github.com/bir3/gocompiler@v0.9.2202/src/cmd/compile/internal/ssa/_gen/386.rules (about)

     1  // Copyright 2016 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Lowering arithmetic
     6  (Add(Ptr|32|16|8) ...) => (ADDL ...)
     7  (Add(32|64)F ...) => (ADDS(S|D) ...)
     8  (Add32carry ...) => (ADDLcarry ...)
     9  (Add32withcarry ...) => (ADCL ...)
    10  
    11  (Sub(Ptr|32|16|8) ...) => (SUBL ...)
    12  (Sub(32|64)F ...) => (SUBS(S|D) ...)
    13  (Sub32carry ...) => (SUBLcarry ...)
    14  (Sub32withcarry ...) => (SBBL ...)
    15  
    16  (Mul(32|16|8) ...) => (MULL ...)
    17  (Mul(32|64)F ...) => (MULS(S|D) ...)
    18  (Mul32uhilo ...) => (MULLQU ...)
    19  
    20  (Select0 (Mul32uover x y)) => (Select0 <typ.UInt32> (MULLU x y))
    21  (Select1 (Mul32uover x y)) => (SETO (Select1 <types.TypeFlags> (MULLU x y)))
    22  
    23  (Avg32u ...) => (AVGLU ...)
    24  
    25  (Div(32|64)F ...) => (DIVS(S|D) ...)
    26  (Div(32|32u|16|16u) ...) => (DIV(L|LU|W|WU) ...)
    27  (Div8   x y) => (DIVW  (SignExt8to16 x) (SignExt8to16 y))
    28  (Div8u  x y) => (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y))
    29  
    30  (Hmul(32|32u) ...) => (HMUL(L|LU) ...)
    31  
    32  (Mod(32|32u|16|16u) ...) => (MOD(L|LU|W|WU) ...)
    33  (Mod8   x y) => (MODW  (SignExt8to16 x) (SignExt8to16 y))
    34  (Mod8u  x y) => (MODWU (ZeroExt8to16 x) (ZeroExt8to16 y))
    35  
    36  (And(32|16|8) ...) => (ANDL ...)
    37  (Or(32|16|8) ...) => (ORL ...)
    38  (Xor(32|16|8) ...) => (XORL ...)
    39  
    40  (Neg(32|16|8) ...) => (NEGL ...)
    41  (Neg32F x) => (PXOR x (MOVSSconst <typ.Float32> [float32(math.Copysign(0, -1))]))
    42  (Neg64F x) => (PXOR x (MOVSDconst <typ.Float64> [math.Copysign(0, -1)]))
    43  
    44  (Com(32|16|8) ...) => (NOTL ...)
    45  
    46  // Lowering boolean ops
    47  (AndB ...) => (ANDL ...)
    48  (OrB ...) => (ORL ...)
    49  (Not x) => (XORLconst [1] x)
    50  
    51  // Lowering pointer arithmetic
    52  (OffPtr [off] ptr) => (ADDLconst [int32(off)] ptr)
    53  
    54  (Bswap32 ...) => (BSWAPL ...)
    55  (Bswap16 x) => (ROLWconst [8] x)
    56  
    57  (Sqrt ...) => (SQRTSD ...)
    58  (Sqrt32 ...) => (SQRTSS ...)
    59  
    60  (Ctz8 x) => (BSFL (ORLconst <typ.UInt32> [0x100] x))
    61  (Ctz8NonZero ...) => (BSFL ...)
    62  (Ctz16 x) => (BSFL (ORLconst <typ.UInt32> [0x10000] x))
    63  (Ctz16NonZero ...) => (BSFL ...)
    64  (Ctz32 ...) => (LoweredCtz32 ...)
    65  (Ctz32NonZero ...) => (BSFL ...)
    66  
    67  // Lowering extension
    68  (SignExt8to16  ...) => (MOVBLSX ...)
    69  (SignExt8to32  ...) => (MOVBLSX ...)
    70  (SignExt16to32 ...) => (MOVWLSX ...)
    71  
    72  (ZeroExt8to16  ...) => (MOVBLZX ...)
    73  (ZeroExt8to32  ...) => (MOVBLZX ...)
    74  (ZeroExt16to32 ...) => (MOVWLZX ...)
    75  
    76  (Signmask x) => (SARLconst x [31])
    77  (Zeromask <t> x) => (XORLconst [-1] (SBBLcarrymask <t> (CMPLconst x [1])))
    78  (Slicemask <t> x) => (SARLconst (NEGL <t> x) [31])
    79  
    80  // Lowering truncation
    81  // Because we ignore high parts of registers, truncates are just copies.
    82  (Trunc16to8  ...) => (Copy ...)
    83  (Trunc32to8  ...) => (Copy ...)
    84  (Trunc32to16 ...) => (Copy ...)
