pkgbits.TypeUnion:
   526  		return r.unionType()
   527  	}
   528  }
   529  
   530  func (r *reader) unionType() *types.Type {
   531  	// In the types1 universe, we only need to handle value types.
   532  	// Impure interfaces (i.e., interfaces with non-trivial type sets
   533  	// like "int | string") can only appear as type parameter bounds,
   534  	// and this is enforced by the types2 type checker.
   535  	//
   536  	// However, type unions can still appear in pure interfaces if the
   537  	// type union is equivalent to "any". E.g., typeparam/issue52124.go
   538  	// declares variables with the type "interface { any | int }".
   539  	//
   540  	// To avoid needing to represent type unions in types1 (since we
   541  	// don't have any uses for that today anyway), we simply fold them
   542  	// to "any".
   543  
   544  	// TODO(mdempsky): Restore consistency check to make sure folding to
   545  	// "any" is safe. This is unfortunately tricky, because a pure
   546  	// interface can reference impure interfaces too, including
   547  	// cyclically (#60117).
   548  	if false {
   549  		pure := false
   550  		for i, n := 0, r.Len(); i < n; i++ {
   551  			_ = r.Bool()	// tilde
   552  			term := r.typ()
   553  			if term.IsEmptyInterface() {
   554  				pure = true
   555  			}
   556  		}
   557  		if !pure {
   558  			base.Fatalf("impure type set used in value type")
   559  		}
   560  	}
   561  
   562  	return types.Types[types.TINTER]
   563  }
   564  
   565  func (r *reader) interfaceType() *types.Type {
   566  	nmethods, nembeddeds := r.Len(), r.Len()
   567  	implicit := nmethods == 0 && nembeddeds == 1 && r.Bool()
   568  	assert(!implicit)	// implicit interfaces only appear in constraints
   569  
   570  	fields := make([]*types.Field, nmethods+nembeddeds)
   571  	methods, embeddeds := fields[:nmethods], fields[nmethods:]
   572  
   573  	for i := range methods {
   574  		methods[i] = types.NewField(r.pos(), r.selector(), r.signature(types.FakeRecv()))
   575  	}
   576  	for i := range embeddeds {
   577  		embeddeds[i] = types.NewField(src.NoXPos, nil, r.typ())
   578  	}
   579  
   580  	if len(fields) == 0 {
   581  		return types.Types[types.TINTER]	// empty interface
   582  	}
   583  	return types.NewInterface(fields)
   584  }
   585  
   586  func (r *reader) structType() *types.Type {
   587  	fields := make([]*types.Field, r.Len())
   588  	for i := range fields {
   589  		field := types.NewField(r.pos(), r.selector(), r.typ())
   590  		field.Note = r.String()
   591  		if r.Bool() {
   592  			field.Embedded = 1
   593  		}
   594  		fields[i] = field
   595  	}
   596  	return types.NewStruct(fields)
   597  }
   598  
   599  func (r *reader) signature(recv *types.Field) *types.Type {
   600  	r.Sync(pkgbits.SyncSignature)
   601  
   602  	params := r.params()
   603  	results := r.params()
   604  	if r.Bool() {	// variadic
   605  		params[len(params)-1].SetIsDDD(true)
   606  	}
   607  
   608  	return types.NewSignature(recv, params, results)
   609  }
   610  
   611  func (r *reader) params() []*types.Field {
   612  	r.Sync(pkgbits.SyncParams)
   613  	params := make([]*types.Field, r.Len())
   614  	for i := range params {
   615  		params[i] = r.param()
   616  	}
   617  	return params
   618  }
   619  
   620  func (r *reader) param() *types.Field {
   621  	r.Sync(pkgbits.SyncParam)
   622  	return types.NewField(r.pos(), r.localIdent(), r.typ())
   623  }
   624  
   625  // @@@ Objects
   626  
   627  // objReader maps qualified identifiers (represented as *types.Sym) to
   628  // a pkgReader and corresponding index that can be used for reading
   629  // that object's definition.
   630  var objReader = map[*types.Sym]pkgReaderIndex{}
   631  
   632  // obj reads an instantiated object reference from the bitstream.
   633  func (r *reader) obj() ir.Node {
   634  	return r.p.objInstIdx(r.objInfo(), r.dict, false)
   635  }
   636  
   637  // objInfo reads an instantiated object reference from the bitstream
   638  // and returns the encoded reference to it, without instantiating it.
   639  func (r *reader) objInfo() objInfo {
   640  	r.Sync(pkgbits.SyncObject)
   641  	assert(!r.Bool())	// TODO(mdempsky): Remove; was derived func inst.
   642  	idx := r.Reloc(pkgbits.RelocObj)
   643  
   644  	explicits := make([]typeInfo, r.Len())
   645  	for i := range explicits {
   646  		explicits[i] = r.typInfo()
   647  	}
   648  
   649  	return objInfo{idx, explicits}
   650  }
   651  
   652  // objInstIdx returns the encoded, instantiated object. If shaped is
   653  // true, then the shaped variant of the object is returned instead.
   654  func (pr *pkgReader) objInstIdx(info objInfo, dict *readerDict, shaped bool) ir.Node {
   655  	explicits := pr.typListIdx(info.explicits, dict)
   656  
   657  	var implicits []*types.Type
   658  	if dict != nil {
   659  		implicits = dict.targs
   660  	}
   661  
   662  	return pr.objIdx(info.idx, implicits, explicits, shaped)
   663  }
   664  
   665  // objIdx returns the specified object, instantiated with the given
   666  // type arguments, if any. If shaped is true, then the shaped variant
   667  // of the object is returned instead.
   668  func (pr *pkgReader) objIdx(idx pkgbits.Index, implicits, explicits []*types.Type, shaped bool) ir.Node {
   669  	rname := pr.newReader(pkgbits.RelocName, idx, pkgbits.SyncObject1)
   670  	_, sym := rname.qualifiedIdent()
   671  	tag := pkgbits.CodeObj(rname.Code(pkgbits.SyncCodeObj))
   672  
   673  	if tag == pkgbits.ObjStub {
   674  		assert(!sym.IsBlank())
   675  		switch sym.Pkg {
   676  		case types.BuiltinPkg, types.UnsafePkg:
   677  			return sym.Def.(ir.Node)
   678  		}
   679  		if pri, ok := objReader[sym]; ok {
   680  			return pri.pr.objIdx(pri.idx, nil, explicits, shaped)
   681  		}
   682  		if sym.Pkg.Path == "runtime" {
   683  			return typecheck.LookupRuntime(sym.Name)
   684  		}
   685  		base.Fatalf("unresolved stub: %v", sym)
   686  	}
   687  
   688  	dict := pr.objDictIdx(sym, idx, implicits, explicits, shaped)
   689  
   690  	sym = dict.baseSym
   691  	if !sym.IsBlank() && sym.Def != nil {
   692  		return sym.Def.(*ir.Name)
   693  	}
   694  
   695  	r := pr.newReader(pkgbits.RelocObj, idx, pkgbits.SyncObject1)
   696  	rext := pr.newReader(pkgbits.RelocObjExt, idx, pkgbits.SyncObject1)
   697  
   698  	r.dict = dict
   699  	rext.dict = dict
   700  
   701  	do := func(op ir.Op, hasTParams bool) *ir.Name {
   702  		pos := r.pos()
   703  		setBasePos(pos)
   704  		if hasTParams {
   705  			r.typeParamNames()
   706  		}
   707  
   708  		name := ir.NewDeclNameAt(pos, op, sym)
   709  		name.Class = ir.PEXTERN	// may be overridden later
   710  		if !sym.IsBlank() {
   711  			if sym.Def != nil {
   712  				base.FatalfAt(name.Pos(), "already have a definition for %v", name)
   713  			}
   714  			assert(sym.Def == nil)
   715  			sym.Def = name
   716  		}
   717  		return name
   718  	}
   719  
   720  	switch tag {
   721  	default:
   722  		panic("unexpected object")
   723  
   724  	case pkgbits.ObjAlias:
   725  		name := do(ir.OTYPE, false)
   726  		setType(name, r.typ())
   727  		name.SetAlias(true)
   728  		return name
   729  
   730  	case pkgbits.ObjConst:
   731  		name := do(ir.OLITERAL, false)
   732  		typ := r.typ()
   733  		val := FixValue(typ, r.Value())
   734  		setType(name, typ)
   735  		setValue(name, val)
   736  		return name
   737  
   738  	case pkgbits.ObjFunc:
   739  		if sym.Name == "init" {
   740  			sym = Renameinit()
   741  		}
   742  
   743  		npos := r.pos()
   744  		setBasePos(npos)
   745  		r.typeParamNames()
   746  		typ := r.signature(nil)
   747  		fpos := r.pos()
   748  
   749  		fn := ir.NewFunc(fpos, npos, sym, typ)
   750  		name := fn.Nname
   751  		if !sym.IsBlank() {
   752  			if sym.Def != nil {
   753  				base.FatalfAt(name.Pos(), "already have a definition for %v", name)
   754  			}
   755  			assert(sym.Def == nil)
   756  			sym.Def = name
   757  		}
   758  
   759  		if r.hasTypeParams() {
   760  			name.Func.SetDupok(true)
   761  			if r.dict.shaped {
   762  				setType(name, shapeSig(name.Func, r.dict))
   763  			} else {
   764  				todoDicts = append(todoDicts, func() {
   765  					r.dict.shapedObj = pr.objIdx(idx, implicits, explicits, true).(*ir.Name)
   766  				})
   767  			}
   768  		}
   769  
   770  		rext.funcExt(name, nil)
   771  		return name
   772  
   773  	case pkgbits.ObjType:
   774  		name := do(ir.OTYPE, true)
   775  		typ := types.NewNamed(name)
   776  		setType(name, typ)
   777  		if r.hasTypeParams() && r.dict.shaped {
   778  			typ.SetHasShape(true)
   779  		}
   780  
   781  		// Important: We need to do this before SetUnderlying.
   782  		rext.typeExt(name)
   783  
   784  		// We need to defer CheckSize until we've called SetUnderlying to
   785  		// handle recursive types.
   786  		types.DeferCheckSize()
   787  		typ.SetUnderlying(r.typWrapped(false))
   788  		types.ResumeCheckSize()
   789  
   790  		if r.hasTypeParams() && !r.dict.shaped {
   791  			todoDicts = append(todoDicts, func() {
   792  				r.dict.shapedObj = pr.objIdx(idx, implicits, explicits, true).(*ir.Name)
   793  			})
   794  		}
   795  
   796  		methods := make([]*types.Field, r.Len())
   797  		for i := range methods {
   798  			methods[i] = r.method(rext)
   799  		}
   800  		if len(methods) != 0 {
   801  			typ.SetMethods(methods)
   802  		}
   803  
   804  		if !r.dict.shaped {
   805  			r.needWrapper(typ)
   806  		}
   807  
   808  		return name
   809  
   810  	case pkgbits.ObjVar:
   811  		name := do(ir.ONAME, false)
   812  		setType(name, r.typ())
   813  		rext.varExt(name)
   814  		return name
   815  	}
   816  }
   817  
   818  func (dict *readerDict) mangle(sym *types.Sym) *types.Sym {
   819  	if !dict.hasTypeParams() {
   820  		return sym
   821  	}
   822  
   823  	// If sym is a locally defined generic type, we need the suffix to
   824  	// stay at the end after mangling so that types/fmt.go can strip it
   825  	// out again when writing the type's runtime descriptor (#54456).
   826  	base, suffix := types.SplitVargenSuffix(sym.Name)
   827  
   828  	var buf strings.Builder
   829  	buf.WriteString(base)
   830  	buf.WriteByte('[')
   831  	for i, targ := range dict.targs {
   832  		if i > 0 {
   833  			if i == dict.implicits {
   834  				buf.WriteByte(';')
   835  			} else {
   836  				buf.WriteByte(',')
   837  			}
   838  		}
   839  		buf.WriteString(targ.LinkString())
   840  	}
   841  	buf.WriteByte(']')
   842  	buf.WriteString(suffix)
   843  	return sym.Pkg.Lookup(buf.String())
   844  }
   845  
   846  // shapify returns the shape type for targ.
   847  //
   848  // If basic is true, then the type argument is used to instantiate a
   849  // type parameter whose constraint is a basic interface.
   850  func shapify(targ *types.Type, basic bool) *types.Type {
   851  	if targ.Kind() == types.TFORW {
   852  		if targ.IsFullyInstantiated() {
   853  			// For recursive instantiated type argument, it may  still be a TFORW
   854  			// when shapifying happens. If we don't have targ's underlying type,
   855  			// shapify won't work. The worst case is we end up not reusing code
   856  			// optimally in some tricky cases.
   857  			if base.Debug.Shapify != 0 {
   858  				base.Warn("skipping shaping of recursive type %v", targ)
   859  			}
   860  			if targ.HasShape() {
   861  				return targ
   862  			}
   863  		} else {
   864  			base.Fatalf("%v is missing its underlying type", targ)
   865  		}
   866  	}
   867  
   868  	// When a pointer type is used to instantiate a type parameter
   869  	// constrained by a basic interface, we know the pointer's element
   870  	// type can't matter to the generated code. In this case, we can use
   871  	// an arbitrary pointer type as the shape type. (To match the
   872  	// non-unified frontend, we use `*byte`.)
   873  	//
   874  	// Otherwise, we simply use the type's underlying type as its shape.
   875  	//
   876  	// TODO(mdempsky): It should be possible to do much more aggressive
   877  	// shaping still; e.g., collapsing all pointer-shaped types into a
   878  	// common type, collapsing scalars of the same size/alignment into a
   879  	// common type, recursively shaping the element types of composite
   880  	// types, and discarding struct field names and tags. However, we'll
   881  	// need to start tracking how type parameters are actually used to
   882  	// implement some of these optimizations.
   883  	under := targ.Underlying()
   884  	if basic && targ.IsPtr() && !targ.Elem().NotInHeap() {
   885  		under = types.NewPtr(types.Types[types.TUINT8])
   886  	}
   887  
   888  	// Hash long type names to bound symbol name length seen by users,
   889  	// particularly for large protobuf structs (#65030).
   890  	uls := under.LinkString()
   891  	if base.Debug.MaxShapeLen != 0 &&
   892  		len(uls) > base.Debug.MaxShapeLen {
   893  		h := notsha256.Sum256([]byte(uls))
   894  		uls = hex.EncodeToString(h[:])
   895  	}
   896  
   897  	sym := types.ShapePkg.Lookup(uls)
   898  	if sym.Def == nil {
   899  		name := ir.NewDeclNameAt(under.Pos(), ir.OTYPE, sym)
   900  		typ := types.NewNamed(name)
   901  		typ.SetUnderlying(under)
   902  		sym.Def = typed(typ, name)
   903  	}
   904  	res := sym.Def.Type()
   905  	assert(res.IsShape())
   906  	assert(res.HasShape())
   907  	return res
   908  }
   909  
   910  // objDictIdx reads and returns the specified object dictionary.
   911  func (pr *pkgReader) objDictIdx(sym *types.Sym, idx pkgbits.Index, implicits, explicits []*types.Type, shaped bool) *readerDict {
   912  	r := pr.newReader(pkgbits.RelocObjDict, idx, pkgbits.SyncObject1)
   913  
   914  	dict := readerDict{
   915  		shaped: shaped,
   916  	}
   917  
   918  	nimplicits := r.Len()
   919  	nexplicits := r.Len()
   920  
   921  	if nimplicits > len(implicits) || nexplicits != len(explicits) {
   922  		base.Fatalf("%v has %v+%v params, but instantiated with %v+%v args", sym, nimplicits, nexplicits, len(implicits), len(explicits))
   923  	}
   924  
   925  	dict.targs = append(implicits[:nimplicits:nimplicits], explicits...)
   926  	dict.implicits = nimplicits
   927  
   928  	// Within the compiler, we can just skip over the type parameters.
   929  	for range dict.targs[dict.implicits:] {
   930  		// Skip past bounds without actually evaluating them.
   931  		r.typInfo()
   932  	}
   933  
   934  	dict.derived = make([]derivedInfo, r.Len())
   935  	dict.derivedTypes = make([]*types.Type, len(dict.derived))
   936  	for i := range dict.derived {
   937  		dict.derived[i] = derivedInfo{r.Reloc(pkgbits.RelocType), r.Bool()}
   938  	}
   939  
   940  	// Runtime dictionary information; private to the compiler.
   941  
   942  	// If any type argument is already shaped, then we're constructing a
   943  	// shaped object, even if not explicitly requested (i.e., calling
   944  	// objIdx with shaped==true). This can happen with instantiating
   945  	// types that are referenced within a function body.
   946  	for _, targ := range dict.targs {
   947  		if targ.HasShape() {
   948  			dict.shaped = true
   949  			break
   950  		}
   951  	}
   952  
   953  	// And if we're constructing a shaped object, then shapify all type
   954  	// arguments.