    85  
    86  // Lowering float-int conversions
    87  (Cvt32to32F ...) => (CVTSL2SS ...)
    88  (Cvt32to64F ...) => (CVTSL2SD ...)
    89  
    90  (Cvt32Fto32 ...) => (CVTTSS2SL ...)
    91  (Cvt64Fto32 ...) => (CVTTSD2SL ...)
    92  
    93  (Cvt32Fto64F ...) => (CVTSS2SD ...)
    94  (Cvt64Fto32F ...) => (CVTSD2SS ...)
    95  
    96  (Round32F ...) => (Copy ...)
    97  (Round64F ...) => (Copy ...)
    98  
    99  (CvtBoolToUint8 ...) => (Copy ...)
   100  
   101  // Lowering shifts
   102  // Unsigned shifts need to return 0 if shift amount is >= width of shifted value.
   103  //   result = (arg << shift) & (shift >= argbits ? 0 : 0xffffffffffffffff)
   104  (Lsh32x(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))
   105  (Lsh16x(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))
   106  (Lsh8x(32|16|8)  <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))
   107  
   108  (Lsh32x(32|16|8) <t> x y) && shiftIsBounded(v) => (SHLL <t> x y)
   109  (Lsh16x(32|16|8) <t> x y) && shiftIsBounded(v) => (SHLL <t> x y)
   110  (Lsh8x(32|16|8)  <t> x y) && shiftIsBounded(v) => (SHLL <t> x y)
   111  
   112  (Rsh32Ux(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32])))
   113  (Rsh16Ux(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [16])))
   114  (Rsh8Ux(32|16|8)  <t> x y) && !shiftIsBounded(v) => (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [8])))
   115  
   116  (Rsh32Ux(32|16|8) <t> x y) && shiftIsBounded(v) => (SHRL <t> x y)
   117  (Rsh16Ux(32|16|8) <t> x y) && shiftIsBounded(v) => (SHRW <t> x y)
   118  (Rsh8Ux(32|16|8)  <t> x y) && shiftIsBounded(v) => (SHRB <t> x y)
   119  
   120  // Signed right shift needs to return 0/-1 if shift amount is >= width of shifted value.
   121  // We implement this by setting the shift value to -1 (all ones) if the shift value is >= width.
   122  
   123  (Rsh32x(32|16|8) <t> x y) && !shiftIsBounded(v) => (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [32])))))
   124  (Rsh16x(32|16|8) <t> x y) && !shiftIsBounded(v) => (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [16])))))
   125  (Rsh8x(32|16|8) <t> x y)  && !shiftIsBounded(v) => (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [8])))))
   126  
   127  (Rsh32x(32|16|8) <t> x y) && shiftIsBounded(v) => (SARL x y)
   128  (Rsh16x(32|16|8) <t> x y) && shiftIsBounded(v) => (SARW x y)
   129  (Rsh8x(32|16|8) <t> x y)  && shiftIsBounded(v) => (SARB x y)
   130  
   131  // constant shifts
   132  // generic opt rewrites all constant shifts to shift by Const64
   133  (Lsh32x64 x (Const64 [c])) && uint64(c) < 32 => (SHLLconst x [int32(c)])
   134  (Rsh32x64 x (Const64 [c])) && uint64(c) < 32 => (SARLconst x [int32(c)])
   135  (Rsh32Ux64 x (Const64 [c])) && uint64(c) < 32 => (SHRLconst x [int32(c)])
   136  (Lsh16x64 x (Const64 [c])) && uint64(c) < 16 => (SHLLconst x [int32(c)])
   137  (Rsh16x64 x (Const64 [c])) && uint64(c) < 16 => (SARWconst x [int16(c)])
   138  (Rsh16Ux64 x (Const64 [c])) && uint64(c) < 16 => (SHRWconst x [int16(c)])
   139  (Lsh8x64 x (Const64 [c])) && uint64(c) < 8 => (SHLLconst x [int32(c)])
   140  (Rsh8x64 x (Const64 [c])) && uint64(c) < 8 => (SARBconst x [int8(c)])
   141  (Rsh8Ux64 x (Const64 [c])) && uint64(c) < 8 => (SHRBconst x [int8(c)])
   142  
   143  // large constant shifts
   144  (Lsh32x64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
   145  (Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0])
   146  (Lsh16x64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
   147  (Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0])
   148  (Lsh8x64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0])
   149  (Rsh8Ux64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0])
   150  
   151  // large constant signed right shift, we leave the sign bit
   152  (Rsh32x64 x (Const64 [c])) && uint64(c) >= 32 => (SARLconst x [31])
   153  (Rsh16x64 x (Const64 [c])) && uint64(c) >= 16 => (SARWconst x [15])
   154  (Rsh8x64 x (Const64 [c])) && uint64(c) >= 8 => (SARBconst x [7])
   155  
   156  // rotates
   157  (RotateLeft32 ...) => (ROLL ...)
   158  (RotateLeft16 ...) => (ROLW ...)
   159  (RotateLeft8  ...) => (ROLB ...)
   160  // constant rotates
   161  (ROLL x (MOVLconst [c])) => (ROLLconst [c&31] x)
   162  (ROLW x (MOVLconst [c])) => (ROLWconst [int16(c&15)] x)
   163  (ROLB x (MOVLconst [c])) => (ROLBconst [int8(c&7)] x)
   164  
   165  // Lowering comparisons
   166  (Less32  x y) => (SETL (CMPL x y))
   167  (Less16  x y) => (SETL (CMPW x y))
   168  (Less8   x y) => (SETL (CMPB x y))
   169  (Less32U x y) => (SETB (CMPL x y))
   170  (Less16U x y) => (SETB (CMPW x y))
   171  (Less8U  x y) => (SETB (CMPB x y))
   172  // Use SETGF with reversed operands to dodge NaN case
   173  (Less64F x y) => (SETGF (UCOMISD y x))
   174  (Less32F x y) => (SETGF (UCOMISS y x))
   175  
   176  (Leq32  x y) => (SETLE (CMPL x y))
   177  (Leq16  x y) => (SETLE (CMPW x y))
   178  (Leq8   x y) => (SETLE (CMPB x y))
   179  (Leq32U x y) => (SETBE (CMPL x y))
   180  (Leq16U x y) => (SETBE (CMPW x y))
   181  (Leq8U  x y) => (SETBE (CMPB x y))
   182  // Use SETGEF with reversed operands to dodge NaN case
   183  (Leq64F x y) => (SETGEF (UCOMISD y x))
   184  (Leq32F x y) => (SETGEF (UCOMISS y x))
   185  
   186  (Eq32  x y) => (SETEQ (CMPL x y))
   187  (Eq16  x y) => (SETEQ (CMPW x y))
   188  (Eq8   x y) => (SETEQ (CMPB x y))
   189  (EqB   x y) => (SETEQ (CMPB x y))
   190  (EqPtr x y) => (SETEQ (CMPL x y))
   191  (Eq64F x y) => (SETEQF (UCOMISD x y))
   192  (Eq32F x y) => (SETEQF (UCOMISS x y))
   193  
   194  (Neq32  x y) => (SETNE (CMPL x y))
   195  (Neq16  x y) => (SETNE (CMPW x y))
   196  (Neq8   x y) => (SETNE (CMPB x y))
   197  (NeqB   x y) => (SETNE (CMPB x y))
   198  (NeqPtr x y) => (SETNE (CMPL x y))
   199  (Neq64F x y) => (SETNEF (UCOMISD x y))
   200  (Neq32F x y) => (SETNEF (UCOMISS x y))
   201  
   202  // Lowering loads
   203  (Load <t> ptr mem) && (is32BitInt(t) || isPtr(t)) => (MOVLload ptr mem)
   204  (Load <t> ptr mem) && is16BitInt(t) => (MOVWload ptr mem)
   205  (Load <t> ptr mem) && (t.IsBoolean() || is8BitInt(t)) => (MOVBload ptr mem)
   206  (Load <t> ptr mem) && is32BitFloat(t) => (MOVSSload ptr mem)
   207  (Load <t> ptr mem) && is64BitFloat(t) => (MOVSDload ptr mem)
   208  
   209  // Lowering stores
   210  (Store {t} ptr val mem) && t.Size() == 8 &&  t.IsFloat() => (MOVSDstore ptr val mem)
   211  (Store {t} ptr val mem) && t.Size() == 4 &&  t.IsFloat() => (MOVSSstore ptr val mem)
   212  (Store {t} ptr val mem) && t.Size() == 4 && !t.IsFloat() => (MOVLstore ptr val mem)
   213  (Store {t} ptr val mem) && t.Size() == 2 => (MOVWstore ptr val mem)
   214  (Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem)
   215  
   216  // Lowering moves
   217  (Move [0] _ _ mem) => mem
   218  (Move [1] dst src mem) => (MOVBstore dst (MOVBload src mem) mem)
   219  (Move [2] dst src mem) => (MOVWstore dst (MOVWload src mem) mem)
   220  (Move [4] dst src mem) => (MOVLstore dst (MOVLload src mem) mem)
   221  (Move [3] dst src mem) =>
   222  	(MOVBstore [2] dst (MOVBload [2] src mem)
   223  		(MOVWstore dst (MOVWload src mem) mem))
   224  (Move [5] dst src mem) =>
   225  	(MOVBstore [4] dst (MOVBload [4] src mem)
   226  		(MOVLstore dst (MOVLload src mem) mem))
   227  (Move [6] dst src mem) =>
   228  	(MOVWstore [4] dst (MOVWload [4] src mem)
   229  		(MOVLstore dst (MOVLload src mem) mem))
   230  (Move [7] dst src mem) =>
   231  	(MOVLstore [3] dst (MOVLload [3] src mem)
   232  		(MOVLstore dst (MOVLload src mem) mem))
   233  (Move [8] dst src mem) =>
   234  	(MOVLstore [4] dst (MOVLload [4] src mem)
   235  		(MOVLstore dst (MOVLload src mem) mem))
   236  
   237  // Adjust moves to be a multiple of 4 bytes.