   955  	for i, targ := range dict.targs {
   956  		basic := r.Bool()
   957  		if dict.shaped {
   958  			dict.targs[i] = shapify(targ, basic)
   959  		}
   960  	}
   961  
   962  	dict.baseSym = dict.mangle(sym)
   963  
   964  	dict.typeParamMethodExprs = make([]readerMethodExprInfo, r.Len())
   965  	for i := range dict.typeParamMethodExprs {
   966  		typeParamIdx := r.Len()
   967  		method := r.selector()
   968  
   969  		dict.typeParamMethodExprs[i] = readerMethodExprInfo{typeParamIdx, method}
   970  	}
   971  
   972  	dict.subdicts = make([]objInfo, r.Len())
   973  	for i := range dict.subdicts {
   974  		dict.subdicts[i] = r.objInfo()
   975  	}
   976  
   977  	dict.rtypes = make([]typeInfo, r.Len())
   978  	for i := range dict.rtypes {
   979  		dict.rtypes[i] = r.typInfo()
   980  	}
   981  
   982  	dict.itabs = make([]itabInfo, r.Len())
   983  	for i := range dict.itabs {
   984  		dict.itabs[i] = itabInfo{typ: r.typInfo(), iface: r.typInfo()}
   985  	}
   986  
   987  	return &dict
   988  }
   989  
   990  func (r *reader) typeParamNames() {
   991  	r.Sync(pkgbits.SyncTypeParamNames)
   992  
   993  	for range r.dict.targs[r.dict.implicits:] {
   994  		r.pos()
   995  		r.localIdent()
   996  	}
   997  }
   998  
   999  func (r *reader) method(rext *reader) *types.Field {
  1000  	r.Sync(pkgbits.SyncMethod)
  1001  	npos := r.pos()
  1002  	sym := r.selector()
  1003  	r.typeParamNames()
  1004  	recv := r.param()
  1005  	typ := r.signature(recv)
  1006  
  1007  	fpos := r.pos()
  1008  	fn := ir.NewFunc(fpos, npos, ir.MethodSym(recv.Type, sym), typ)
  1009  	name := fn.Nname
  1010  
  1011  	if r.hasTypeParams() {
  1012  		name.Func.SetDupok(true)
  1013  		if r.dict.shaped {
  1014  			typ = shapeSig(name.Func, r.dict)
  1015  			setType(name, typ)
  1016  		}
  1017  	}
  1018  
  1019  	rext.funcExt(name, sym)
  1020  
  1021  	meth := types.NewField(name.Func.Pos(), sym, typ)
  1022  	meth.Nname = name
  1023  	meth.SetNointerface(name.Func.Pragma&ir.Nointerface != 0)
  1024  
  1025  	return meth
  1026  }
  1027  
  1028  func (r *reader) qualifiedIdent() (pkg *types.Pkg, sym *types.Sym) {
  1029  	r.Sync(pkgbits.SyncSym)
  1030  	pkg = r.pkg()
  1031  	if name := r.String(); name != "" {
  1032  		sym = pkg.Lookup(name)
  1033  	}
  1034  	return
  1035  }
  1036  
  1037  func (r *reader) localIdent() *types.Sym {
  1038  	r.Sync(pkgbits.SyncLocalIdent)
  1039  	pkg := r.pkg()
  1040  	if name := r.String(); name != "" {
  1041  		return pkg.Lookup(name)
  1042  	}
  1043  	return nil
  1044  }
  1045  
  1046  func (r *reader) selector() *types.Sym {
  1047  	r.Sync(pkgbits.SyncSelector)
  1048  	pkg := r.pkg()
  1049  	name := r.String()
  1050  	if types.IsExported(name) {
  1051  		pkg = types.LocalPkg
  1052  	}
  1053  	return pkg.Lookup(name)
  1054  }
  1055  
  1056  func (r *reader) hasTypeParams() bool {
  1057  	return r.dict.hasTypeParams()
  1058  }
  1059  
  1060  func (dict *readerDict) hasTypeParams() bool {
  1061  	return dict != nil && len(dict.targs) != 0
  1062  }
  1063  
  1064  // @@@ Compiler extensions
  1065  
  1066  func (r *reader) funcExt(name *ir.Name, method *types.Sym) {
  1067  	r.Sync(pkgbits.SyncFuncExt)
  1068  
  1069  	fn := name.Func
  1070  
  1071  	// XXX: Workaround because linker doesn't know how to copy Pos.
  1072  	if !fn.Pos().IsKnown() {
  1073  		fn.SetPos(name.Pos())
  1074  	}
  1075  
  1076  	// Normally, we only compile local functions, which saves redundant compilation work.
  1077  	// n.Defn is not nil for local functions, and is nil for imported function. But for
  1078  	// generic functions, we might have an instantiation that no other package has seen before.
  1079  	// So we need to be conservative and compile it again.
  1080  	//
  1081  	// That's why name.Defn is set here, so ir.VisitFuncsBottomUp can analyze function.
  1082  	// TODO(mdempsky,cuonglm): find a cleaner way to handle this.
  1083  	if name.Sym().Pkg == types.LocalPkg || r.hasTypeParams() {
  1084  		name.Defn = fn
  1085  	}
  1086  
  1087  	fn.Pragma = r.pragmaFlag()
  1088  	r.linkname(name)
  1089  
  1090  	if buildcfg.GOARCH == "wasm" {
  1091  		xmod := r.String()
  1092  		xname := r.String()
  1093  
  1094  		if xmod != "" && xname != "" {
  1095  			fn.WasmImport = &ir.WasmImport{
  1096  				Module:	xmod,
  1097  				Name:	xname,
  1098  			}
  1099  		}
  1100  	}
  1101  
  1102  	if r.Bool() {
  1103  		assert(name.Defn == nil)
  1104  
  1105  		fn.ABI = obj.ABI(r.Uint64())
  1106  
  1107  		// Escape analysis.
  1108  		for _, f := range name.Type().RecvParams() {
  1109  			f.Note = r.String()
  1110  		}
  1111  
  1112  		if r.Bool() {
  1113  			fn.Inl = &ir.Inline{
  1114  				Cost:			int32(r.Len()),
  1115  				CanDelayResults:	r.Bool(),
  1116  			}
  1117  			if buildcfg.Experiment.NewInliner {
  1118  				fn.Inl.Properties = r.String()
  1119  			}
  1120  		}
  1121  	} else {
  1122  		r.addBody(name.Func, method)
  1123  	}
  1124  	r.Sync(pkgbits.SyncEOF)
  1125  }
  1126  
  1127  func (r *reader) typeExt(name *ir.Name) {
  1128  	r.Sync(pkgbits.SyncTypeExt)
  1129  
  1130  	typ := name.Type()
  1131  
  1132  	if r.hasTypeParams() {
  1133  		// Set "RParams" (really type arguments here, not parameters) so
  1134  		// this type is treated as "fully instantiated". This ensures the
  1135  		// type descriptor is written out as DUPOK and method wrappers are
  1136  		// generated even for imported types.
  1137  		var targs []*types.Type
  1138  		targs = append(targs, r.dict.targs...)
  1139  		typ.SetRParams(targs)
  1140  	}
  1141  
  1142  	name.SetPragma(r.pragmaFlag())
  1143  
  1144  	typecheck.SetBaseTypeIndex(typ, r.Int64(), r.Int64())
  1145  }
  1146  
  1147  func (r *reader) varExt(name *ir.Name) {
  1148  	r.Sync(pkgbits.SyncVarExt)
  1149  	r.linkname(name)
  1150  }
  1151  
  1152  func (r *reader) linkname(name *ir.Name) {
  1153  	assert(name.Op() == ir.ONAME)
  1154  	r.Sync(pkgbits.SyncLinkname)
  1155  
  1156  	if idx := r.Int64(); idx >= 0 {
  1157  		lsym := name.Linksym()
  1158  		lsym.SymIdx = int32(idx)
  1159  		lsym.Set(obj.AttrIndexed, true)
  1160  	} else {
  1161  		name.Sym().Linkname = r.String()
  1162  	}
  1163  }
  1164  
  1165  func (r *reader) pragmaFlag() ir.PragmaFlag {
  1166  	r.Sync(pkgbits.SyncPragma)
  1167  	return ir.PragmaFlag(r.Int())
  1168  }
  1169  
  1170  // @@@ Function bodies
  1171  
  1172  // bodyReader tracks where the serialized IR for a local or imported,
  1173  // generic function's body can be found.
  1174  var bodyReader = map[*ir.Func]pkgReaderIndex{}
  1175  
  1176  // importBodyReader tracks where the serialized IR for an imported,
  1177  // static (i.e., non-generic) function body can be read.
  1178  var importBodyReader = map[*types.Sym]pkgReaderIndex{}
  1179  
  1180  // bodyReaderFor returns the pkgReaderIndex for reading fn's
  1181  // serialized IR, and whether one was found.
  1182  func bodyReaderFor(fn *ir.Func) (pri pkgReaderIndex, ok bool) {
  1183  	if fn.Nname.Defn != nil {
  1184  		pri, ok = bodyReader[fn]
  1185  		base.AssertfAt(ok, base.Pos, "must have bodyReader for %v", fn)	// must always be available
  1186  	} else {
  1187  		pri, ok = importBodyReader[fn.Sym()]
  1188  	}
  1189  	return
  1190  }
  1191  
  1192  // todoDicts holds the list of dictionaries that still need their
  1193  // runtime dictionary objects constructed.
  1194  var todoDicts []func()
  1195  
  1196  // todoBodies holds the list of function bodies that still need to be
  1197  // constructed.
  1198  var todoBodies []*ir.Func
  1199  
  1200  // addBody reads a function body reference from the element bitstream,
  1201  // and associates it with fn.
  1202  func (r *reader) addBody(fn *ir.Func, method *types.Sym) {
  1203  	// addBody should only be called for local functions or imported
  1204  	// generic functions; see comment in funcExt.
  1205  	assert(fn.Nname.Defn != nil)
  1206  
  1207  	idx := r.Reloc(pkgbits.RelocBody)
  1208  
  1209  	pri := pkgReaderIndex{r.p, idx, r.dict, method, nil}
  1210  	bodyReader[fn] = pri
  1211  
  1212  	if r.curfn == nil {
  1213  		todoBodies = append(todoBodies, fn)
  1214  		return
  1215  	}
  1216  
  1217  	pri.funcBody(fn)
  1218  }
  1219  
  1220  func (pri pkgReaderIndex) funcBody(fn *ir.Func) {
  1221  	r := pri.asReader(pkgbits.RelocBody, pkgbits.SyncFuncBody)
  1222  	r.funcBody(fn)
  1223  }
  1224  
  1225  // funcBody reads a function body definition from the element
  1226  // bitstream, and populates fn with it.
  1227  func (r *reader) funcBody(fn *ir.Func) {
  1228  	r.curfn = fn
  1229  	r.closureVars = fn.ClosureVars
  1230  	if len(r.closureVars) != 0 && r.hasTypeParams() {
  1231  		r.dictParam = r.closureVars[len(r.closureVars)-1]	// dictParam is last; see reader.funcLit
  1232  	}
  1233  
  1234  	ir.WithFunc(fn, func() {
  1235  		r.declareParams()
  1236  
  1237  		if r.syntheticBody(fn.Pos()) {
  1238  			return
  1239  		}
  1240  
  1241  		if !r.Bool() {
  1242  			return
  1243  		}
  1244  
  1245  		body := r.stmts()
  1246  		if body == nil {
  1247  			body = []ir.Node{typecheck.Stmt(ir.NewBlockStmt(src.NoXPos, nil))}
  1248  		}
  1249  		fn.Body = body
  1250  		fn.Endlineno = r.pos()
  1251  	})
  1252  
  1253  	r.marker.WriteTo(fn)
  1254  }
  1255  
  1256  // syntheticBody adds a synthetic body to r.curfn if appropriate, and
  1257  // reports whether it did.
  1258  func (r *reader) syntheticBody(pos src.XPos) bool {
  1259  	if r.synthetic != nil {
  1260  		r.synthetic(pos, r)
  1261  		return true
  1262  	}
  1263  
  1264  	// If this function has type parameters and isn't shaped, then we
  1265  	// just tail call its corresponding shaped variant.
  1266  	if r.hasTypeParams() && !r.dict.shaped {
  1267  		r.callShaped(pos)
  1268  		return true
  1269  	}
  1270  
  1271  	return false
  1272  }
  1273  
  1274  // callShaped emits a tail call to r.shapedFn, passing along the
  1275  // arguments to the current function.
  1276  func (r *reader) callShaped(pos src.XPos) {
  1277  	shapedObj := r.dict.shapedObj
  1278  	assert(shapedObj != nil)
  1279  
  1280  	var shapedFn ir.Node
  1281  	if r.methodSym == nil {
  1282  		// Instantiating a generic function; shapedObj is the shaped
  1283  		// function itself.
  1284  		assert(shapedObj.Op() == ir.ONAME && shapedObj.Class == ir.PFUNC)
  1285  		shapedFn = shapedObj
  1286  	} else {
  1287  		// Instantiating a generic type's method; shapedObj is the shaped
  1288  		// type, so we need to select it's corresponding method.
  1289  		shapedFn = shapedMethodExpr(pos, shapedObj, r.methodSym)
  1290  	}
  1291  
  1292  	params := r.syntheticArgs()
  1293  
  1294  	// Construct the arguments list: receiver (if any), then runtime
  1295  	// dictionary, and finally normal parameters.
  1296  	//
  1297  	// Note: For simplicity, shaped methods are added as normal methods
  1298  	// on their shaped types. So existing code (e.g., packages ir and
  1299  	// typecheck) expects the shaped type to appear as the receiver
  1300  	// parameter (or first parameter, as a method expression). Hence
  1301  	// putting the dictionary parameter after that is the least invasive
  1302  	// solution at the moment.
  1303  	var args ir.Nodes
  1304  	if r.methodSym != nil {
  1305  		args.Append(params[0])
  1306  		params = params[1:]
  1307  	}
  1308  	args.Append(typecheck.Expr(ir.NewAddrExpr(pos, r.p.dictNameOf(r.dict))))
  1309  	args.Append(params...)
  1310  
  1311  	r.syntheticTailCall(pos, shapedFn, args)
  1312  }
  1313  
  1314  // syntheticArgs returns the recvs and params arguments passed to the
  1315  // current function.
  1316  func (r *reader) syntheticArgs() ir.Nodes {
  1317  	sig := r.curfn.Nname.Type()
  1318  	return ir.ToNodes(r.curfn.Dcl[:sig.NumRecvs()+sig.NumParams()])
  1319  }
  1320  
  1321  // syntheticTailCall emits a tail call to fn, passing the given
  1322  // arguments list.
  1323  func (r *reader) syntheticTailCall(pos src.XPos, fn ir.Node, args ir.Nodes) {
  1324  	// Mark the function as a wrapper so it doesn't show up in stack
  1325  	// traces.
  1326  	r.curfn.SetWrapper(true)
  1327  
  1328  	call := typecheck.Call(pos, fn, args, fn.Type().IsVariadic()).(*ir.CallExpr)
  1329  
  1330  	var stmt ir.Node
  1331  	if fn.Type().NumResults() != 0 {
  1332  		stmt = typecheck.Stmt(ir.NewReturnStmt(pos, []ir.Node{call}))
  1333  	} else {
  1334  		stmt = call
  1335  	}
  1336  	r.curfn.Body.Append(stmt)
  1337  }
  1338  
  1339  // dictNameOf returns the runtime dictionary corresponding to dict.
  1340  func (pr *pkgReader) dictNameOf(dict *readerDict) *ir.Name {
  1341  	pos := base.AutogeneratedPos
  1342  
  1343  	// Check that we only instantiate runtime dictionaries with real types.
  1344  	base.AssertfAt(!dict.shaped, pos, "runtime dictionary of shaped object %v", dict.baseSym)
  1345  
  1346  	sym := dict.baseSym.Pkg.Lookup(objabi.GlobalDictPrefix + "." + dict.baseSym.Name)
  1347  	if sym.Def != nil {
  1348  		return sym.Def.(*ir.Name)
  1349  	}
  1350  
  1351  	name := ir.NewNameAt(pos, sym, dict.varType())
  1352  	name.Class = ir.PEXTERN
  1353  	sym.Def = name	// break cycles with mutual subdictionaries
  1354  
  1355  	lsym := name.Linksym()
  1356  	ot := 0
  1357  
  1358  	assertOffset := func(section string, offset int) {
  1359  		base.AssertfAt(ot == offset*types.PtrSize, pos, "writing section %v at offset %v, but it should be at %v*%v", section, ot, offset, types.PtrSize)
  1360  	}
  1361  
  1362  	assertOffset("type param method exprs", dict.typeParamMethodExprsOffset())
  1363  	for _, info := range dict.typeParamMethodExprs {
  1364  		typeParam := dict.targs[info.typeParamIdx]
  1365  		method := typecheck.NewMethodExpr(pos, typeParam, info.method)
  1366  
  1367  		rsym := method.FuncName().Linksym()
  1368  		assert(rsym.ABI() == obj.ABIInternal)	// must be ABIInternal; see ir.OCFUNC in ssagen/ssa.go
  1369  
  1370  		ot = objw.SymPtr(lsym, ot, rsym, 0)
  1371  	}
  1372  
  1373  	assertOffset("subdictionaries", dict.subdictsOffset())
  1374  	for _, info := range dict.subdicts {
  1375  		explicits := pr.typListIdx(info.explicits, dict)
  1376  
  1377  		// Careful: Due to subdictionary cycles, name may not be fully
  1378  		// initialized yet.
  1379  		name := pr.objDictName(info.idx, dict.targs, explicits)
  1380  
  1381  		ot = objw.SymPtr(lsym, ot, name.Linksym(), 0)
  1382  	}
  1383  
  1384  	assertOffset("rtypes", dict.rtypesOffset())
  1385  	for _, info := range dict.rtypes {
  1386  		typ := pr.typIdx(info, dict, true)
  1387  		ot = objw.SymPtr(lsym, ot, reflectdata.TypeLinksym(typ), 0)
  1388  
  1389  		// TODO(mdempsky): Double check this.
  1390  		reflectdata.MarkTypeUsedInInterface(typ, lsym)
  1391  	}
  1392  
  1393  	// For each (typ, iface) pair, we write the *runtime.itab pointer
  1394  	// for the pair. For pairs that don't actually require an itab
  1395  	// (i.e., typ is an interface, or iface is an empty interface), we
  1396  	// write a nil pointer instead. This is wasteful, but rare in
  1397  	// practice (e.g., instantiating a type parameter with an interface
  1398  	// type).
  1399  	assertOffset("itabs", dict.itabsOffset())
  1400  	for _, info := range dict.itabs {
  1401  		typ := pr.typIdx(info.typ, dict, true)
  1402  		iface := pr.typIdx(info.iface, dict, true)
  1403  
  1404  		if !typ.IsInterface() && iface.IsInterface() && !iface.IsEmptyInterface() {
  1405  			ot = objw.SymPtr(lsym, ot, reflectdata.ITabLsym(typ, iface), 0)
  1406  		} else {
  1407  			ot += types.PtrSize
  1408  		}
  1409  
  1410  		// TODO(mdempsky): Double check this.