   238  (Move [s] dst src mem)
   239  	&& s > 8 && s%4 != 0 =>
   240  	(Move [s-s%4]
   241  		(ADDLconst <dst.Type> dst [int32(s%4)])
   242  		(ADDLconst <src.Type> src [int32(s%4)])
   243  		(MOVLstore dst (MOVLload src mem) mem))
   244  
   245  // Medium copying uses a duff device.
   246  (Move [s] dst src mem)
   247  	&& s > 8 && s <= 4*128 && s%4 == 0
   248  	&& !config.noDuffDevice && logLargeCopy(v, s) =>
   249  	(DUFFCOPY [10*(128-s/4)] dst src mem)
   250  // 10 and 128 are magic constants.  10 is the number of bytes to encode:
   251  //	MOVL	(SI), CX
   252  //	ADDL	$4, SI
   253  //	MOVL	CX, (DI)
   254  //	ADDL	$4, DI
   255  // and 128 is the number of such blocks. See src/runtime/duff_386.s:duffcopy.
   256  
   257  // Large copying uses REP MOVSL.
   258  (Move [s] dst src mem) && (s > 4*128 || config.noDuffDevice) && s%4 == 0 && logLargeCopy(v, s) =>
   259  	(REPMOVSL dst src (MOVLconst [int32(s/4)]) mem)
   260  
   261  // Lowering Zero instructions
   262  (Zero [0] _ mem) => mem
   263  (Zero [1] destptr mem) => (MOVBstoreconst [0] destptr mem)
   264  (Zero [2] destptr mem) => (MOVWstoreconst [0] destptr mem)
   265  (Zero [4] destptr mem) => (MOVLstoreconst [0] destptr mem)
   266  
   267  (Zero [3] destptr mem) =>
   268  	(MOVBstoreconst [makeValAndOff(0,2)] destptr
   269  		(MOVWstoreconst [makeValAndOff(0,0)] destptr mem))
   270  (Zero [5] destptr mem) =>
   271  	(MOVBstoreconst [makeValAndOff(0,4)] destptr
   272  		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
   273  (Zero [6] destptr mem) =>
   274  	(MOVWstoreconst [makeValAndOff(0,4)] destptr
   275  		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
   276  (Zero [7] destptr mem) =>
   277  	(MOVLstoreconst [makeValAndOff(0,3)] destptr
   278  		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
   279  
   280  // Strip off any fractional word zeroing.
   281  (Zero [s] destptr mem) && s%4 != 0 && s > 4 =>
   282  	(Zero [s-s%4] (ADDLconst destptr [int32(s%4)])
   283  		(MOVLstoreconst [0] destptr mem))
   284  
   285  // Zero small numbers of words directly.
   286  (Zero [8] destptr mem) =>
   287  	(MOVLstoreconst [makeValAndOff(0,4)] destptr
   288  		(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))
   289  (Zero [12] destptr mem) =>
   290  	(MOVLstoreconst [makeValAndOff(0,8)] destptr
   291  		(MOVLstoreconst [makeValAndOff(0,4)] destptr
   292  			(MOVLstoreconst [makeValAndOff(0,0)] destptr mem)))
   293  (Zero [16] destptr mem) =>
   294  	(MOVLstoreconst [makeValAndOff(0,12)] destptr
   295  		(MOVLstoreconst [makeValAndOff(0,8)] destptr
   296  			(MOVLstoreconst [makeValAndOff(0,4)] destptr
   297  				(MOVLstoreconst [makeValAndOff(0,0)] destptr mem))))
   298  
   299  // Medium zeroing uses a duff device.
   300  (Zero [s] destptr mem)
   301    && s > 16 && s <= 4*128 && s%4 == 0
   302    && !config.noDuffDevice =>
   303  	(DUFFZERO [1*(128-s/4)] destptr (MOVLconst [0]) mem)
   304  // 1 and 128 are magic constants.  1 is the number of bytes to encode STOSL.
   305  // 128 is the number of STOSL instructions in duffzero.
   306  // See src/runtime/duff_386.s:duffzero.
   307  
   308  // Large zeroing uses REP STOSQ.
   309  (Zero [s] destptr mem)
   310    && (s > 4*128 || (config.noDuffDevice && s > 16))
   311    && s%4 == 0 =>
   312  	(REPSTOSL destptr (MOVLconst [int32(s/4)]) (MOVLconst [0]) mem)
   313  
   314  
   315  // Lowering constants
   316  (Const8   [c]) => (MOVLconst [int32(c)])
   317  (Const16  [c]) => (MOVLconst [int32(c)])
   318  (Const32  ...) => (MOVLconst ...)