  1411  		reflectdata.MarkTypeUsedInInterface(typ, lsym)
  1412  		reflectdata.MarkTypeUsedInInterface(iface, lsym)
  1413  	}
  1414  
  1415  	objw.Global(lsym, int32(ot), obj.DUPOK|obj.RODATA)
  1416  
  1417  	return name
  1418  }
  1419  
  1420  // typeParamMethodExprsOffset returns the offset of the runtime
  1421  // dictionary's type parameter method expressions section, in words.
  1422  func (dict *readerDict) typeParamMethodExprsOffset() int {
  1423  	return 0
  1424  }
  1425  
  1426  // subdictsOffset returns the offset of the runtime dictionary's
  1427  // subdictionary section, in words.
  1428  func (dict *readerDict) subdictsOffset() int {
  1429  	return dict.typeParamMethodExprsOffset() + len(dict.typeParamMethodExprs)
  1430  }
  1431  
  1432  // rtypesOffset returns the offset of the runtime dictionary's rtypes
  1433  // section, in words.
  1434  func (dict *readerDict) rtypesOffset() int {
  1435  	return dict.subdictsOffset() + len(dict.subdicts)
  1436  }
  1437  
  1438  // itabsOffset returns the offset of the runtime dictionary's itabs
  1439  // section, in words.
  1440  func (dict *readerDict) itabsOffset() int {
  1441  	return dict.rtypesOffset() + len(dict.rtypes)
  1442  }
  1443  
  1444  // numWords returns the total number of words that comprise dict's
  1445  // runtime dictionary variable.
  1446  func (dict *readerDict) numWords() int64 {
  1447  	return int64(dict.itabsOffset() + len(dict.itabs))
  1448  }
  1449  
  1450  // varType returns the type of dict's runtime dictionary variable.
  1451  func (dict *readerDict) varType() *types.Type {
  1452  	return types.NewArray(types.Types[types.TUINTPTR], dict.numWords())
  1453  }
  1454  
  1455  func (r *reader) declareParams() {
  1456  	r.curfn.DeclareParams(!r.funarghack)
  1457  
  1458  	for _, name := range r.curfn.Dcl {
  1459  		if name.Sym().Name == dictParamName {
  1460  			r.dictParam = name
  1461  			continue
  1462  		}
  1463  
  1464  		r.addLocal(name)
  1465  	}
  1466  }
  1467  
  1468  func (r *reader) addLocal(name *ir.Name) {
  1469  	if r.synthetic == nil {
  1470  		r.Sync(pkgbits.SyncAddLocal)
  1471  		if r.p.SyncMarkers() {
  1472  			want := r.Int()
  1473  			if have := len(r.locals); have != want {
  1474  				base.FatalfAt(name.Pos(), "locals table has desynced")
  1475  			}
  1476  		}
  1477  		r.varDictIndex(name)
  1478  	}
  1479  
  1480  	r.locals = append(r.locals, name)
  1481  }
  1482  
  1483  func (r *reader) useLocal() *ir.Name {
  1484  	r.Sync(pkgbits.SyncUseObjLocal)
  1485  	if r.Bool() {
  1486  		return r.locals[r.Len()]
  1487  	}
  1488  	return r.closureVars[r.Len()]
  1489  }
  1490  
  1491  func (r *reader) openScope() {
  1492  	r.Sync(pkgbits.SyncOpenScope)
  1493  	pos := r.pos()
  1494  
  1495  	if base.Flag.Dwarf {
  1496  		r.scopeVars = append(r.scopeVars, len(r.curfn.Dcl))
  1497  		r.marker.Push(pos)
  1498  	}
  1499  }
  1500  
  1501  func (r *reader) closeScope() {
  1502  	r.Sync(pkgbits.SyncCloseScope)
  1503  	r.lastCloseScopePos = r.pos()
  1504  
  1505  	r.closeAnotherScope()
  1506  }
  1507  
  1508  // closeAnotherScope is like closeScope, but it reuses the same mark
  1509  // position as the last closeScope call. This is useful for "for" and
  1510  // "if" statements, as their implicit blocks always end at the same
  1511  // position as an explicit block.
  1512  func (r *reader) closeAnotherScope() {
  1513  	r.Sync(pkgbits.SyncCloseAnotherScope)
  1514  
  1515  	if base.Flag.Dwarf {
  1516  		scopeVars := r.scopeVars[len(r.scopeVars)-1]
  1517  		r.scopeVars = r.scopeVars[:len(r.scopeVars)-1]
  1518  
  1519  		// Quirkish: noder decides which scopes to keep before
  1520  		// typechecking, whereas incremental typechecking during IR
  1521  		// construction can result in new autotemps being allocated. To
  1522  		// produce identical output, we ignore autotemps here for the
  1523  		// purpose of deciding whether to retract the scope.
  1524  		//
  1525  		// This is important for net/http/fcgi, because it contains:
  1526  		//
  1527  		//	var body io.ReadCloser
  1528  		//	if len(content) > 0 {
  1529  		//		body, req.pw = io.Pipe()
  1530  		//	} else { … }
  1531  		//
  1532  		// Notably, io.Pipe is inlinable, and inlining it introduces a ~R0
  1533  		// variable at the call site.
  1534  		//
  1535  		// Noder does not preserve the scope where the io.Pipe() call
  1536  		// resides, because it doesn't contain any declared variables in
  1537  		// source. So the ~R0 variable ends up being assigned to the
  1538  		// enclosing scope instead.
  1539  		//
  1540  		// However, typechecking this assignment also introduces
  1541  		// autotemps, because io.Pipe's results need conversion before
  1542  		// they can be assigned to their respective destination variables.
  1543  		//
  1544  		// TODO(mdempsky): We should probably just keep all scopes, and
  1545  		// let dwarfgen take care of pruning them instead.
  1546  		retract := true
  1547  		for _, n := range r.curfn.Dcl[scopeVars:] {
  1548  			if !n.AutoTemp() {
  1549  				retract = false
  1550  				break
  1551  			}
  1552  		}
  1553  
  1554  		if retract {
  1555  			// no variables were declared in this scope, so we can retract it.
  1556  			r.marker.Unpush()
  1557  		} else {
  1558  			r.marker.Pop(r.lastCloseScopePos)
  1559  		}
  1560  	}
  1561  }
  1562  
  1563  // @@@ Statements
  1564  
  1565  func (r *reader) stmt() ir.Node {
  1566  	return block(r.stmts())
  1567  }
  1568  
  1569  func block(stmts []ir.Node) ir.Node {
  1570  	switch len(stmts) {
  1571  	case 0:
  1572  		return nil
  1573  	case 1:
  1574  		return stmts[0]
  1575  	default:
  1576  		return ir.NewBlockStmt(stmts[0].Pos(), stmts)
  1577  	}
  1578  }
  1579  
  1580  func (r *reader) stmts() ir.Nodes {
  1581  	assert(ir.CurFunc == r.curfn)
  1582  	var res ir.Nodes
  1583  
  1584  	r.Sync(pkgbits.SyncStmts)
  1585  	for {
  1586  		tag := codeStmt(r.Code(pkgbits.SyncStmt1))
  1587  		if tag == stmtEnd {
  1588  			r.Sync(pkgbits.SyncStmtsEnd)
  1589  			return res
  1590  		}
  1591  
  1592  		if n := r.stmt1(tag, &res); n != nil {
  1593  			res.Append(typecheck.Stmt(n))
  1594  		}
  1595  	}
  1596  }
  1597  
  1598  func (r *reader) stmt1(tag codeStmt, out *ir.Nodes) ir.Node {
  1599  	var label *types.Sym
  1600  	if n := len(*out); n > 0 {
  1601  		if ls, ok := (*out)[n-1].(*ir.LabelStmt); ok {
  1602  			label = ls.Label
  1603  		}
  1604  	}
  1605  
  1606  	switch tag {
  1607  	default:
  1608  		panic("unexpected statement")
  1609  
  1610  	case stmtAssign:
  1611  		pos := r.pos()
  1612  		names, lhs := r.assignList()
  1613  		rhs := r.multiExpr()
  1614  
  1615  		if len(rhs) == 0 {
  1616  			for _, name := range names {
  1617  				as := ir.NewAssignStmt(pos, name, nil)
  1618  				as.PtrInit().Append(ir.NewDecl(pos, ir.ODCL, name))
  1619  				out.Append(typecheck.Stmt(as))
  1620  			}
  1621  			return nil
  1622  		}
  1623  
  1624  		if len(lhs) == 1 && len(rhs) == 1 {
  1625  			n := ir.NewAssignStmt(pos, lhs[0], rhs[0])
  1626  			n.Def = r.initDefn(n, names)
  1627  			return n
  1628  		}
  1629  
  1630  		n := ir.NewAssignListStmt(pos, ir.OAS2, lhs, rhs)
  1631  		n.Def = r.initDefn(n, names)
  1632  		return n
  1633  
  1634  	case stmtAssignOp:
  1635  		op := r.op()
  1636  		lhs := r.expr()
  1637  		pos := r.pos()
  1638  		rhs := r.expr()
  1639  		return ir.NewAssignOpStmt(pos, op, lhs, rhs)
  1640  
  1641  	case stmtIncDec:
  1642  		op := r.op()
  1643  		lhs := r.expr()
  1644  		pos := r.pos()
  1645  		n := ir.NewAssignOpStmt(pos, op, lhs, ir.NewOne(pos, lhs.Type()))
  1646  		n.IncDec = true
  1647  		return n
  1648  
  1649  	case stmtBlock:
  1650  		out.Append(r.blockStmt()...)
  1651  		return nil
  1652  
  1653  	case stmtBranch:
  1654  		pos := r.pos()
  1655  		op := r.op()
  1656  		sym := r.optLabel()
  1657  		return ir.NewBranchStmt(pos, op, sym)
  1658  
  1659  	case stmtCall:
  1660  		pos := r.pos()
  1661  		op := r.op()
  1662  		call := r.expr()
  1663  		stmt := ir.NewGoDeferStmt(pos, op, call)
  1664  		if op == ir.ODEFER {
  1665  			x := r.optExpr()
  1666  			if x != nil {
  1667  				stmt.DeferAt = x.(ir.Expr)
  1668  			}
  1669  		}
  1670  		return stmt
  1671  
  1672  	case stmtExpr:
  1673  		return r.expr()
  1674  
  1675  	case stmtFor:
  1676  		return r.forStmt(label)
  1677  
  1678  	case stmtIf:
  1679  		return r.ifStmt()
  1680  
  1681  	case stmtLabel:
  1682  		pos := r.pos()
  1683  		sym := r.label()
  1684  		return ir.NewLabelStmt(pos, sym)
  1685  
  1686  	case stmtReturn:
  1687  		pos := r.pos()
  1688  		results := r.multiExpr()
  1689  		return ir.NewReturnStmt(pos, results)
  1690  
  1691  	case stmtSelect:
  1692  		return r.selectStmt(label)
  1693  
  1694  	case stmtSend:
  1695  		pos := r.pos()
  1696  		ch := r.expr()
  1697  		value := r.expr()
  1698  		return ir.NewSendStmt(pos, ch, value)
  1699  
  1700  	case stmtSwitch:
  1701  		return r.switchStmt(label)
  1702  	}
  1703  }
  1704  
  1705  func (r *reader) assignList() ([]*ir.Name, []ir.Node) {
  1706  	lhs := make([]ir.Node, r.Len())
  1707  	var names []*ir.Name
  1708  
  1709  	for i := range lhs {
  1710  		expr, def := r.assign()
  1711  		lhs[i] = expr
  1712  		if def {
  1713  			names = append(names, expr.(*ir.Name))
  1714  		}
  1715  	}
  1716  
  1717  	return names, lhs
  1718  }
  1719  
  1720  // assign returns an assignee expression. It also reports whether the
  1721  // returned expression is a newly declared variable.
  1722  func (r *reader) assign() (ir.Node, bool) {
  1723  	switch tag := codeAssign(r.Code(pkgbits.SyncAssign)); tag {
  1724  	default:
  1725  		panic("unhandled assignee expression")
  1726  
  1727  	case assignBlank:
  1728  		return typecheck.AssignExpr(ir.BlankNode), false
  1729  
  1730  	case assignDef:
  1731  		pos := r.pos()
  1732  		setBasePos(pos)	// test/fixedbugs/issue49767.go depends on base.Pos being set for the r.typ() call here, ugh
  1733  		name := r.curfn.NewLocal(pos, r.localIdent(), r.typ())
  1734  		r.addLocal(name)
  1735  		return name, true
  1736  
  1737  	case assignExpr:
  1738  		return r.expr(), false
  1739  	}
  1740  }
  1741  
  1742  func (r *reader) blockStmt() []ir.Node {
  1743  	r.Sync(pkgbits.SyncBlockStmt)
  1744  	r.openScope()
  1745  	stmts := r.stmts()
  1746  	r.closeScope()
  1747  	return stmts
  1748  }
  1749  
  1750  func (r *reader) forStmt(label *types.Sym) ir.Node {
  1751  	r.Sync(pkgbits.SyncForStmt)
  1752  
  1753  	r.openScope()
  1754  
  1755  	if r.Bool() {
  1756  		pos := r.pos()
  1757  		rang := ir.NewRangeStmt(pos, nil, nil, nil, nil, false)
  1758  		rang.Label = label
  1759  
  1760  		names, lhs := r.assignList()
  1761  		if len(lhs) >= 1 {
  1762  			rang.Key = lhs[0]
  1763  			if len(lhs) >= 2 {
  1764  				rang.Value = lhs[1]
  1765  			}
  1766  		}
  1767  		rang.Def = r.initDefn(rang, names)
  1768  
  1769  		rang.X = r.expr()
  1770  		if rang.X.Type().IsMap() {
  1771  			rang.RType = r.rtype(pos)
  1772  		}
  1773  		if rang.Key != nil && !ir.IsBlank(rang.Key) {
  1774  			rang.KeyTypeWord, rang.KeySrcRType = r.convRTTI(pos)
  1775  		}
  1776  		if rang.Value != nil && !ir.IsBlank(rang.Value) {
  1777  			rang.ValueTypeWord, rang.ValueSrcRType = r.convRTTI(pos)
  1778  		}
  1779  
  1780  		rang.Body = r.blockStmt()
  1781  		rang.DistinctVars = r.Bool()
  1782  		r.closeAnotherScope()
  1783  
  1784  		return rang
  1785  	}
  1786  
  1787  	pos := r.pos()
  1788  	init := r.stmt()
  1789  	cond := r.optExpr()
  1790  	post := r.stmt()
  1791  	body := r.blockStmt()
  1792  	perLoopVars := r.Bool()
  1793  	r.closeAnotherScope()
  1794  
  1795  	if ir.IsConst(cond, constant.Bool) && !ir.BoolVal(cond) {
  1796  		return init	// simplify "for init; false; post { ... }" into "init"
  1797  	}
  1798  
  1799  	stmt := ir.NewForStmt(pos, init, cond, post, body, perLoopVars)
  1800  	stmt.Label = label
  1801  	return stmt
  1802  }
  1803  
  1804  func (r *reader) ifStmt() ir.Node {
  1805  	r.Sync(pkgbits.SyncIfStmt)
  1806  	r.openScope()
  1807  	pos := r.pos()
  1808  	init := r.stmts()
  1809  	cond := r.expr()
  1810  	staticCond := r.Int()
  1811  	var then, els []ir.Node
  1812  	if staticCond >= 0 {
  1813  		then = r.blockStmt()
  1814  	} else {
  1815  		r.lastCloseScopePos = r.pos()
  1816  	}
  1817  	if staticCond <= 0 {
  1818  		els = r.stmts()
  1819  	}
  1820  	r.closeAnotherScope()
  1821  
  1822  	if staticCond != 0 {
  1823  		// We may have removed a dead return statement, which can trip up
  1824  		// later passes (#62211). To avoid confusion, we instead flatten
  1825  		// the if statement into a block.
  1826  
  1827  		if cond.Op() != ir.OLITERAL {
  1828  			init.Append(typecheck.Stmt(ir.NewAssignStmt(pos, ir.BlankNode, cond)))	// for side effects
  1829  		}
  1830  		init.Append(then...)
  1831  		init.Append(els...)
  1832  		return block(init)
  1833  	}
  1834  
  1835  	n := ir.NewIfStmt(pos, cond, then, els)
  1836  	n.SetInit(init)
  1837  	return n
  1838  }
  1839  
  1840  func (r *reader) selectStmt(label *types.Sym) ir.Node {
  1841  	r.Sync(pkgbits.SyncSelectStmt)
  1842  
  1843  	pos := r.pos()
  1844  	clauses := make([]*ir.CommClause, r.Len())
  1845  	for i := range clauses {
  1846  		if i > 0 {
  1847  			r.closeScope()
  1848  		}
  1849  		r.openScope()
  1850  
  1851  		pos := r.pos()
  1852  		comm := r.stmt()
  1853  		body := r.stmts()
  1854  
  1855  		// "case i = <-c: ..." may require an implicit conversion (e.g.,
  1856  		// see fixedbugs/bug312.go). Currently, typecheck throws away the
  1857  		// implicit conversion and relies on it being reinserted later,
  1858  		// but that would lose any explicit RTTI operands too. To preserve
  1859  		// RTTI, we rewrite this as "case tmp := <-c: i = tmp; ...".
  1860  		if as, ok := comm.(*ir.AssignStmt); ok && as.Op() == ir.OAS && !as.Def {
  1861  			if conv, ok := as.Y.(*ir.ConvExpr); ok && conv.Op() == ir.OCONVIFACE {
  1862  				base.AssertfAt(conv.Implicit(), conv.Pos(), "expected implicit conversion: %v", conv)
  1863  
  1864  				recv := conv.X
  1865  				base.AssertfAt(recv.Op() == ir.ORECV, recv.Pos(), "expected receive expression: %v", recv)
  1866  
  1867  				tmp := r.temp(pos, recv.Type())
  1868  
  1869  				// Replace comm with `tmp := <-c`.
  1870  				tmpAs := ir.NewAssignStmt(pos, tmp, recv)
  1871  				tmpAs.Def = true
  1872  				tmpAs.PtrInit().Append(ir.NewDecl(pos, ir.ODCL, tmp))
  1873  				comm = tmpAs
  1874  
  1875  				// Change original assignment to `i = tmp`, and prepend to body.
  1876  				conv.X = tmp
  1877  				body = append([]ir.Node{as}, body...)
  1878  			}
  1879  		}
  1880  
  1881  		// multiExpr will have desugared a comma-ok receive expression
  1882  		// into a separate statement. However, the rest of the compiler
  1883  		// expects comm to be the OAS2RECV statement itself, so we need to
  1884  		// shuffle things around to fit that pattern.
  1885  		if as2, ok := comm.(*ir.AssignListStmt); ok && as2.Op() == ir.OAS2 {
  1886  			init := ir.TakeInit(as2.Rhs[0])
  1887  			base.AssertfAt(len(init) == 1 && init[0].Op() == ir.OAS2RECV, as2.Pos(), "unexpected assignment: %+v", as2)
  1888  
  1889  			comm = init[0]
  1890  			body = append([]ir.Node{as2}, body...)
  1891  		}
  1892  
  1893  		clauses[i] = ir.NewCommStmt(pos, comm, body)
  1894  	}
  1895  	if len(clauses) > 0 {
  1896  		r.closeScope()
  1897  	}
  1898  	n := ir.NewSelectStmt(pos, clauses)
  1899  	n.Label = label
  1900  	return n
  1901  }
  1902  
  1903  func (r *reader) switchStmt(label *types.Sym) ir.Node {
  1904  	r.Sync(pkgbits.SyncSwitchStmt)
  1905  
  1906  	r.openScope()
  1907  	pos := r.pos()
  1908  	init := r.stmt()
  1909  
  1910  	var tag ir.Node
  1911  	var ident *ir.Ident
  1912  	var iface *types.Type
  1913  	if r.Bool() {
  1914  		pos := r.pos()
  1915  		if r.Bool() {
  1916  			ident = ir.NewIdent(r.pos(), r.localIdent())
  1917  		}
  1918  		x := r.expr()
  1919  		iface = x.Type()
  1920  		tag = ir.NewTypeSwitchGuard(pos, ident, x)
  1921  	} else {
  1922  		tag = r.optExpr()
  1923  	}
  1924  
  1925  	clauses := make([]*ir.CaseClause, r.Len())
  1926  	for i := range clauses {
  1927  		if i > 0 {
  1928  			r.closeScope()
  1929  		}
  1930  		r.openScope()
  1931  
  1932  		pos := r.pos()
  1933  		var cases, rtypes []ir.Node
  1934  		if iface != nil {
  1935  			cases = make([]ir.Node, r.Len())
  1936  			if len(cases) == 0 {
  1937  				cases = nil	// TODO(mdempsky): Unclear if this matters.
  1938  			}
  1939  			for i := range cases {
  1940  				if r.Bool() {	// case nil
  1941  					cases[i] = typecheck.Expr(types.BuiltinPkg.Lookup("nil").Def.(*ir.NilExpr))
  1942  				} else {
  1943  					cases[i] = r.exprType()
  1944  				}
  1945  			}
  1946  		} else {
  1947  			cases = r.exprList()
  1948  
  1949  			// For `switch { case any(true): }` (e.g., issue 3980 in
  1950  			// test/switch.go), the backend still creates a mixed bool/any
  1951  			// comparison, and we need to explicitly supply the RTTI for the
  1952  			// comparison.
  1953  			//
  1954  			// TODO(mdempsky): Change writer.go to desugar "switch {" into
  1955  			// "switch true {", which we already handle correctly.
  1956  			if tag == nil {
  1957  				for i, cas := range cases {
  1958  					if cas.Type().IsEmptyInterface() {
  1959  						for len(rtypes) < i {
  1960  							rtypes = append(rtypes, nil)
  1961  						}
  1962  						rtypes = append(rtypes, reflectdata.TypePtrAt(cas.Pos(), types.Types[types.TBOOL]))
  1963  					}
  1964  				}
  1965  			}
  1966  		}
  1967  
  1968  		clause := ir.NewCaseStmt(pos, cases, nil)
  1969  		clause.RTypes = rtypes
  1970  
  1971  		if ident != nil {
  1972  			name := r.curfn.NewLocal(r.pos(), ident.Sym(), r.typ())
  1973  			r.addLocal(name)
  1974  			clause.Var = name
  1975  			name.Defn = tag
  1976  		}
  1977  
  1978  		clause.Body = r.stmts()
  1979  		clauses[i] = clause
  1980  	}
  1981  	if len(clauses) > 0 {
  1982  		r.closeScope()
  1983  	}
  1984  	r.closeScope()
  1985  
  1986  	n := ir.NewSwitchStmt(pos, tag, clauses)
  1987  	n.Label = label
  1988  	if init != nil {
  1989  		n.SetInit([]ir.Node{init})
  1990  	}
  1991  	return n
  1992  }
  1993  
  1994  func (r *reader) label() *types.Sym {
  1995  	r.Sync(pkgbits.SyncLabel)
  1996  	name := r.String()
  1997  	if r.inlCall != nil {
  1998  		name = fmt.Sprintf("~%s·%d", name, inlgen)
  1999  	}
  2000  	return typecheck.Lookup(name)
  2001  }
  2002  
  2003  func (r *reader) optLabel() *types.Sym {
  2004  	r.Sync(pkgbits.SyncOptLabel)
  2005  	if r.Bool() {
  2006  		return r.label()
  2007  	}
  2008  	return nil
  2009  }
  2010  
  2011  // initDefn marks the given names as declared by defn and populates
  2012  // its Init field with ODCL nodes. It then reports whether any names
  2013  // were so declared, which can be used to initialize defn.Def.
  2014  func (r *reader) initDefn(defn ir.InitNode, names []*ir.Name) bool {
  2015  	if len(names) == 0 {
  2016  		return false
  2017  	}
  2018  
  2019  	init := make([]ir.Node, len(names))
  2020  	for i, name := range names {
  2021  		name.Defn = defn
  2022  		init[i] = ir.NewDecl(name.Pos(), ir.ODCL, name)
  2023  	}
  2024  	defn.SetInit(init)
  2025  	return true
  2026  }
  2027  
  2028  // @@@ Expressions
  2029  
  2030  // expr reads and returns a typechecked expression.
  2031  func (r *reader) expr() (res ir.Node) {
  2032  	defer func() {
  2033  		if res != nil && res.Typecheck() == 0 {
  2034  			base.FatalfAt(res.Pos(), "%v missed typecheck", res)
  2035  		}
  2036  	}()
  2037  
  2038  	switch tag := codeExpr(r.Code(pkgbits.SyncExpr)); tag {
  2039  	default:
  2040  		panic("unhandled expression")
  2041  
  2042  	case exprLocal:
  2043  		return typecheck.Expr(r.useLocal())
  2044  
  2045  	case exprGlobal:
  2046  		// Callee instead of Expr allows builtins
  2047  		// TODO(mdempsky): Handle builtins directly in exprCall, like method calls?
  2048  		return typecheck.Callee(r.obj())
  2049  
  2050  	case exprFuncInst:
  2051  		origPos, pos := r.origPos()
  2052  		wrapperFn, baseFn, dictPtr := r.funcInst(pos)
  2053  		if wrapperFn != nil {
  2054  			return wrapperFn
  2055  		}
  2056  		return r.curry(origPos, false, baseFn, dictPtr, nil)
  2057  
  2058  	case exprConst:
  2059  		pos := r.pos()
  2060  		typ := r.typ()
  2061  		val := FixValue(typ, r.Value())
  2062  		return ir.NewBasicLit(pos, typ, val)
  2063  
  2064  	case exprZero:
  2065  		pos := r.pos()
  2066  		typ := r.typ()
  2067  		return ir.NewZero(pos, typ)
  2068  
  2069  	case exprCompLit:
  2070  		return r.compLit()
  2071  
  2072  	case exprFuncLit:
  2073  		return r.funcLit()
  2074  
  2075  	case exprFieldVal:
  2076  		x := r.expr()
  2077  		pos := r.pos()
  2078  		sym := r.selector()
  2079  
  2080  		return typecheck.XDotField(pos, x, sym)
  2081  
  2082  	case exprMethodVal:
  2083  		recv := r.expr()
  2084  		origPos, pos := r.origPos()
  2085  		wrapperFn, baseFn, dictPtr := r.methodExpr()
  2086  
  2087  		// For simple wrapperFn values, the existing machinery for creating
  2088  		// and deduplicating wrapperFn value wrappers still works fine.
  2089  		if wrapperFn, ok := wrapperFn.(*ir.SelectorExpr); ok && wrapperFn.Op() == ir.OMETHEXPR {
  2090  			// The receiver expression we constructed may have a shape type.
  2091  			// For example, in fixedbugs/issue54343.go, `New[int]()` is
  2092  			// constructed as `New[go.shape.int](&.dict.New[int])`, which
  2093  			// has type `*T[go.shape.int]`, not `*T[int]`.
  2094  			//
  2095  			// However, the method we want to select here is `(*T[int]).M`,
  2096  			// not `(*T[go.shape.int]).M`, so we need to manually convert
  2097  			// the type back so that the OXDOT resolves correctly.
  2098  			//
  2099  			// TODO(mdempsky): Logically it might make more sense for
  2100  			// exprCall to take responsibility for setting a non-shaped
  2101  			// result type, but this is the only place where we care
  2102  			// currently. And only because existing ir.OMETHVALUE backend
  2103  			// code relies on n.X.Type() instead of n.Selection.Recv().Type
  2104  			// (because the latter is types.FakeRecvType() in the case of
  2105  			// interface method values).
  2106  			//
  2107  			if recv.Type().HasShape() {
  2108  				typ := wrapperFn.Type().Param(0).Type
  2109  				if !types.Identical(typ, recv.Type()) {
  2110  					base.FatalfAt(wrapperFn.Pos(), "receiver %L does not match %L", recv, wrapperFn)
  2111  				}
  2112  				recv = typecheck.Expr(ir.NewConvExpr(recv.Pos(), ir.OCONVNOP, typ, recv))
  2113  			}
  2114  
  2115  			n := typecheck.XDotMethod(pos, recv, wrapperFn.Sel, false)
  2116  
  2117  			// As a consistency check here, we make sure "n" selected the
  2118  			// same method (represented by a types.Field) that wrapperFn
  2119  			// selected. However, for anonymous receiver types, there can be
  2120  			// multiple such types.Field instances (#58563). So we may need
  2121  			// to fallback to making sure Sym and Type (including the
  2122  			// receiver parameter's type) match.
  2123  			if n.Selection != wrapperFn.Selection {
  2124  				assert(n.Selection.Sym == wrapperFn.Selection.Sym)
  2125  				assert(types.Identical(n.Selection.Type, wrapperFn.Selection.Type))
  2126  				assert(types.Identical(n.Selection.Type.Recv().Type, wrapperFn.Selection.Type.Recv().Type))
  2127  			}
  2128  
  2129  			wrapper := methodValueWrapper{
  2130  				rcvr:	n.X.Type(),
  2131  				method:	n.Selection,
  2132  			}
  2133  
  2134  			if r.importedDef() {
  2135  				haveMethodValueWrappers = append(haveMethodValueWrappers, wrapper)
  2136  			} else {
  2137  				needMethodValueWrappers = append(needMethodValueWrappers, wrapper)
  2138  			}
  2139  			return n
  2140  		}
  2141  
  2142  		// For more complicated method expressions, we construct a
  2143  		// function literal wrapper.
  2144  		return r.curry(origPos, true, baseFn, recv, dictPtr)
  2145  
  2146  	case exprMethodExpr:
  2147  		recv := r.typ()
  2148  
  2149  		implicits := make([]int, r.Len())
  2150  		for i := range implicits {
  2151  			implicits[i] = r.Len()
  2152  		}
  2153  		var deref, addr bool
  2154  		if r.Bool() {
  2155  			deref = true
  2156  		} else if r.Bool() {
  2157  			addr = true
  2158  		}
  2159  
  2160  		origPos, pos := r.origPos()
  2161  		wrapperFn, baseFn, dictPtr := r.methodExpr()
  2162  
  2163  		// If we already have a wrapper and don't need to do anything with
  2164  		// it, we can just return the wrapper directly.
  2165  		//
  2166  		// N.B., we use implicits/deref/addr here as the source of truth
  2167  		// rather than types.Identical, because the latter can be confused
  2168  		// by tricky promoted methods (e.g., typeparam/mdempsky/21.go).
  2169  		if wrapperFn != nil && len(implicits) == 0 && !deref && !addr {
  2170  			if !types.Identical(recv, wrapperFn.Type().Param(0).Type) {
  2171  				base.FatalfAt(pos, "want receiver type %v, but have method %L", recv, wrapperFn)
  2172  			}
  2173  			return wrapperFn
  2174  		}
  2175  
  2176  		// Otherwise, if the wrapper function is a static method
  2177  		// expression (OMETHEXPR) and the receiver type is unshaped, then
  2178  		// we can rely on a statically generated wrapper being available.
  2179  		if method, ok := wrapperFn.(*ir.SelectorExpr); ok && method.Op() == ir.OMETHEXPR && !recv.HasShape() {
  2180  			return typecheck.NewMethodExpr(pos, recv, method.Sel)
  2181  		}
  2182  
  2183  		return r.methodExprWrap(origPos, recv, implicits, deref, addr, baseFn, dictPtr)
  2184  
  2185  	case exprIndex:
  2186  		x := r.expr()
  2187  		pos := r.pos()
  2188  		index := r.expr()
  2189  		n := typecheck.Expr(ir.NewIndexExpr(pos, x, index))
  2190  		switch n.Op() {
  2191  		case ir.OINDEXMAP:
  2192  			n := n.(*ir.IndexExpr)
  2193  			n.RType = r.rtype(pos)
  2194  		}
  2195  		return n
  2196  
  2197  	case exprSlice:
  2198  		x := r.expr()
  2199  		pos := r.pos()
  2200  		var index [3]ir.Node
  2201  		for i := range index {
  2202  			index[i] = r.optExpr()
  2203  		}
  2204  		op := ir.OSLICE
  2205  		if index[2] != nil {
  2206  			op = ir.OSLICE3
  2207  		}
  2208  		return typecheck.Expr(ir.NewSliceExpr(pos, op, x, index[0], index[1], index[2]))
  2209  
  2210  	case exprAssert:
  2211  		x := r.expr()
  2212  		pos := r.pos()
  2213  		typ := r.exprType()
  2214  		srcRType := r.rtype(pos)
  2215  
  2216  		// TODO(mdempsky): Always emit ODYNAMICDOTTYPE for uniformity?
  2217  		if typ, ok := typ.(*ir.DynamicType); ok && typ.Op() == ir.ODYNAMICTYPE {
  2218  			assert := ir.NewDynamicTypeAssertExpr(pos, ir.ODYNAMICDOTTYPE, x, typ.RType)
  2219  			assert.SrcRType = srcRType
  2220  			assert.ITab = typ.ITab
  2221  			return typed(typ.Type(), assert)
  2222  		}
  2223  		return typecheck.Expr(ir.NewTypeAssertExpr(pos, x, typ.Type()))
  2224  
  2225  	case exprUnaryOp:
  2226  		op := r.op()
  2227  		pos := r.pos()
  2228  		x := r.expr()
  2229  
  2230  		switch op {
  2231  		case ir.OADDR:
  2232  			return typecheck.Expr(typecheck.NodAddrAt(pos, x))
  2233  		case ir.ODEREF:
  2234  			return typecheck.Expr(ir.NewStarExpr(pos, x))
  2235  		}
  2236  		return typecheck.Expr(ir.NewUnaryExpr(pos, op, x))
  2237  
  2238  	case exprBinaryOp:
  2239  		op := r.op()
  2240  		x := r.expr()
  2241  		pos := r.pos()
  2242  		y := r.expr()
  2243  
  2244  		switch op {
  2245  		case ir.OANDAND, ir.OOROR:
  2246  			return typecheck.Expr(ir.NewLogicalExpr(pos, op, x, y))
  2247  		case ir.OLSH, ir.ORSH:
  2248  			// Untyped rhs of non-constant shift, e.g. x << 1.0.
  2249  			// If we have a constant value, it must be an int >= 0.
  2250  			if ir.IsConstNode(y) {
  2251  				val := constant.ToInt(y.Val())
  2252  				assert(val.Kind() == constant.Int && constant.Sign(val) >= 0)
  2253  			}
  2254  		}
  2255  		return typecheck.Expr(ir.NewBinaryExpr(pos, op, x, y))
  2256  
  2257  	case exprRecv:
  2258  		x := r.expr()
  2259  		pos := r.pos()
  2260  		for i, n := 0, r.Len(); i < n; i++ {
  2261  			x = Implicit(typecheck.DotField(pos, x, r.Len()))
  2262  		}
  2263  		if r.Bool() {	// needs deref
  2264  			x = Implicit(Deref(pos, x.Type().Elem(), x))
  2265  		} else if r.Bool() {	// needs addr
  2266  			x = Implicit(Addr(pos, x))
  2267  		}
  2268  		return x
  2269  
  2270  	case exprCall:
  2271  		var fun ir.Node
  2272  		var args ir.Nodes
  2273  		if r.Bool() {	// method call
  2274  			recv := r.expr()
  2275  			_, method, dictPtr := r.methodExpr()
  2276  
  2277  			if recv.Type().IsInterface() && method.Op() == ir.OMETHEXPR {
  2278  				method := method.(*ir.SelectorExpr)
  2279  
  2280  				// The compiler backend (e.g., devirtualization) handle
  2281  				// OCALLINTER/ODOTINTER better than OCALLFUNC/OMETHEXPR for
  2282  				// interface calls, so we prefer to continue constructing
  2283  				// calls that way where possible.
  2284  				//
  2285  				// There are also corner cases where semantically it's perhaps
  2286  				// significant; e.g., fixedbugs/issue15975.go, #38634, #52025.
  2287  
  2288  				fun = typecheck.XDotMethod(method.Pos(), recv, method.Sel, true)
  2289  			} else {
  2290  				if recv.Type().IsInterface() {
  2291  					// N.B., this happens currently for typeparam/issue51521.go
  2292  					// and typeparam/typeswitch3.go.