   319  (Const(32|64)F ...) => (MOVS(S|D)const ...)
   320  (ConstNil) => (MOVLconst [0])
   321  (ConstBool [c]) => (MOVLconst [b2i32(c)])
   322  
   323  // Lowering calls
   324  (StaticCall ...) => (CALLstatic ...)
   325  (ClosureCall ...) => (CALLclosure ...)
   326  (InterCall ...) => (CALLinter ...)
   327  (TailCall ...) => (CALLtail ...)
   328  
   329  // Miscellaneous
   330  (IsNonNil p) => (SETNE (TESTL p p))
   331  (IsInBounds idx len) => (SETB (CMPL idx len))
   332  (IsSliceInBounds idx len) => (SETBE (CMPL idx len))
   333  (NilCheck ...) => (LoweredNilCheck ...)
   334  (GetG ...) => (LoweredGetG ...)
   335  (GetClosurePtr ...) => (LoweredGetClosurePtr ...)
   336  (GetCallerPC ...) => (LoweredGetCallerPC ...)
   337  (GetCallerSP ...) => (LoweredGetCallerSP ...)
   338  (Addr {sym} base) => (LEAL {sym} base)
   339  (LocalAddr <t> {sym} base mem) && t.Elem().HasPointers() => (LEAL {sym} (SPanchored base mem))
   340  (LocalAddr <t> {sym} base _)  && !t.Elem().HasPointers() => (LEAL {sym} base)
   341  
   342  // block rewrites
   343  (If (SETL  cmp) yes no) => (LT  cmp yes no)
   344  (If (SETLE cmp) yes no) => (LE  cmp yes no)
   345  (If (SETG  cmp) yes no) => (GT  cmp yes no)
   346  (If (SETGE cmp) yes no) => (GE  cmp yes no)
   347  (If (SETEQ cmp) yes no) => (EQ  cmp yes no)
   348  (If (SETNE cmp) yes no) => (NE  cmp yes no)
   349  (If (SETB  cmp) yes no) => (ULT cmp yes no)
   350  (If (SETBE cmp) yes no) => (ULE cmp yes no)
   351  (If (SETA  cmp) yes no) => (UGT cmp yes no)
   352  (If (SETAE cmp) yes no) => (UGE cmp yes no)
   353  (If (SETO  cmp) yes no) => (OS cmp yes no)
   354  
   355  // Special case for floating point - LF/LEF not generated
   356  (If (SETGF  cmp) yes no) => (UGT  cmp yes no)
   357  (If (SETGEF cmp) yes no) => (UGE  cmp yes no)
   358  (If (SETEQF cmp) yes no) => (EQF  cmp yes no)
   359  (If (SETNEF cmp) yes no) => (NEF  cmp yes no)
   360  
   361  (If cond yes no) => (NE (TESTB cond cond) yes no)
   362  
   363  // Write barrier.
   364  (WB ...) => (LoweredWB ...)
   365  
   366  (PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem)
   367  (PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem)
   368  (PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem)
   369  
   370  (PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 0 => (LoweredPanicExtendA [kind] hi lo y mem)
   371  (PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 1 => (LoweredPanicExtendB [kind] hi lo y mem)
   372  (PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 2 => (LoweredPanicExtendC [kind] hi lo y mem)
   373  
   374  // ***************************
   375  // Above: lowering rules
   376  // Below: optimizations
   377  // ***************************
   378  // TODO: Should the optimizations be a separate pass?