  2293  					if base.Flag.LowerM != 0 {
  2294  						base.WarnfAt(method.Pos(), "imprecise interface call")
  2295  					}
  2296  				}
  2297  
  2298  				fun = method
  2299  				args.Append(recv)
  2300  			}
  2301  			if dictPtr != nil {
  2302  				args.Append(dictPtr)
  2303  			}
  2304  		} else if r.Bool() {	// call to instanced function
  2305  			pos := r.pos()
  2306  			_, shapedFn, dictPtr := r.funcInst(pos)
  2307  			fun = shapedFn
  2308  			args.Append(dictPtr)
  2309  		} else {
  2310  			fun = r.expr()
  2311  		}
  2312  		pos := r.pos()
  2313  		args.Append(r.multiExpr()...)
  2314  		dots := r.Bool()
  2315  		n := typecheck.Call(pos, fun, args, dots)
  2316  		switch n.Op() {
  2317  		case ir.OAPPEND:
  2318  			n := n.(*ir.CallExpr)
  2319  			n.RType = r.rtype(pos)
  2320  			// For append(a, b...), we don't need the implicit conversion. The typechecker already
  2321  			// ensured that a and b are both slices with the same base type, or []byte and string.
  2322  			if n.IsDDD {
  2323  				if conv, ok := n.Args[1].(*ir.ConvExpr); ok && conv.Op() == ir.OCONVNOP && conv.Implicit() {
  2324  					n.Args[1] = conv.X
  2325  				}
  2326  			}
  2327  		case ir.OCOPY:
  2328  			n := n.(*ir.BinaryExpr)
  2329  			n.RType = r.rtype(pos)
  2330  		case ir.ODELETE:
  2331  			n := n.(*ir.CallExpr)
  2332  			n.RType = r.rtype(pos)
  2333  		case ir.OUNSAFESLICE:
  2334  			n := n.(*ir.BinaryExpr)
  2335  			n.RType = r.rtype(pos)
  2336  		}
  2337  		return n
  2338  
  2339  	case exprMake:
  2340  		pos := r.pos()
  2341  		typ := r.exprType()
  2342  		extra := r.exprs()
  2343  		n := typecheck.Expr(ir.NewCallExpr(pos, ir.OMAKE, nil, append([]ir.Node{typ}, extra...))).(*ir.MakeExpr)
  2344  		n.RType = r.rtype(pos)
  2345  		return n
  2346  
  2347  	case exprNew:
  2348  		pos := r.pos()
  2349  		typ := r.exprType()
  2350  		return typecheck.Expr(ir.NewUnaryExpr(pos, ir.ONEW, typ))
  2351  
  2352  	case exprSizeof:
  2353  		return ir.NewUintptr(r.pos(), r.typ().Size())
  2354  
  2355  	case exprAlignof:
  2356  		return ir.NewUintptr(r.pos(), r.typ().Alignment())
  2357  
  2358  	case exprOffsetof:
  2359  		pos := r.pos()
  2360  		typ := r.typ()
  2361  		types.CalcSize(typ)
  2362  
  2363  		var offset int64
  2364  		for i := r.Len(); i >= 0; i-- {
  2365  			field := typ.Field(r.Len())
  2366  			offset += field.Offset
  2367  			typ = field.Type
  2368  		}
  2369  
  2370  		return ir.NewUintptr(pos, offset)
  2371  
  2372  	case exprReshape:
  2373  		typ := r.typ()
  2374  		x := r.expr()
  2375  
  2376  		if types.IdenticalStrict(x.Type(), typ) {
  2377  			return x
  2378  		}
  2379  
  2380  		// Comparison expressions are constructed as "untyped bool" still.
  2381  		//
  2382  		// TODO(mdempsky): It should be safe to reshape them here too, but
  2383  		// maybe it's better to construct them with the proper type
  2384  		// instead.
  2385  		if x.Type() == types.UntypedBool && typ.IsBoolean() {
  2386  			return x
  2387  		}
  2388  
  2389  		base.AssertfAt(x.Type().HasShape() || typ.HasShape(), x.Pos(), "%L and %v are not shape types", x, typ)
  2390  		base.AssertfAt(types.Identical(x.Type(), typ), x.Pos(), "%L is not shape-identical to %v", x, typ)
  2391  
  2392  		// We use ir.HasUniquePos here as a check that x only appears once
  2393  		// in the AST, so it's okay for us to call SetType without
  2394  		// breaking any other uses of it.
  2395  		//
  2396  		// Notably, any ONAMEs should already have the exactly right shape
  2397  		// type and been caught by types.IdenticalStrict above.
  2398  		base.AssertfAt(ir.HasUniquePos(x), x.Pos(), "cannot call SetType(%v) on %L", typ, x)
  2399  
  2400  		if base.Debug.Reshape != 0 {
  2401  			base.WarnfAt(x.Pos(), "reshaping %L to %v", x, typ)
  2402  		}
  2403  
  2404  		x.SetType(typ)
  2405  		return x
  2406  
  2407  	case exprConvert:
  2408  		implicit := r.Bool()
  2409  		typ := r.typ()
  2410  		pos := r.pos()
  2411  		typeWord, srcRType := r.convRTTI(pos)
  2412  		dstTypeParam := r.Bool()
  2413  		identical := r.Bool()
  2414  		x := r.expr()
  2415  
  2416  		// TODO(mdempsky): Stop constructing expressions of untyped type.
  2417  		x = typecheck.DefaultLit(x, typ)
  2418  
  2419  		ce := ir.NewConvExpr(pos, ir.OCONV, typ, x)
  2420  		ce.TypeWord, ce.SrcRType = typeWord, srcRType
  2421  		if implicit {
  2422  			ce.SetImplicit(true)
  2423  		}
  2424  		n := typecheck.Expr(ce)
  2425  
  2426  		// Conversions between non-identical, non-empty interfaces always
  2427  		// requires a runtime call, even if they have identical underlying
  2428  		// interfaces. This is because we create separate itab instances
  2429  		// for each unique interface type, not merely each unique
  2430  		// interface shape.
  2431  		//
  2432  		// However, due to shape types, typecheck.Expr might mistakenly
  2433  		// think a conversion between two non-empty interfaces are
  2434  		// identical and set ir.OCONVNOP, instead of ir.OCONVIFACE. To
  2435  		// ensure we update the itab field appropriately, we force it to
  2436  		// ir.OCONVIFACE instead when shape types are involved.
  2437  		//
  2438  		// TODO(mdempsky): Are there other places we might get this wrong?
  2439  		// Should this be moved down into typecheck.{Assign,Convert}op?
  2440  		// This would be a non-issue if itabs were unique for each
  2441  		// *underlying* interface type instead.
  2442  		if !identical {
  2443  			if n, ok := n.(*ir.ConvExpr); ok && n.Op() == ir.OCONVNOP && n.Type().IsInterface() && !n.Type().IsEmptyInterface() && (n.Type().HasShape() || n.X.Type().HasShape()) {
  2444  				n.SetOp(ir.OCONVIFACE)
  2445  			}
  2446  		}
  2447  
  2448  		// spec: "If the type is a type parameter, the constant is converted
  2449  		// into a non-constant value of the type parameter."
  2450  		if dstTypeParam && ir.IsConstNode(n) {
  2451  			// Wrap in an OCONVNOP node to ensure result is non-constant.
  2452  			n = Implicit(ir.NewConvExpr(pos, ir.OCONVNOP, n.Type(), n))
  2453  			n.SetTypecheck(1)
  2454  		}
  2455  		return n
  2456  
  2457  	case exprRuntimeBuiltin:
  2458  		builtin := typecheck.LookupRuntime(r.String())
  2459  		return builtin
  2460  	}
  2461  }
  2462  
  2463  // funcInst reads an instantiated function reference, and returns
  2464  // three (possibly nil) expressions related to it:
  2465  //
  2466  // baseFn is always non-nil: it's either a function of the appropriate
  2467  // type already, or it has an extra dictionary parameter as the first
  2468  // parameter.
  2469  //
  2470  // If dictPtr is non-nil, then it's a dictionary argument that must be
  2471  // passed as the first argument to baseFn.
  2472  //
  2473  // If wrapperFn is non-nil, then it's either the same as baseFn (if
  2474  // dictPtr is nil), or it's semantically equivalent to currying baseFn
  2475  // to pass dictPtr. (wrapperFn is nil when dictPtr is an expression
  2476  // that needs to be computed dynamically.)
  2477  //
  2478  // For callers that are creating a call to the returned function, it's
  2479  // best to emit a call to baseFn, and include dictPtr in the arguments
  2480  // list as appropriate.
  2481  //
  2482  // For callers that want to return the function without invoking it,
  2483  // they may return wrapperFn if it's non-nil; but otherwise, they need
  2484  // to create their own wrapper.
  2485  func (r *reader) funcInst(pos src.XPos) (wrapperFn, baseFn, dictPtr ir.Node) {
  2486  	// Like in methodExpr, I'm pretty sure this isn't needed.
  2487  	var implicits []*types.Type
  2488  	if r.dict != nil {
  2489  		implicits = r.dict.targs
  2490  	}
  2491  
  2492  	if r.Bool() {	// dynamic subdictionary
  2493  		idx := r.Len()
  2494  		info := r.dict.subdicts[idx]
  2495  		explicits := r.p.typListIdx(info.explicits, r.dict)
  2496  
  2497  		baseFn = r.p.objIdx(info.idx, implicits, explicits, true).(*ir.Name)
  2498  
  2499  		// TODO(mdempsky): Is there a more robust way to get the
  2500  		// dictionary pointer type here?
  2501  		dictPtrType := baseFn.Type().Param(0).Type
  2502  		dictPtr = typecheck.Expr(ir.NewConvExpr(pos, ir.OCONVNOP, dictPtrType, r.dictWord(pos, r.dict.subdictsOffset()+idx)))
  2503  
  2504  		return
  2505  	}
  2506  
  2507  	info := r.objInfo()
  2508  	explicits := r.p.typListIdx(info.explicits, r.dict)
  2509  
  2510  	wrapperFn = r.p.objIdx(info.idx, implicits, explicits, false).(*ir.Name)
  2511  	baseFn = r.p.objIdx(info.idx, implicits, explicits, true).(*ir.Name)
  2512  
  2513  	dictName := r.p.objDictName(info.idx, implicits, explicits)
  2514  	dictPtr = typecheck.Expr(ir.NewAddrExpr(pos, dictName))
  2515  
  2516  	return
  2517  }
  2518  
  2519  func (pr *pkgReader) objDictName(idx pkgbits.Index, implicits, explicits []*types.Type) *ir.Name {
  2520  	rname := pr.newReader(pkgbits.RelocName, idx, pkgbits.SyncObject1)
  2521  	_, sym := rname.qualifiedIdent()
  2522  	tag := pkgbits.CodeObj(rname.Code(pkgbits.SyncCodeObj))
  2523  
  2524  	if tag == pkgbits.ObjStub {
  2525  		assert(!sym.IsBlank())
  2526  		if pri, ok := objReader[sym]; ok {
  2527  			return pri.pr.objDictName(pri.idx, nil, explicits)
  2528  		}
  2529  		base.Fatalf("unresolved stub: %v", sym)
  2530  	}
  2531  
  2532  	dict := pr.objDictIdx(sym, idx, implicits, explicits, false)
  2533  
  2534  	return pr.dictNameOf(dict)
  2535  }
  2536  
  2537  // curry returns a function literal that calls fun with arg0 and
  2538  // (optionally) arg1, accepting additional arguments to the function
  2539  // literal as necessary to satisfy fun's signature.
  2540  //
  2541  // If nilCheck is true and arg0 is an interface value, then it's
  2542  // checked to be non-nil as an initial step at the point of evaluating
  2543  // the function literal itself.
  2544  func (r *reader) curry(origPos src.XPos, ifaceHack bool, fun ir.Node, arg0, arg1 ir.Node) ir.Node {
  2545  	var captured ir.Nodes
  2546  	captured.Append(fun, arg0)
  2547  	if arg1 != nil {
  2548  		captured.Append(arg1)
  2549  	}
  2550  
  2551  	params, results := syntheticSig(fun.Type())
  2552  	params = params[len(captured)-1:]	// skip curried parameters
  2553  	typ := types.NewSignature(nil, params, results)
  2554  
  2555  	addBody := func(pos src.XPos, r *reader, captured []ir.Node) {
  2556  		fun := captured[0]
  2557  
  2558  		var args ir.Nodes
  2559  		args.Append(captured[1:]...)
  2560  		args.Append(r.syntheticArgs()...)
  2561  
  2562  		r.syntheticTailCall(pos, fun, args)
  2563  	}
  2564  
  2565  	return r.syntheticClosure(origPos, typ, ifaceHack, captured, addBody)
  2566  }
  2567  
  2568  // methodExprWrap returns a function literal that changes method's
  2569  // first parameter's type to recv, and uses implicits/deref/addr to
  2570  // select the appropriate receiver parameter to pass to method.
  2571  func (r *reader) methodExprWrap(origPos src.XPos, recv *types.Type, implicits []int, deref, addr bool, method, dictPtr ir.Node) ir.Node {
  2572  	var captured ir.Nodes
  2573  	captured.Append(method)
  2574  
  2575  	params, results := syntheticSig(method.Type())
  2576  
  2577  	// Change first parameter to recv.
  2578  	params[0].Type = recv
  2579  
  2580  	// If we have a dictionary pointer argument to pass, then omit the
  2581  	// underlying method expression's dictionary parameter from the
  2582  	// returned signature too.
  2583  	if dictPtr != nil {
  2584  		captured.Append(dictPtr)
  2585  		params = append(params[:1], params[2:]...)
  2586  	}
  2587  
  2588  	typ := types.NewSignature(nil, params, results)
  2589  
  2590  	addBody := func(pos src.XPos, r *reader, captured []ir.Node) {
  2591  		fn := captured[0]
  2592  		args := r.syntheticArgs()
  2593  
  2594  		// Rewrite first argument based on implicits/deref/addr.
  2595  		{
  2596  			arg := args[0]
  2597  			for _, ix := range implicits {
  2598  				arg = Implicit(typecheck.DotField(pos, arg, ix))
  2599  			}
  2600  			if deref {
  2601  				arg = Implicit(Deref(pos, arg.Type().Elem(), arg))
  2602  			} else if addr {
  2603  				arg = Implicit(Addr(pos, arg))
  2604  			}
  2605  			args[0] = arg
  2606  		}
  2607  
  2608  		// Insert dictionary argument, if provided.
  2609  		if dictPtr != nil {
  2610  			newArgs := make([]ir.Node, len(args)+1)
  2611  			newArgs[0] = args[0]
  2612  			newArgs[1] = captured[1]
  2613  			copy(newArgs[2:], args[1:])
  2614  			args = newArgs
  2615  		}
  2616  
  2617  		r.syntheticTailCall(pos, fn, args)
  2618  	}
  2619  
  2620  	return r.syntheticClosure(origPos, typ, false, captured, addBody)
  2621  }
  2622  
  2623  // syntheticClosure constructs a synthetic function literal for
  2624  // currying dictionary arguments. origPos is the position used for the
  2625  // closure, which must be a non-inlined position. typ is the function
  2626  // literal's signature type.
  2627  //
  2628  // captures is a list of expressions that need to be evaluated at the
  2629  // point of function literal evaluation and captured by the function
  2630  // literal. If ifaceHack is true and captures[1] is an interface type,
  2631  // it's checked to be non-nil after evaluation.
  2632  //
  2633  // addBody is a callback function to populate the function body. The
  2634  // list of captured values passed back has the captured variables for
  2635  // use within the function literal, corresponding to the expressions
  2636  // in captures.
  2637  func (r *reader) syntheticClosure(origPos src.XPos, typ *types.Type, ifaceHack bool, captures ir.Nodes, addBody func(pos src.XPos, r *reader, captured []ir.Node)) ir.Node {
  2638  	// isSafe reports whether n is an expression that we can safely
  2639  	// defer to evaluating inside the closure instead, to avoid storing
  2640  	// them into the closure.
  2641  	//
  2642  	// In practice this is always (and only) the wrappee function.
  2643  	isSafe := func(n ir.Node) bool {
  2644  		if n.Op() == ir.ONAME && n.(*ir.Name).Class == ir.PFUNC {
  2645  			return true
  2646  		}
  2647  		if n.Op() == ir.OMETHEXPR {
  2648  			return true
  2649  		}
  2650  
  2651  		return false
  2652  	}
  2653  
  2654  	fn := r.inlClosureFunc(origPos, typ)
  2655  	fn.SetWrapper(true)
  2656  
  2657  	clo := fn.OClosure
  2658  	inlPos := clo.Pos()
  2659  
  2660  	var init ir.Nodes
  2661  	for i, n := range captures {
  2662  		if isSafe(n) {
  2663  			continue	// skip capture; can reference directly
  2664  		}
  2665  
  2666  		tmp := r.tempCopy(inlPos, n, &init)
  2667  		ir.NewClosureVar(origPos, fn, tmp)
  2668  
  2669  		// We need to nil check interface receivers at the point of method
  2670  		// value evaluation, ugh.
  2671  		if ifaceHack && i == 1 && n.Type().IsInterface() {
  2672  			check := ir.NewUnaryExpr(inlPos, ir.OCHECKNIL, ir.NewUnaryExpr(inlPos, ir.OITAB, tmp))
  2673  			init.Append(typecheck.Stmt(check))
  2674  		}
  2675  	}
  2676  
  2677  	pri := pkgReaderIndex{synthetic: func(pos src.XPos, r *reader) {
  2678  		captured := make([]ir.Node, len(captures))
  2679  		next := 0
  2680  		for i, n := range captures {
  2681  			if isSafe(n) {
  2682  				captured[i] = n
  2683  			} else {
  2684  				captured[i] = r.closureVars[next]
  2685  				next++
  2686  			}
  2687  		}
  2688  		assert(next == len(r.closureVars))
  2689  
  2690  		addBody(origPos, r, captured)
  2691  	}}
  2692  	bodyReader[fn] = pri
  2693  	pri.funcBody(fn)
  2694  
  2695  	return ir.InitExpr(init, clo)
  2696  }
  2697  
  2698  // syntheticSig duplicates and returns the params and results lists
  2699  // for sig, but renaming anonymous parameters so they can be assigned
  2700  // ir.Names.