   379  
   380  // Fold boolean tests into blocks
   381  (NE (TESTB (SETL  cmp) (SETL  cmp)) yes no) => (LT  cmp yes no)
   382  (NE (TESTB (SETLE cmp) (SETLE cmp)) yes no) => (LE  cmp yes no)
   383  (NE (TESTB (SETG  cmp) (SETG  cmp)) yes no) => (GT  cmp yes no)
   384  (NE (TESTB (SETGE cmp) (SETGE cmp)) yes no) => (GE  cmp yes no)
   385  (NE (TESTB (SETEQ cmp) (SETEQ cmp)) yes no) => (EQ  cmp yes no)
   386  (NE (TESTB (SETNE cmp) (SETNE cmp)) yes no) => (NE  cmp yes no)
   387  (NE (TESTB (SETB  cmp) (SETB  cmp)) yes no) => (ULT cmp yes no)
   388  (NE (TESTB (SETBE cmp) (SETBE cmp)) yes no) => (ULE cmp yes no)
   389  (NE (TESTB (SETA  cmp) (SETA  cmp)) yes no) => (UGT cmp yes no)
   390  (NE (TESTB (SETAE cmp) (SETAE cmp)) yes no) => (UGE cmp yes no)
   391  (NE (TESTB (SETO cmp) (SETO cmp)) yes no) => (OS cmp yes no)
   392  
   393  // Special case for floating point - LF/LEF not generated
   394  (NE (TESTB (SETGF  cmp) (SETGF  cmp)) yes no) => (UGT  cmp yes no)
   395  (NE (TESTB (SETGEF cmp) (SETGEF cmp)) yes no) => (UGE  cmp yes no)
   396  (NE (TESTB (SETEQF cmp) (SETEQF cmp)) yes no) => (EQF  cmp yes no)
   397  (NE (TESTB (SETNEF cmp) (SETNEF cmp)) yes no) => (NEF  cmp yes no)
   398  
   399  // fold constants into instructions
   400  (ADDL x (MOVLconst <t> [c])) && !t.IsPtr() => (ADDLconst [c] x)
   401  (ADDLcarry x (MOVLconst [c])) => (ADDLconstcarry [c] x)
   402  (ADCL x (MOVLconst [c]) f) => (ADCLconst [c] x f)
   403  
   404  (SUBL x (MOVLconst [c])) => (SUBLconst x [c])
   405  (SUBL (MOVLconst [c]) x) => (NEGL (SUBLconst <v.Type> x [c]))
   406  (SUBLcarry x (MOVLconst [c])) => (SUBLconstcarry [c] x)
   407  (SBBL x (MOVLconst [c]) f) => (SBBLconst [c] x f)
   408  
   409  (MULL x (MOVLconst [c])) => (MULLconst [c] x)
   410  (ANDL x (MOVLconst [c])) => (ANDLconst [c] x)
   411  
   412  (ANDLconst [c] (ANDLconst [d] x)) => (ANDLconst [c & d] x)
   413  (XORLconst [c] (XORLconst [d] x)) => (XORLconst [c ^ d] x)
   414  (MULLconst [c] (MULLconst [d] x)) => (MULLconst [c * d] x)
   415  
   416  (ORL x (MOVLconst [c])) => (ORLconst [c] x)
   417  (XORL x (MOVLconst [c])) => (XORLconst [c] x)
   418  
   419  (SHLL x (MOVLconst [c])) => (SHLLconst [c&31] x)
   420  (SHRL x (MOVLconst [c])) => (SHRLconst [c&31] x)
   421  (SHRW x (MOVLconst [c])) && c&31 < 16 => (SHRWconst [int16(c&31)] x)
   422  (SHRW _ (MOVLconst [c])) && c&31 >= 16 => (MOVLconst [0])
   423  (SHRB x (MOVLconst [c])) && c&31 < 8 => (SHRBconst [int8(c&31)] x)
   424  (SHRB _ (MOVLconst [c])) && c&31 >= 8 => (MOVLconst [0])
   425  
   426  (SARL x (MOVLconst [c])) => (SARLconst [c&31] x)
   427  (SARW x (MOVLconst [c])) => (SARWconst [int16(min(int64(c&31),15))] x)
   428  (SARB x (MOVLconst [c])) => (SARBconst [int8(min(int64(c&31),7))] x)
   429  
   430  (SARL x (ANDLconst [31] y)) => (SARL x y)
   431  (SHLL x (ANDLconst [31] y)) => (SHLL x y)
   432  (SHRL x (ANDLconst [31] y)) => (SHRL x y)
   433  
   434  // Constant shift simplifications
   435  
   436  (SHLLconst x [0]) => x
   437  (SHRLconst x [0]) => x
   438  (SARLconst x [0]) => x
   439  
   440  (SHRWconst x [0]) => x
   441  (SARWconst x [0]) => x
   442  
   443  (SHRBconst x [0]) => x
   444  (SARBconst x [0]) => x
   445  
   446  (ROLLconst [0] x) => x
   447  (ROLWconst [0] x) => x
   448  (ROLBconst [0] x) => x
   449  
   450  // Note: the word and byte shifts keep the low 5 bits (not the low 4 or 3 bits)
   451  // because the x86 instructions are defined to use all 5 bits of the shift even
   452  // for the small shifts. I don't think we'll ever generate a weird shift (e.g.
   453  // (SHRW x (MOVLconst [24])), but just in case.
   454  
   455  (CMPL x (MOVLconst [c])) => (CMPLconst x [c])
   456  (CMPL (MOVLconst [c]) x) => (InvertFlags (CMPLconst x [c]))
   457  (CMPW x (MOVLconst [c])) => (CMPWconst x [int16(c)])
   458  (CMPW (MOVLconst [c]) x) => (InvertFlags (CMPWconst x [int16(c)]))
   459  (CMPB x (MOVLconst [c])) => (CMPBconst x [int8(c)])
   460  (CMPB (MOVLconst [c]) x) => (InvertFlags (CMPBconst x [int8(c)]))
   461  
   462  // Canonicalize the order of arguments to comparisons - helps with CSE.