  2701  func syntheticSig(sig *types.Type) (params, results []*types.Field) {
  2702  	clone := func(params []*types.Field) []*types.Field {
  2703  		res := make([]*types.Field, len(params))
  2704  		for i, param := range params {
  2705  			// TODO(mdempsky): It would be nice to preserve the original
  2706  			// parameter positions here instead, but at least
  2707  			// typecheck.NewMethodType replaces them with base.Pos, making
  2708  			// them useless. Worse, the positions copied from base.Pos may
  2709  			// have inlining contexts, which we definitely don't want here
  2710  			// (e.g., #54625).
  2711  			res[i] = types.NewField(base.AutogeneratedPos, param.Sym, param.Type)
  2712  			res[i].SetIsDDD(param.IsDDD())
  2713  		}
  2714  		return res
  2715  	}
  2716  
  2717  	return clone(sig.Params()), clone(sig.Results())
  2718  }
  2719  
  2720  func (r *reader) optExpr() ir.Node {
  2721  	if r.Bool() {
  2722  		return r.expr()
  2723  	}
  2724  	return nil
  2725  }
  2726  
  2727  // methodExpr reads a method expression reference, and returns three
  2728  // (possibly nil) expressions related to it:
  2729  //
  2730  // baseFn is always non-nil: it's either a function of the appropriate
  2731  // type already, or it has an extra dictionary parameter as the second
  2732  // parameter (i.e., immediately after the promoted receiver
  2733  // parameter).
  2734  //
  2735  // If dictPtr is non-nil, then it's a dictionary argument that must be
  2736  // passed as the second argument to baseFn.
  2737  //
  2738  // If wrapperFn is non-nil, then it's either the same as baseFn (if
  2739  // dictPtr is nil), or it's semantically equivalent to currying baseFn
  2740  // to pass dictPtr. (wrapperFn is nil when dictPtr is an expression
  2741  // that needs to be computed dynamically.)
  2742  //
  2743  // For callers that are creating a call to the returned method, it's
  2744  // best to emit a call to baseFn, and include dictPtr in the arguments
  2745  // list as appropriate.
  2746  //
  2747  // For callers that want to return a method expression without
  2748  // invoking it, they may return wrapperFn if it's non-nil; but
  2749  // otherwise, they need to create their own wrapper.
  2750  func (r *reader) methodExpr() (wrapperFn, baseFn, dictPtr ir.Node) {
  2751  	recv := r.typ()
  2752  	sig0 := r.typ()
  2753  	pos := r.pos()
  2754  	sym := r.selector()
  2755  
  2756  	// Signature type to return (i.e., recv prepended to the method's
  2757  	// normal parameters list).
  2758  	sig := typecheck.NewMethodType(sig0, recv)
  2759  
  2760  	if r.Bool() {	// type parameter method expression
  2761  		idx := r.Len()
  2762  		word := r.dictWord(pos, r.dict.typeParamMethodExprsOffset()+idx)
  2763  
  2764  		// TODO(mdempsky): If the type parameter was instantiated with an
  2765  		// interface type (i.e., embed.IsInterface()), then we could
  2766  		// return the OMETHEXPR instead and save an indirection.
  2767  
  2768  		// We wrote the method expression's entry point PC into the
  2769  		// dictionary, but for Go `func` values we need to return a
  2770  		// closure (i.e., pointer to a structure with the PC as the first
  2771  		// field). Because method expressions don't have any closure
  2772  		// variables, we pun the dictionary entry as the closure struct.
  2773  		fn := typecheck.Expr(ir.NewConvExpr(pos, ir.OCONVNOP, sig, ir.NewAddrExpr(pos, word)))
  2774  		return fn, fn, nil
  2775  	}
  2776  
  2777  	// TODO(mdempsky): I'm pretty sure this isn't needed: implicits is
  2778  	// only relevant to locally defined types, but they can't have
  2779  	// (non-promoted) methods.
  2780  	var implicits []*types.Type
  2781  	if r.dict != nil {
  2782  		implicits = r.dict.targs
  2783  	}
  2784  
  2785  	if r.Bool() {	// dynamic subdictionary
  2786  		idx := r.Len()
  2787  		info := r.dict.subdicts[idx]
  2788  		explicits := r.p.typListIdx(info.explicits, r.dict)
  2789  
  2790  		shapedObj := r.p.objIdx(info.idx, implicits, explicits, true).(*ir.Name)
  2791  		shapedFn := shapedMethodExpr(pos, shapedObj, sym)
  2792  
  2793  		// TODO(mdempsky): Is there a more robust way to get the
  2794  		// dictionary pointer type here?
  2795  		dictPtrType := shapedFn.Type().Param(1).Type
  2796  		dictPtr := typecheck.Expr(ir.NewConvExpr(pos, ir.OCONVNOP, dictPtrType, r.dictWord(pos, r.dict.subdictsOffset()+idx)))
  2797  
  2798  		return nil, shapedFn, dictPtr
  2799  	}
  2800  
  2801  	if r.Bool() {	// static dictionary
  2802  		info := r.objInfo()
  2803  		explicits := r.p.typListIdx(info.explicits, r.dict)
  2804  
  2805  		shapedObj := r.p.objIdx(info.idx, implicits, explicits, true).(*ir.Name)
  2806  		shapedFn := shapedMethodExpr(pos, shapedObj, sym)
  2807  
  2808  		dict := r.p.objDictName(info.idx, implicits, explicits)
  2809  		dictPtr := typecheck.Expr(ir.NewAddrExpr(pos, dict))
  2810  
  2811  		// Check that dictPtr matches shapedFn's dictionary parameter.
  2812  		if !types.Identical(dictPtr.Type(), shapedFn.Type().Param(1).Type) {
  2813  			base.FatalfAt(pos, "dict %L, but shaped method %L", dict, shapedFn)
  2814  		}
  2815  
  2816  		// For statically known instantiations, we can take advantage of
  2817  		// the stenciled wrapper.
  2818  		base.AssertfAt(!recv.HasShape(), pos, "shaped receiver %v", recv)
  2819  		wrapperFn := typecheck.NewMethodExpr(pos, recv, sym)
  2820  		base.AssertfAt(types.Identical(sig, wrapperFn.Type()), pos, "wrapper %L does not have type %v", wrapperFn, sig)
  2821  
  2822  		return wrapperFn, shapedFn, dictPtr
  2823  	}
  2824  
  2825  	// Simple method expression; no dictionary needed.
  2826  	base.AssertfAt(!recv.HasShape() || recv.IsInterface(), pos, "shaped receiver %v", recv)
  2827  	fn := typecheck.NewMethodExpr(pos, recv, sym)
  2828  	return fn, fn, nil
  2829  }
  2830  
  2831  // shapedMethodExpr returns the specified method on the given shaped
  2832  // type.
  2833  func shapedMethodExpr(pos src.XPos, obj *ir.Name, sym *types.Sym) *ir.SelectorExpr {
  2834  	assert(obj.Op() == ir.OTYPE)
  2835  
  2836  	typ := obj.Type()
  2837  	assert(typ.HasShape())
  2838  
  2839  	method := func() *types.Field {
  2840  		for _, method := range typ.Methods() {
  2841  			if method.Sym == sym {
  2842  				return method
  2843  			}
  2844  		}
  2845  
  2846  		base.FatalfAt(pos, "failed to find method %v in shaped type %v", sym, typ)
  2847  		panic("unreachable")
  2848  	}()
  2849  
  2850  	// Construct an OMETHEXPR node.
  2851  	recv := method.Type.Recv().Type
  2852  	return typecheck.NewMethodExpr(pos, recv, sym)
  2853  }
  2854  
  2855  func (r *reader) multiExpr() []ir.Node {
  2856  	r.Sync(pkgbits.SyncMultiExpr)
  2857  
  2858  	if r.Bool() {	// N:1
  2859  		pos := r.pos()
  2860  		expr := r.expr()
  2861  
  2862  		results := make([]ir.Node, r.Len())
  2863  		as := ir.NewAssignListStmt(pos, ir.OAS2, nil, []ir.Node{expr})
  2864  		as.Def = true
  2865  		for i := range results {
  2866  			tmp := r.temp(pos, r.typ())
  2867  			as.PtrInit().Append(ir.NewDecl(pos, ir.ODCL, tmp))
  2868  			as.Lhs.Append(tmp)
  2869  
  2870  			res := ir.Node(tmp)
  2871  			if r.Bool() {
  2872  				n := ir.NewConvExpr(pos, ir.OCONV, r.typ(), res)
  2873  				n.TypeWord, n.SrcRType = r.convRTTI(pos)
  2874  				n.SetImplicit(true)
  2875  				res = typecheck.Expr(n)
  2876  			}
  2877  			results[i] = res
  2878  		}
  2879  
  2880  		// TODO(mdempsky): Could use ir.InlinedCallExpr instead?
  2881  		results[0] = ir.InitExpr([]ir.Node{typecheck.Stmt(as)}, results[0])
  2882  		return results
  2883  	}
  2884  
  2885  	// N:N
  2886  	exprs := make([]ir.Node, r.Len())
  2887  	if len(exprs) == 0 {
  2888  		return nil
  2889  	}
  2890  	for i := range exprs {
  2891  		exprs[i] = r.expr()
  2892  	}
  2893  	return exprs
  2894  }
  2895  
  2896  // temp returns a new autotemp of the specified type.
  2897  func (r *reader) temp(pos src.XPos, typ *types.Type) *ir.Name {
  2898  	return typecheck.TempAt(pos, r.curfn, typ)
  2899  }
  2900  
  2901  // tempCopy declares and returns a new autotemp initialized to the
  2902  // value of expr.
  2903  func (r *reader) tempCopy(pos src.XPos, expr ir.Node, init *ir.Nodes) *ir.Name {
  2904  	tmp := r.temp(pos, expr.Type())
  2905  
  2906  	init.Append(typecheck.Stmt(ir.NewDecl(pos, ir.ODCL, tmp)))
  2907  
  2908  	assign := ir.NewAssignStmt(pos, tmp, expr)
  2909  	assign.Def = true
  2910  	init.Append(typecheck.Stmt(ir.NewAssignStmt(pos, tmp, expr)))
  2911  
  2912  	tmp.Defn = assign
  2913  
  2914  	return tmp
  2915  }
  2916  
  2917  func (r *reader) compLit() ir.Node {
  2918  	r.Sync(pkgbits.SyncCompLit)
  2919  	pos := r.pos()
  2920  	typ0 := r.typ()
  2921  
  2922  	typ := typ0
  2923  	if typ.IsPtr() {
  2924  		typ = typ.Elem()
  2925  	}
  2926  	if typ.Kind() == types.TFORW {
  2927  		base.FatalfAt(pos, "unresolved composite literal type: %v", typ)
  2928  	}
  2929  	var rtype ir.Node
  2930  	if typ.IsMap() {
  2931  		rtype = r.rtype(pos)
  2932  	}
  2933  	isStruct := typ.Kind() == types.TSTRUCT
  2934  
  2935  	elems := make([]ir.Node, r.Len())
  2936  	for i := range elems {
  2937  		elemp := &elems[i]
  2938  
  2939  		if isStruct {
  2940  			sk := ir.NewStructKeyExpr(r.pos(), typ.Field(r.Len()), nil)
  2941  			*elemp, elemp = sk, &sk.Value
  2942  		} else if r.Bool() {
  2943  			kv := ir.NewKeyExpr(r.pos(), r.expr(), nil)
  2944  			*elemp, elemp = kv, &kv.Value
  2945  		}
  2946  
  2947  		*elemp = wrapName(r.pos(), r.expr())
  2948  	}
  2949  
  2950  	lit := typecheck.Expr(ir.NewCompLitExpr(pos, ir.OCOMPLIT, typ, elems))
  2951  	if rtype != nil {
  2952  		lit := lit.(*ir.CompLitExpr)
  2953  		lit.RType = rtype
  2954  	}
  2955  	if typ0.IsPtr() {
  2956  		lit = typecheck.Expr(typecheck.NodAddrAt(pos, lit))
  2957  		lit.SetType(typ0)
  2958  	}
  2959  	return lit
  2960  }
  2961  
  2962  func wrapName(pos src.XPos, x ir.Node) ir.Node {
  2963  	// These nodes do not carry line numbers.
  2964  	// Introduce a wrapper node to give them the correct line.
  2965  	switch x.Op() {
  2966  	case ir.OTYPE, ir.OLITERAL:
  2967  		if x.Sym() == nil {
  2968  			break
  2969  		}
  2970  		fallthrough
  2971  	case ir.ONAME, ir.ONONAME, ir.ONIL:
  2972  		p := ir.NewParenExpr(pos, x)
  2973  		p.SetImplicit(true)
  2974  		return p
  2975  	}
  2976  	return x
  2977  }
  2978  
  2979  func (r *reader) funcLit() ir.Node {
  2980  	r.Sync(pkgbits.SyncFuncLit)
  2981  
  2982  	// The underlying function declaration (including its parameters'
  2983  	// positions, if any) need to remain the original, uninlined
  2984  	// positions. This is because we track inlining-context on nodes so
  2985  	// we can synthesize the extra implied stack frames dynamically when
  2986  	// generating tracebacks, whereas those stack frames don't make
  2987  	// sense *within* the function literal. (Any necessary inlining
  2988  	// adjustments will have been applied to the call expression
  2989  	// instead.)
  2990  	//
  2991  	// This is subtle, and getting it wrong leads to cycles in the
  2992  	// inlining tree, which lead to infinite loops during stack
  2993  	// unwinding (#46234, #54625).
  2994  	//
  2995  	// Note that we *do* want the inline-adjusted position for the
  2996  	// OCLOSURE node, because that position represents where any heap
  2997  	// allocation of the closure is credited (#49171).
  2998  	r.suppressInlPos++
  2999  	origPos := r.pos()
  3000  	sig := r.signature(nil)
  3001  	r.suppressInlPos--
  3002  
  3003  	fn := r.inlClosureFunc(origPos, sig)
  3004  
  3005  	fn.ClosureVars = make([]*ir.Name, 0, r.Len())
  3006  	for len(fn.ClosureVars) < cap(fn.ClosureVars) {
  3007  		// TODO(mdempsky): I think these should be original positions too
  3008  		// (i.e., not inline-adjusted).
  3009  		ir.NewClosureVar(r.pos(), fn, r.useLocal())
  3010  	}
  3011  	if param := r.dictParam; param != nil {
  3012  		// If we have a dictionary parameter, capture it too. For
  3013  		// simplicity, we capture it last and unconditionally.
  3014  		ir.NewClosureVar(param.Pos(), fn, param)
  3015  	}
  3016  
  3017  	r.addBody(fn, nil)
  3018  
  3019  	// un-hide closures belong to init function.
  3020  	if (r.curfn.IsPackageInit() || strings.HasPrefix(r.curfn.Sym().Name, "init.")) && ir.IsTrivialClosure(fn.OClosure) {
  3021  		fn.SetIsHiddenClosure(false)
  3022  	}
  3023  
  3024  	return fn.OClosure
  3025  }
  3026  
  3027  // inlClosureFunc constructs a new closure function, but correctly
  3028  // handles inlining.
  3029  func (r *reader) inlClosureFunc(origPos src.XPos, sig *types.Type) *ir.Func {
  3030  	curfn := r.inlCaller
  3031  	if curfn == nil {
  3032  		curfn = r.curfn
  3033  	}
  3034  
  3035  	// TODO(mdempsky): Remove hard-coding of typecheck.Target.
  3036  	return ir.NewClosureFunc(origPos, r.inlPos(origPos), ir.OCLOSURE, sig, curfn, typecheck.Target)
  3037  }
  3038  
  3039  func (r *reader) exprList() []ir.Node {
  3040  	r.Sync(pkgbits.SyncExprList)
  3041  	return r.exprs()
  3042  }
  3043  
  3044  func (r *reader) exprs() []ir.Node {
  3045  	r.Sync(pkgbits.SyncExprs)
  3046  	nodes := make([]ir.Node, r.Len())
  3047  	if len(nodes) == 0 {
  3048  		return nil	// TODO(mdempsky): Unclear if this matters.
  3049  	}
  3050  	for i := range nodes {
  3051  		nodes[i] = r.expr()
  3052  	}
  3053  	return nodes
  3054  }
  3055  
  3056  // dictWord returns an expression to return the specified
  3057  // uintptr-typed word from the dictionary parameter.
  3058  func (r *reader) dictWord(pos src.XPos, idx int) ir.Node {
  3059  	base.AssertfAt(r.dictParam != nil, pos, "expected dictParam in %v", r.curfn)
  3060  	return typecheck.Expr(ir.NewIndexExpr(pos, r.dictParam, ir.NewInt(pos, int64(idx))))
  3061  }
  3062  
  3063  // rttiWord is like dictWord, but converts it to *byte (the type used
  3064  // internally to represent *runtime._type and *runtime.itab).
  3065  func (r *reader) rttiWord(pos src.XPos, idx int) ir.Node {
  3066  	return typecheck.Expr(ir.NewConvExpr(pos, ir.OCONVNOP, types.NewPtr(types.Types[types.TUINT8]), r.dictWord(pos, idx)))
  3067  }
  3068  
  3069  // rtype reads a type reference from the element bitstream, and
  3070  // returns an expression of type *runtime._type representing that
  3071  // type.
  3072  func (r *reader) rtype(pos src.XPos) ir.Node {
  3073  	_, rtype := r.rtype0(pos)
  3074  	return rtype
  3075  }
  3076  
  3077  func (r *reader) rtype0(pos src.XPos) (typ *types.Type, rtype ir.Node) {
  3078  	r.Sync(pkgbits.SyncRType)
  3079  	if r.Bool() {	// derived type
  3080  		idx := r.Len()
  3081  		info := r.dict.rtypes[idx]
  3082  		typ = r.p.typIdx(info, r.dict, true)
  3083  		rtype = r.rttiWord(pos, r.dict.rtypesOffset()+idx)
  3084  		return
  3085  	}
  3086  
  3087  	typ = r.typ()
  3088  	rtype = reflectdata.TypePtrAt(pos, typ)
  3089  	return
  3090  }
  3091  
  3092  // varDictIndex populates name.DictIndex if name is a derived type.
  3093  func (r *reader) varDictIndex(name *ir.Name) {
  3094  	if r.Bool() {
  3095  		idx := 1 + r.dict.rtypesOffset() + r.Len()
  3096  		if int(uint16(idx)) != idx {
  3097  			base.FatalfAt(name.Pos(), "DictIndex overflow for %v: %v", name, idx)
  3098  		}
  3099  		name.DictIndex = uint16(idx)
  3100  	}
  3101  }
  3102  
  3103  // itab returns a (typ, iface) pair of types.
  3104  //
  3105  // typRType and ifaceRType are expressions that evaluate to the
  3106  // *runtime._type for typ and iface, respectively.
  3107  //
  3108  // If typ is a concrete type and iface is a non-empty interface type,
  3109  // then itab is an expression that evaluates to the *runtime.itab for
  3110  // the pair. Otherwise, itab is nil.
  3111  func (r *reader) itab(pos src.XPos) (typ *types.Type, typRType ir.Node, iface *types.Type, ifaceRType ir.Node, itab ir.Node) {
  3112  	typ, typRType = r.rtype0(pos)
  3113  	iface, ifaceRType = r.rtype0(pos)
  3114  
  3115  	idx := -1
  3116  	if r.Bool() {
  3117  		idx = r.Len()
  3118  	}
  3119  
  3120  	if !typ.IsInterface() && iface.IsInterface() && !iface.IsEmptyInterface() {
  3121  		if idx >= 0 {
  3122  			itab = r.rttiWord(pos, r.dict.itabsOffset()+idx)
  3123  		} else {
  3124  			base.AssertfAt(!typ.HasShape(), pos, "%v is a shape type", typ)
  3125  			base.AssertfAt(!iface.HasShape(), pos, "%v is a shape type", iface)
  3126  
  3127  			lsym := reflectdata.ITabLsym(typ, iface)
  3128  			itab = typecheck.LinksymAddr(pos, lsym, types.Types[types.TUINT8])
  3129  		}
  3130  	}
  3131  
  3132  	return
  3133  }
  3134  
  3135  // convRTTI returns expressions appropriate for populating an
  3136  // ir.ConvExpr's TypeWord and SrcRType fields, respectively.
  3137  func (r *reader) convRTTI(pos src.XPos) (typeWord, srcRType ir.Node) {
  3138  	r.Sync(pkgbits.SyncConvRTTI)
  3139  	src, srcRType0, dst, dstRType, itab := r.itab(pos)
  3140  	if !dst.IsInterface() {
  3141  		return
  3142  	}
  3143  
  3144  	// See reflectdata.ConvIfaceTypeWord.
  3145  	switch {
  3146  	case dst.IsEmptyInterface():
  3147  		if !src.IsInterface() {
  3148  			typeWord = srcRType0	// direct eface construction
  3149  		}
  3150  	case !src.IsInterface():
  3151  		typeWord = itab	// direct iface construction
  3152  	default:
  3153  		typeWord = dstRType	// convI2I
  3154  	}
  3155  
  3156  	// See reflectdata.ConvIfaceSrcRType.
  3157  	if !src.IsInterface() {
  3158  		srcRType = srcRType0
  3159  	}
  3160  
  3161  	return
  3162  }
  3163  
  3164  func (r *reader) exprType() ir.Node {
  3165  	r.Sync(pkgbits.SyncExprType)
  3166  	pos := r.pos()
  3167  
  3168  	var typ *types.Type
  3169  	var rtype, itab ir.Node
  3170  
  3171  	if r.Bool() {
  3172  		typ, rtype, _, _, itab = r.itab(pos)
  3173  		if !typ.IsInterface() {
  3174  			rtype = nil	// TODO(mdempsky): Leave set?
  3175  		}
  3176  	} else {
  3177  		typ, rtype = r.rtype0(pos)
  3178  
  3179  		if !r.Bool() {	// not derived
  3180  			return ir.TypeNode(typ)
  3181  		}
  3182  	}
  3183  
  3184  	dt := ir.NewDynamicType(pos, rtype)
  3185  	dt.ITab = itab
  3186  	return typed(typ, dt)
  3187  }
  3188  
  3189  func (r *reader) op() ir.Op {
  3190  	r.Sync(pkgbits.SyncOp)
  3191  	return ir.Op(r.Len())
  3192  }
  3193  
  3194  // @@@ Package initialization
  3195  
  3196  func (r *reader) pkgInit(self *types.Pkg, target *ir.Package) {
  3197  	cgoPragmas := make([][]string, r.Len())
  3198  	for i := range cgoPragmas {
  3199  		cgoPragmas[i] = r.Strings()
  3200  	}
  3201  	target.CgoPragmas = cgoPragmas
  3202  
  3203  	r.pkgInitOrder(target)
  3204  
  3205  	r.pkgDecls(target)
  3206  
  3207  	r.Sync(pkgbits.SyncEOF)
  3208  }
  3209  
  3210  // pkgInitOrder creates a synthetic init function to handle any
  3211  // package-scope initialization statements.
  3212  func (r *reader) pkgInitOrder(target *ir.Package) {
  3213  	initOrder := make([]ir.Node, r.Len())
  3214  	if len(initOrder) == 0 {
  3215  		return
  3216  	}
  3217  
  3218  	// Make a function that contains all the initialization statements.
  3219  	pos := base.AutogeneratedPos
  3220  	base.Pos = pos
  3221  
  3222  	fn := ir.NewFunc(pos, pos, typecheck.Lookup("init"), types.NewSignature(nil, nil, nil))
  3223  	fn.SetIsPackageInit(true)
  3224  	fn.SetInlinabilityChecked(true)	// suppress useless "can inline" diagnostics
  3225  
  3226  	typecheck.DeclFunc(fn)
  3227  	r.curfn = fn
  3228  
  3229  	for i := range initOrder {
  3230  		lhs := make([]ir.Node, r.Len())
  3231  		for j := range lhs {
  3232  			lhs[j] = r.obj()
  3233  		}
  3234  		rhs := r.expr()
  3235  		pos := lhs[0].Pos()
  3236  
  3237  		var as ir.Node
  3238  		if len(lhs) == 1 {
  3239  			as = typecheck.Stmt(ir.NewAssignStmt(pos, lhs[0], rhs))
  3240  		} else {
  3241  			as = typecheck.Stmt(ir.NewAssignListStmt(pos, ir.OAS2, lhs, []ir.Node{rhs}))
  3242  		}
  3243  
  3244  		for _, v := range lhs {
  3245  			v.(*ir.Name).Defn = as
  3246  		}
  3247  
  3248  		initOrder[i] = as
  3249  	}
  3250  
  3251  	fn.Body = initOrder
  3252  
  3253  	typecheck.FinishFuncBody()
  3254  	r.curfn = nil
  3255  	r.locals = nil
  3256  
  3257  	// Outline (if legal/profitable) global map inits.
  3258  	staticinit.OutlineMapInits(fn)
  3259  
  3260  	target.Inits = append(target.Inits, fn)
  3261  }
  3262  
  3263  func (r *reader) pkgDecls(target *ir.Package) {
  3264  	r.Sync(pkgbits.SyncDecls)
  3265  	for {
  3266  		switch code := codeDecl(r.Code(pkgbits.SyncDecl)); code {
  3267  		default:
  3268  			panic(fmt.Sprintf("unhandled decl: %v", code))
  3269  
  3270  		case declEnd:
  3271  			return
  3272  
  3273  		case declFunc:
  3274  			names := r.pkgObjs(target)
  3275  			assert(len(names) == 1)
  3276  			target.Funcs = append(target.Funcs, names[0].Func)
  3277  
  3278  		case declMethod:
  3279  			typ := r.typ()
  3280  			sym := r.selector()
  3281  
  3282  			method := typecheck.Lookdot1(nil, sym, typ, typ.Methods(), 0)
  3283  			target.Funcs = append(target.Funcs, method.Nname.(*ir.Name).Func)
  3284  
  3285  		case declVar:
  3286  			names := r.pkgObjs(target)
  3287  
  3288  			if n := r.Len(); n > 0 {
  3289  				assert(len(names) == 1)
  3290  				embeds := make([]ir.Embed, n)
  3291  				for i := range embeds {
  3292  					embeds[i] = ir.Embed{Pos: r.pos(), Patterns: r.Strings()}
  3293  				}
  3294  				names[0].Embed = &embeds
  3295  				target.Embeds = append(target.Embeds, names[0])
  3296  			}
  3297  
  3298  		case declOther:
  3299  			r.pkgObjs(target)
  3300  		}
  3301  	}
  3302  }
  3303  
  3304  func (r *reader) pkgObjs(target *ir.Package) []*ir.Name {
  3305  	r.Sync(pkgbits.SyncDeclNames)
  3306  	nodes := make([]*ir.Name, r.Len())
  3307  	for i := range nodes {
  3308  		r.Sync(pkgbits.SyncDeclName)
  3309  
  3310  		name := r.obj().(*ir.Name)
  3311  		nodes[i] = name
  3312  
  3313  		sym := name.Sym()
  3314  		if sym.IsBlank() {
  3315  			continue
  3316  		}
  3317  
  3318  		switch name.Class {
  3319  		default:
  3320  			base.FatalfAt(name.Pos(), "unexpected class: %v", name.Class)
  3321  
  3322  		case ir.PEXTERN:
  3323  			target.Externs = append(target.Externs, name)
  3324  
  3325  		case ir.PFUNC:
  3326  			assert(name.Type().Recv() == nil)
  3327  
  3328  			// TODO(mdempsky): Cleaner way to recognize init?
  3329  			if strings.HasPrefix(sym.Name, "init.") {
  3330  				target.Inits = append(target.Inits, name.Func)
  3331  			}
  3332  		}
  3333  
  3334  		if base.Ctxt.Flag_dynlink && types.LocalPkg.Name == "main" && types.IsExported(sym.Name) && name.Op() == ir.ONAME {
  3335  			assert(!sym.OnExportList())
  3336  			target.PluginExports = append(target.PluginExports, name)
  3337  			sym.SetOnExportList(true)
  3338  		}
  3339  
  3340  		if base.Flag.AsmHdr != "" && (name.Op() == ir.OLITERAL || name.Op() == ir.OTYPE) {
  3341  			assert(!sym.Asm())
  3342  			target.AsmHdrDecls = append(target.AsmHdrDecls, name)
  3343  			sym.SetAsm(true)
  3344  		}
  3345  	}
  3346  
  3347  	return nodes
  3348  }
  3349  
  3350  // @@@ Inlining
  3351  
  3352  // unifiedHaveInlineBody reports whether we have the function body for
  3353  // fn, so we can inline it.
  3354  func unifiedHaveInlineBody(fn *ir.Func) bool {
  3355  	if fn.Inl == nil {
  3356  		return false
  3357  	}
  3358  
  3359  	_, ok := bodyReaderFor(fn)
  3360  	return ok
  3361  }
  3362  
  3363  var inlgen = 0
  3364  
  3365  // unifiedInlineCall implements inline.NewInline by re-reading the function
  3366  // body from its Unified IR export data.
  3367  func unifiedInlineCall(callerfn *ir.Func, call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr {
  3368  	pri, ok := bodyReaderFor(fn)
  3369  	if !ok {
  3370  		base.FatalfAt(call.Pos(), "cannot inline call to %v: missing inline body", fn)
  3371  	}
  3372  
  3373  	if !fn.Inl.HaveDcl {
  3374  		expandInline(fn, pri)
  3375  	}
  3376  
  3377  	r := pri.asReader(pkgbits.RelocBody, pkgbits.SyncFuncBody)
  3378  
  3379  	tmpfn := ir.NewFunc(fn.Pos(), fn.Nname.Pos(), callerfn.Sym(), fn.Type())
  3380  
  3381  	r.curfn = tmpfn
  3382  
  3383  	r.inlCaller = callerfn
  3384  	r.inlCall = call
  3385  	r.inlFunc = fn
  3386  	r.inlTreeIndex = inlIndex
  3387  	r.inlPosBases = make(map[*src.PosBase]*src.PosBase)
  3388  	r.funarghack = true
  3389  
  3390  	r.closureVars = make([]*ir.Name, len(r.inlFunc.ClosureVars))
  3391  	for i, cv := range r.inlFunc.ClosureVars {
  3392  		// TODO(mdempsky): It should be possible to support this case, but
  3393  		// for now we rely on the inliner avoiding it.
  3394  		if cv.Outer.Curfn != callerfn {
  3395  			base.FatalfAt(call.Pos(), "inlining closure call across frames")
  3396  		}
  3397  		r.closureVars[i] = cv.Outer
  3398  	}
  3399  	if len(r.closureVars) != 0 && r.hasTypeParams() {
  3400  		r.dictParam = r.closureVars[len(r.closureVars)-1]	// dictParam is last; see reader.funcLit
  3401  	}
  3402  
  3403  	r.declareParams()
  3404  
  3405  	var inlvars, retvars []*ir.Name
  3406  	{
  3407  		sig := r.curfn.Type()
  3408  		endParams := sig.NumRecvs() + sig.NumParams()
  3409  		endResults := endParams + sig.NumResults()
  3410  
  3411  		inlvars = r.curfn.Dcl[:endParams]
  3412  		retvars = r.curfn.Dcl[endParams:endResults]
  3413  	}
  3414  
  3415  	r.delayResults = fn.Inl.CanDelayResults
  3416  
  3417  	r.retlabel = typecheck.AutoLabel(".i")
  3418  	inlgen++
  3419  
  3420  	init := ir.TakeInit(call)
  3421  
  3422  	// For normal function calls, the function callee expression
  3423  	// may contain side effects. Make sure to preserve these,
  3424  	// if necessary (#42703).
  3425  	if call.Op() == ir.OCALLFUNC {
  3426  		inline.CalleeEffects(&init, call.Fun)
  3427  	}
  3428  
  3429  	var args ir.Nodes
  3430  	if call.Op() == ir.OCALLMETH {
  3431  		base.FatalfAt(call.Pos(), "OCALLMETH missed by typecheck")
  3432  	}
  3433  	args.Append(call.Args...)
  3434  
  3435  	// Create assignment to declare and initialize inlvars.
  3436  	as2 := ir.NewAssignListStmt(call.Pos(), ir.OAS2, ir.ToNodes(inlvars), args)
  3437  	as2.Def = true
  3438  	var as2init ir.Nodes
  3439  	for _, name := range inlvars {
  3440  		if ir.IsBlank(name) {
  3441  			continue
  3442  		}
  3443  		// TODO(mdempsky): Use inlined position of name.Pos() instead?
  3444  		as2init.Append(ir.NewDecl(call.Pos(), ir.ODCL, name))
  3445  		name.Defn = as2
  3446  	}
  3447  	as2.SetInit(as2init)
  3448  	init.Append(typecheck.Stmt(as2))
  3449  
  3450  	if !r.delayResults {
  3451  		// If not delaying retvars, declare and zero initialize the
  3452  		// result variables now.
  3453  		for _, name := range retvars {
  3454  			// TODO(mdempsky): Use inlined position of name.Pos() instead?
  3455  			init.Append(ir.NewDecl(call.Pos(), ir.ODCL, name))
  3456  			ras := ir.NewAssignStmt(call.Pos(), name, nil)
  3457  			init.Append(typecheck.Stmt(ras))
  3458  		}
  3459  	}
  3460  
  3461  	// Add an inline mark just before the inlined body.
  3462  	// This mark is inline in the code so that it's a reasonable spot
  3463  	// to put a breakpoint. Not sure if that's really necessary or not
  3464  	// (in which case it could go at the end of the function instead).
  3465  	// Note issue 28603.
  3466  	init.Append(ir.NewInlineMarkStmt(call.Pos().WithIsStmt(), int64(r.inlTreeIndex)))
  3467  
  3468  	ir.WithFunc(r.curfn, func() {
  3469  		if !r.syntheticBody(call.Pos()) {
  3470  			assert(r.Bool())	// have body
  3471  
  3472  			r.curfn.Body = r.stmts()
  3473  			r.curfn.Endlineno = r.pos()
  3474  		}
  3475  
  3476  		// TODO(mdempsky): This shouldn't be necessary. Inlining might
  3477  		// read in new function/method declarations, which could
  3478  		// potentially be recursively inlined themselves; but we shouldn't
  3479  		// need to read in the non-inlined bodies for the declarations
  3480  		// themselves. But currently it's an easy fix to #50552.
  3481  		readBodies(typecheck.Target, true)
  3482  
  3483  		// Replace any "return" statements within the function body.
  3484  		var edit func(ir.Node) ir.Node
  3485  		edit = func(n ir.Node) ir.Node {
  3486  			if ret, ok := n.(*ir.ReturnStmt); ok {
  3487  				n = typecheck.Stmt(r.inlReturn(ret, retvars))
  3488  			}
  3489  			ir.EditChildren(n, edit)
  3490  			return n
  3491  		}
  3492  		edit(r.curfn)
  3493  	})
  3494  
  3495  	body := ir.Nodes(r.curfn.Body)
  3496  
  3497  	// Reparent any declarations into the caller function.
  3498  	for _, name := range r.curfn.Dcl {
  3499  		name.Curfn = callerfn
  3500  
  3501  		if name.Class != ir.PAUTO {
  3502  			name.SetPos(r.inlPos(name.Pos()))
  3503  			name.SetInlFormal(true)
  3504  			name.Class = ir.PAUTO
  3505  		} else {
  3506  			name.SetInlLocal(true)
  3507  		}
  3508  	}
  3509  	callerfn.Dcl = append(callerfn.Dcl, r.curfn.Dcl...)