   463  (CMP(L|W|B) x y) && canonLessThan(x,y) => (InvertFlags (CMP(L|W|B) y x))
   464  
   465  // strength reduction
   466  // Assumes that the following costs from https://gmplib.org/~tege/x86-timing.pdf:
   467  //    1 - addl, shll, leal, negl, subl
   468  //    3 - imull
   469  // This limits the rewrites to two instructions.
   470  // Note that negl always operates in-place,
   471  // which can require a register-register move
   472  // to preserve the original value,
   473  // so it must be used with care.
   474  (MULLconst [-9] x) => (NEGL (LEAL8 <v.Type> x x))
   475  (MULLconst [-5] x) => (NEGL (LEAL4 <v.Type> x x))
   476  (MULLconst [-3] x) => (NEGL (LEAL2 <v.Type> x x))
   477  (MULLconst [-1] x) => (NEGL x)
   478  (MULLconst [0] _) => (MOVLconst [0])
   479  (MULLconst [1] x) => x
   480  (MULLconst [3] x) => (LEAL2 x x)
   481  (MULLconst [5] x) => (LEAL4 x x)
   482  (MULLconst [7] x) => (LEAL2 x (LEAL2 <v.Type> x x))
   483  (MULLconst [9] x) => (LEAL8 x x)
   484  (MULLconst [11] x) => (LEAL2 x (LEAL4 <v.Type> x x))
   485  (MULLconst [13] x) => (LEAL4 x (LEAL2 <v.Type> x x))
   486  (MULLconst [19] x) => (LEAL2 x (LEAL8 <v.Type> x x))
   487  (MULLconst [21] x) => (LEAL4 x (LEAL4 <v.Type> x x))
   488  (MULLconst [25] x) => (LEAL8 x (LEAL2 <v.Type> x x))
   489  (MULLconst [27] x) => (LEAL8 (LEAL2 <v.Type> x x) (LEAL2 <v.Type> x x))
   490  (MULLconst [37] x) => (LEAL4 x (LEAL8 <v.Type> x x))
   491  (MULLconst [41] x) => (LEAL8 x (LEAL4 <v.Type> x x))
   492  (MULLconst [45] x) => (LEAL8 (LEAL4 <v.Type> x x) (LEAL4 <v.Type> x x))
   493  (MULLconst [73] x) => (LEAL8 x (LEAL8 <v.Type> x x))
   494  (MULLconst [81] x) => (LEAL8 (LEAL8 <v.Type> x x) (LEAL8 <v.Type> x x))
   495  
   496  (MULLconst [c] x) && isPowerOfTwo32(c+1) && c >= 15 => (SUBL (SHLLconst <v.Type> [int32(log32(c+1))] x) x)
   497  (MULLconst [c] x) && isPowerOfTwo32(c-1) && c >= 17 => (LEAL1 (SHLLconst <v.Type> [int32(log32(c-1))] x) x)
   498  (MULLconst [c] x) && isPowerOfTwo32(c-2) && c >= 34 => (LEAL2 (SHLLconst <v.Type> [int32(log32(c-2))] x) x)
   499  (MULLconst [c] x) && isPowerOfTwo32(c-4) && c >= 68 => (LEAL4 (SHLLconst <v.Type> [int32(log32(c-4))] x) x)
   500  (MULLconst [c] x) && isPowerOfTwo32(c-8) && c >= 136 => (LEAL8 (SHLLconst <v.Type> [int32(log32(c-8))] x) x)
   501  (MULLconst [c] x) && c%3 == 0 && isPowerOfTwo32(c/3) => (SHLLconst [int32(log32(c/3))] (LEAL2 <v.Type> x x))
   502  (MULLconst [c] x) && c%5 == 0 && isPowerOfTwo32(c/5) => (SHLLconst [int32(log32(c/5))] (LEAL4 <v.Type> x x))
   503  (MULLconst [c] x) && c%9 == 0 && isPowerOfTwo32(c/9) => (SHLLconst [int32(log32(c/9))] (LEAL8 <v.Type> x x))
   504  
   505  // combine add/shift into LEAL
   506  (ADDL x (SHLLconst [3] y)) => (LEAL8 x y)
   507  (ADDL x (SHLLconst [2] y)) => (LEAL4 x y)
   508  (ADDL x (SHLLconst [1] y)) => (LEAL2 x y)
   509  (ADDL x (ADDL y y)) => (LEAL2 x y)
   510  (ADDL x (ADDL x y)) => (LEAL2 y x)
   511  
   512  // combine ADDL/ADDLconst into LEAL1
   513  (ADDLconst [c] (ADDL x y)) => (LEAL1 [c] x y)
   514  (ADDL (ADDLconst [c] x) y) => (LEAL1 [c] x y)
   515  
   516  // fold ADDL into LEAL
   517  (ADDLconst [c] (LEAL [d] {s} x)) && is32Bit(int64(c)+int64(d)) => (LEAL [c+d] {s} x)
   518  (LEAL [c] {s} (ADDLconst [d] x)) && is32Bit(int64(c)+int64(d)) => (LEAL [c+d] {s} x)
   519  (ADDLconst [c] x:(SP)) => (LEAL [c] x) // so it is rematerializeable
   520  (LEAL [c] {s} (ADDL x y)) && x.Op != OpSB && y.Op != OpSB => (LEAL1 [c] {s} x y)
   521  (ADDL x (LEAL [c] {s} y)) && x.Op != OpSB && y.Op != OpSB => (LEAL1 [c] {s} x y)
   522  
   523  // fold ADDLconst into LEALx
   524  (ADDLconst [c] (LEAL1 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL1 [c+d] {s} x y)