  3510  
  3511  	body.Append(ir.NewLabelStmt(call.Pos(), r.retlabel))
  3512  
  3513  	res := ir.NewInlinedCallExpr(call.Pos(), body, ir.ToNodes(retvars))
  3514  	res.SetInit(init)
  3515  	res.SetType(call.Type())
  3516  	res.SetTypecheck(1)
  3517  
  3518  	// Inlining shouldn't add any functions to todoBodies.
  3519  	assert(len(todoBodies) == 0)
  3520  
  3521  	return res
  3522  }
  3523  
  3524  // inlReturn returns a statement that can substitute for the given
  3525  // return statement when inlining.
  3526  func (r *reader) inlReturn(ret *ir.ReturnStmt, retvars []*ir.Name) *ir.BlockStmt {
  3527  	pos := r.inlCall.Pos()
  3528  
  3529  	block := ir.TakeInit(ret)
  3530  
  3531  	if results := ret.Results; len(results) != 0 {
  3532  		assert(len(retvars) == len(results))
  3533  
  3534  		as2 := ir.NewAssignListStmt(pos, ir.OAS2, ir.ToNodes(retvars), ret.Results)
  3535  
  3536  		if r.delayResults {
  3537  			for _, name := range retvars {
  3538  				// TODO(mdempsky): Use inlined position of name.Pos() instead?
  3539  				block.Append(ir.NewDecl(pos, ir.ODCL, name))
  3540  				name.Defn = as2
  3541  			}
  3542  		}
  3543  
  3544  		block.Append(as2)
  3545  	}
  3546  
  3547  	block.Append(ir.NewBranchStmt(pos, ir.OGOTO, r.retlabel))
  3548  	return ir.NewBlockStmt(pos, block)
  3549  }
  3550  
  3551  // expandInline reads in an extra copy of IR to populate
  3552  // fn.Inl.Dcl.
  3553  func expandInline(fn *ir.Func, pri pkgReaderIndex) {
  3554  	// TODO(mdempsky): Remove this function. It's currently needed by
  3555  	// dwarfgen/dwarf.go:preInliningDcls, which requires fn.Inl.Dcl to
  3556  	// create abstract function DIEs. But we should be able to provide it
  3557  	// with the same information some other way.
  3558  
  3559  	fndcls := len(fn.Dcl)
  3560  	topdcls := len(typecheck.Target.Funcs)
  3561  
  3562  	tmpfn := ir.NewFunc(fn.Pos(), fn.Nname.Pos(), fn.Sym(), fn.Type())
  3563  	tmpfn.ClosureVars = fn.ClosureVars
  3564  
  3565  	{
  3566  		r := pri.asReader(pkgbits.RelocBody, pkgbits.SyncFuncBody)
  3567  
  3568  		// Don't change parameter's Sym/Nname fields.
  3569  		r.funarghack = true
  3570  
  3571  		r.funcBody(tmpfn)
  3572  	}
  3573  
  3574  	// Move tmpfn's params to fn.Inl.Dcl, and reparent under fn.
  3575  	for _, name := range tmpfn.Dcl {
  3576  		name.Curfn = fn
  3577  	}
  3578  	fn.Inl.Dcl = tmpfn.Dcl
  3579  	fn.Inl.HaveDcl = true
  3580  
  3581  	// Double check that we didn't change fn.Dcl by accident.
  3582  	assert(fndcls == len(fn.Dcl))
  3583  
  3584  	// typecheck.Stmts may have added function literals to
  3585  	// typecheck.Target.Decls. Remove them again so we don't risk trying
  3586  	// to compile them multiple times.
  3587  	typecheck.Target.Funcs = typecheck.Target.Funcs[:topdcls]
  3588  }
  3589  
  3590  // usedLocals returns a set of local variables that are used within body.
  3591  func usedLocals(body []ir.Node) ir.NameSet {
  3592  	var used ir.NameSet
  3593  	ir.VisitList(body, func(n ir.Node) {
  3594  		if n, ok := n.(*ir.Name); ok && n.Op() == ir.ONAME && n.Class == ir.PAUTO {
  3595  			used.Add(n)
  3596  		}
  3597  	})
  3598  	return used
  3599  }
  3600  
  3601  // @@@ Method wrappers
  3602  
  3603  // needWrapperTypes lists types for which we may need to generate
  3604  // method wrappers.
  3605  var needWrapperTypes []*types.Type
  3606  
  3607  // haveWrapperTypes lists types for which we know we already have
  3608  // method wrappers, because we found the type in an imported package.
  3609  var haveWrapperTypes []*types.Type
  3610  
  3611  // needMethodValueWrappers lists methods for which we may need to
  3612  // generate method value wrappers.
  3613  var needMethodValueWrappers []methodValueWrapper
  3614  
  3615  // haveMethodValueWrappers lists methods for which we know we already
  3616  // have method value wrappers, because we found it in an imported
  3617  // package.
  3618  var haveMethodValueWrappers []methodValueWrapper
  3619  
  3620  type methodValueWrapper struct {
  3621  	rcvr	*types.Type
  3622  	method	*types.Field
  3623  }
  3624  
  3625  func (r *reader) needWrapper(typ *types.Type) {
  3626  	if typ.IsPtr() {
  3627  		return
  3628  	}
  3629  
  3630  	// If a type was found in an imported package, then we can assume
  3631  	// that package (or one of its transitive dependencies) already
  3632  	// generated method wrappers for it.
  3633  	if r.importedDef() {
  3634  		haveWrapperTypes = append(haveWrapperTypes, typ)
  3635  	} else {
  3636  		needWrapperTypes = append(needWrapperTypes, typ)
  3637  	}
  3638  }
  3639  
  3640  // importedDef reports whether r is reading from an imported and
  3641  // non-generic element.
  3642  //
  3643  // If a type was found in an imported package, then we can assume that
  3644  // package (or one of its transitive dependencies) already generated
  3645  // method wrappers for it.
  3646  //
  3647  // Exception: If we're instantiating an imported generic type or
  3648  // function, we might be instantiating it with type arguments not
  3649  // previously seen before.
  3650  //
  3651  // TODO(mdempsky): Distinguish when a generic function or type was
  3652  // instantiated in an imported package so that we can add types to
  3653  // haveWrapperTypes instead.
  3654  func (r *reader) importedDef() bool {
  3655  	return r.p != localPkgReader && !r.hasTypeParams()
  3656  }
  3657  
  3658  func MakeWrappers(target *ir.Package) {
  3659  	// always generate a wrapper for error.Error (#29304)
  3660  	needWrapperTypes = append(needWrapperTypes, types.ErrorType)
  3661  
  3662  	seen := make(map[string]*types.Type)
  3663  
  3664  	for _, typ := range haveWrapperTypes {
  3665  		wrapType(typ, target, seen, false)
  3666  	}
  3667  	haveWrapperTypes = nil
  3668  
  3669  	for _, typ := range needWrapperTypes {
  3670  		wrapType(typ, target, seen, true)
  3671  	}
  3672  	needWrapperTypes = nil
  3673  
  3674  	for _, wrapper := range haveMethodValueWrappers {
  3675  		wrapMethodValue(wrapper.rcvr, wrapper.method, target, false)
  3676  	}
  3677  	haveMethodValueWrappers = nil
  3678  
  3679  	for _, wrapper := range needMethodValueWrappers {
  3680  		wrapMethodValue(wrapper.rcvr, wrapper.method, target, true)
  3681  	}
  3682  	needMethodValueWrappers = nil
  3683  }
  3684  
  3685  func wrapType(typ *types.Type, target *ir.Package, seen map[string]*types.Type, needed bool) {
  3686  	key := typ.LinkString()
  3687  	if prev := seen[key]; prev != nil {
  3688  		if !types.Identical(typ, prev) {
  3689  			base.Fatalf("collision: types %v and %v have link string %q", typ, prev, key)
  3690  		}
  3691  		return
  3692  	}
  3693  	seen[key] = typ
  3694  
  3695  	if !needed {
  3696  		// Only called to add to 'seen'.
  3697  		return
  3698  	}
  3699  
  3700  	if !typ.IsInterface() {
  3701  		typecheck.CalcMethods(typ)
  3702  	}
  3703  	for _, meth := range typ.AllMethods() {
  3704  		if meth.Sym.IsBlank() || !meth.IsMethod() {
  3705  			base.FatalfAt(meth.Pos, "invalid method: %v", meth)
  3706  		}
  3707  
  3708  		methodWrapper(0, typ, meth, target)
  3709  
  3710  		// For non-interface types, we also want *T wrappers.
  3711  		if !typ.IsInterface() {
  3712  			methodWrapper(1, typ, meth, target)
  3713  
  3714  			// For not-in-heap types, *T is a scalar, not pointer shaped,
  3715  			// so the interface wrappers use **T.
  3716  			if typ.NotInHeap() {
  3717  				methodWrapper(2, typ, meth, target)
  3718  			}
  3719  		}
  3720  	}
  3721  }
  3722  
  3723  func methodWrapper(derefs int, tbase *types.Type, method *types.Field, target *ir.Package) {
  3724  	wrapper := tbase
  3725  	for i := 0; i < derefs; i++ {
  3726  		wrapper = types.NewPtr(wrapper)
  3727  	}
  3728  
  3729  	sym := ir.MethodSym(wrapper, method.Sym)
  3730  	base.Assertf(!sym.Siggen(), "already generated wrapper %v", sym)
  3731  	sym.SetSiggen(true)
  3732  
  3733  	wrappee := method.Type.Recv().Type
  3734  	if types.Identical(wrapper, wrappee) ||
  3735  		!types.IsMethodApplicable(wrapper, method) ||
  3736  		!reflectdata.NeedEmit(tbase) {
  3737  		return
  3738  	}
  3739  
  3740  	// TODO(mdempsky): Use method.Pos instead?
  3741  	pos := base.AutogeneratedPos
  3742  
  3743  	fn := newWrapperFunc(pos, sym, wrapper, method)
  3744  
  3745  	var recv ir.Node = fn.Nname.Type().Recv().Nname.(*ir.Name)
  3746  
  3747  	// For simple *T wrappers around T methods, panicwrap produces a
  3748  	// nicer panic message.
  3749  	if wrapper.IsPtr() && types.Identical(wrapper.Elem(), wrappee) {
  3750  		cond := ir.NewBinaryExpr(pos, ir.OEQ, recv, types.BuiltinPkg.Lookup("nil").Def.(ir.Node))
  3751  		then := []ir.Node{ir.NewCallExpr(pos, ir.OCALL, typecheck.LookupRuntime("panicwrap"), nil)}
  3752  		fn.Body.Append(ir.NewIfStmt(pos, cond, then, nil))
  3753  	}
  3754  
  3755  	// typecheck will add one implicit deref, if necessary,
  3756  	// but not-in-heap types require more for their **T wrappers.
  3757  	for i := 1; i < derefs; i++ {
  3758  		recv = Implicit(ir.NewStarExpr(pos, recv))
  3759  	}
  3760  
  3761  	addTailCall(pos, fn, recv, method)
  3762  
  3763  	finishWrapperFunc(fn, target)
  3764  }
  3765  
  3766  func wrapMethodValue(recvType *types.Type, method *types.Field, target *ir.Package, needed bool) {
  3767  	sym := ir.MethodSymSuffix(recvType, method.Sym, "-fm")
  3768  	if sym.Uniq() {
  3769  		return
  3770  	}
  3771  	sym.SetUniq(true)
  3772  
  3773  	// TODO(mdempsky): Use method.Pos instead?
  3774  	pos := base.AutogeneratedPos
  3775  
  3776  	fn := newWrapperFunc(pos, sym, nil, method)
  3777  	sym.Def = fn.Nname
  3778  
  3779  	// Declare and initialize variable holding receiver.
  3780  	recv := ir.NewHiddenParam(pos, fn, typecheck.Lookup(".this"), recvType)
  3781  
  3782  	if !needed {
  3783  		return
  3784  	}
  3785  
  3786  	addTailCall(pos, fn, recv, method)
  3787  
  3788  	finishWrapperFunc(fn, target)
  3789  }
  3790  
  3791  func newWrapperFunc(pos src.XPos, sym *types.Sym, wrapper *types.Type, method *types.Field) *ir.Func {
  3792  	sig := newWrapperType(wrapper, method)
  3793  
  3794  	fn := ir.NewFunc(pos, pos, sym, sig)
  3795  	fn.DeclareParams(true)
  3796  	fn.SetDupok(true)	// TODO(mdempsky): Leave unset for local, non-generic wrappers?
  3797  
  3798  	return fn
  3799  }
  3800  
  3801  func finishWrapperFunc(fn *ir.Func, target *ir.Package) {
  3802  	ir.WithFunc(fn, func() {
  3803  		typecheck.Stmts(fn.Body)
  3804  	})
  3805  
  3806  	// We generate wrappers after the global inlining pass,
  3807  	// so we're responsible for applying inlining ourselves here.
  3808  	// TODO(prattmic): plumb PGO.
  3809  	interleaved.DevirtualizeAndInlineFunc(fn, nil)
  3810  
  3811  	// The body of wrapper function after inlining may reveal new ir.OMETHVALUE node,
  3812  	// we don't know whether wrapper function has been generated for it or not, so
  3813  	// generate one immediately here.
  3814  	//
  3815  	// Further, after CL 492017, function that construct closures is allowed to be inlined,
  3816  	// even though the closure itself can't be inline. So we also need to visit body of any
  3817  	// closure that we see when visiting body of the wrapper function.
  3818  	ir.VisitFuncAndClosures(fn, func(n ir.Node) {
  3819  		if n, ok := n.(*ir.SelectorExpr); ok && n.Op() == ir.OMETHVALUE {
  3820  			wrapMethodValue(n.X.Type(), n.Selection, target, true)
  3821  		}
  3822  	})
  3823  
  3824  	fn.Nname.Defn = fn
  3825  	target.Funcs = append(target.Funcs, fn)
  3826  }
  3827  
  3828  // newWrapperType returns a copy of the given signature type, but with
  3829  // the receiver parameter type substituted with recvType.
  3830  // If recvType is nil, newWrapperType returns a signature
  3831  // without a receiver parameter.
  3832  func newWrapperType(recvType *types.Type, method *types.Field) *types.Type {
  3833  	clone := func(params []*types.Field) []*types.Field {
  3834  		res := make([]*types.Field, len(params))
  3835  		for i, param := range params {
  3836  			res[i] = types.NewField(param.Pos, param.Sym, param.Type)
  3837  			res[i].SetIsDDD(param.IsDDD())
  3838  		}
  3839  		return res
  3840  	}
  3841  
  3842  	sig := method.Type
  3843  
  3844  	var recv *types.Field
  3845  	if recvType != nil {
  3846  		recv = types.NewField(sig.Recv().Pos, sig.Recv().Sym, recvType)
  3847  	}
  3848  	params := clone(sig.Params())
  3849  	results := clone(sig.Results())
  3850  
  3851  	return types.NewSignature(recv, params, results)
  3852  }
  3853  
  3854  func addTailCall(pos src.XPos, fn *ir.Func, recv ir.Node, method *types.Field) {
  3855  	sig := fn.Nname.Type()
  3856  	args := make([]ir.Node, sig.NumParams())
  3857  	for i, param := range sig.Params() {
  3858  		args[i] = param.Nname.(*ir.Name)
  3859  	}
  3860  
  3861  	// TODO(mdempsky): Support creating OTAILCALL, when possible. See reflectdata.methodWrapper.
  3862  	// Not urgent though, because tail calls are currently incompatible with regabi anyway.
  3863  
  3864  	fn.SetWrapper(true)	// TODO(mdempsky): Leave unset for tail calls?
  3865  
  3866  	dot := typecheck.XDotMethod(pos, recv, method.Sym, true)
  3867  	call := typecheck.Call(pos, dot, args, method.Type.IsVariadic()).(*ir.CallExpr)
  3868  
  3869  	if method.Type.NumResults() == 0 {
  3870  		fn.Body.Append(call)
  3871  		return
  3872  	}
  3873  
  3874  	ret := ir.NewReturnStmt(pos, nil)
  3875  	ret.Results = []ir.Node{call}
  3876  	fn.Body.Append(ret)
  3877  }
  3878  
  3879  func setBasePos(pos src.XPos) {
  3880  	// Set the position for any error messages we might print (e.g. too large types).
  3881  	base.Pos = pos
  3882  }
  3883  
  3884  // dictParamName is the name of the synthetic dictionary parameter
  3885  // added to shaped functions.
  3886  //
  3887  // N.B., this variable name is known to Delve:
  3888  // https://github.com/go-delve/delve/blob/cb91509630529e6055be845688fd21eb89ae8714/pkg/proc/eval.go#L28
  3889  const dictParamName = typecheck.LocalDictName
  3890  
  3891  // shapeSig returns a copy of fn's signature, except adding a
  3892  // dictionary parameter and promoting the receiver parameter (if any)
  3893  // to a normal parameter.
  3894  //
  3895  // The parameter types.Fields are all copied too, so their Nname
  3896  // fields can be initialized for use by the shape function.
  3897  func shapeSig(fn *ir.Func, dict *readerDict) *types.Type {
  3898  	sig := fn.Nname.Type()
  3899  	oldRecv := sig.Recv()
  3900  
  3901  	var recv *types.Field
  3902  	if oldRecv != nil {
  3903  		recv = types.NewField(oldRecv.Pos, oldRecv.Sym, oldRecv.Type)
  3904  	}
  3905  
  3906  	params := make([]*types.Field, 1+sig.NumParams())
  3907  	params[0] = types.NewField(fn.Pos(), fn.Sym().Pkg.Lookup(dictParamName), types.NewPtr(dict.varType()))
  3908  	for i, param := range sig.Params() {
  3909  		d := types.NewField(param.Pos, param.Sym, param.Type)
  3910  		d.SetIsDDD(param.IsDDD())
  3911  		params[1+i] = d
  3912  	}
  3913  
  3914  	results := make([]*types.Field, sig.NumResults())
  3915  	for i, result := range sig.Results() {
  3916  		results[i] = types.NewField(result.Pos, result.Sym, result.Type)
  3917  	}
  3918  
  3919  	return types.NewSignature(recv, params, results)
  3920  }