   525  (ADDLconst [c] (LEAL2 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL2 [c+d] {s} x y)
   526  (ADDLconst [c] (LEAL4 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL4 [c+d] {s} x y)
   527  (ADDLconst [c] (LEAL8 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL8 [c+d] {s} x y)
   528  (LEAL1 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL1 [c+d] {s} x y)
   529  (LEAL2 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL2 [c+d] {s} x y)
   530  (LEAL2 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+2*int64(d)) && y.Op != OpSB => (LEAL2 [c+2*d] {s} x y)
   531  (LEAL4 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL4 [c+d] {s} x y)
   532  (LEAL4 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+4*int64(d)) && y.Op != OpSB => (LEAL4 [c+4*d] {s} x y)
   533  (LEAL8 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d))   && x.Op != OpSB => (LEAL8 [c+d] {s} x y)
   534  (LEAL8 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+8*int64(d)) && y.Op != OpSB => (LEAL8 [c+8*d] {s} x y)
   535  
   536  // fold shifts into LEALx
   537  (LEAL1 [c] {s} x (SHLLconst [1] y)) => (LEAL2 [c] {s} x y)
   538  (LEAL1 [c] {s} x (SHLLconst [2] y)) => (LEAL4 [c] {s} x y)
   539  (LEAL1 [c] {s} x (SHLLconst [3] y)) => (LEAL8 [c] {s} x y)
   540  (LEAL2 [c] {s} x (SHLLconst [1] y)) => (LEAL4 [c] {s} x y)
   541  (LEAL2 [c] {s} x (SHLLconst [2] y)) => (LEAL8 [c] {s} x y)
   542  (LEAL4 [c] {s} x (SHLLconst [1] y)) => (LEAL8 [c] {s} x y)
   543  
   544  // reverse ordering of compare instruction
   545  (SETL (InvertFlags x)) => (SETG x)
   546  (SETG (InvertFlags x)) => (SETL x)
   547  (SETB (InvertFlags x)) => (SETA x)
   548  (SETA (InvertFlags x)) => (SETB x)
   549  (SETLE (InvertFlags x)) => (SETGE x)
   550  (SETGE (InvertFlags x)) => (SETLE x)
   551  (SETBE (InvertFlags x)) => (SETAE x)
   552  (SETAE (InvertFlags x)) => (SETBE x)
   553  (SETEQ (InvertFlags x)) => (SETEQ x)
   554  (SETNE (InvertFlags x)) => (SETNE x)
   555  
   556  // sign extended loads
   557  // Note: The combined instruction must end up in the same block
   558  // as the original load. If not, we end up making a value with
   559  // memory type live in two different blocks, which can lead to
   560  // multiple memory values alive simultaneously.
   561  // Make sure we don't combine these ops if the load has another use.
   562  // This prevents a single load from being split into multiple loads
   563  // which then might return different values.  See test/atomicload.go.
   564  (MOVBLSX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBLSXload <v.Type> [off] {sym} ptr mem)
   565  (MOVBLZX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
   566  (MOVWLSX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWLSXload <v.Type> [off] {sym} ptr mem)
   567  (MOVWLZX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWload <v.Type> [off] {sym} ptr mem)
   568  
   569  // replace load from same location as preceding store with zero/sign extension (or copy in case of full width)
   570  (MOVBload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBLZX x)
   571  (MOVWload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWLZX x)
   572  (MOVLload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => x
   573  (MOVBLSXload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBLSX x)
   574  (MOVWLSXload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWLSX x)
   575  
   576  // Fold extensions and ANDs together.
   577  (MOVBLZX (ANDLconst [c] x)) => (ANDLconst [c & 0xff] x)
   578  (MOVWLZX (ANDLconst [c] x)) => (ANDLconst [c & 0xffff] x)
   579  (MOVBLSX (ANDLconst [c] x)) && c & 0x80 == 0 => (ANDLconst [c & 0x7f] x)
   580  (MOVWLSX (ANDLconst [c] x)) && c & 0x8000 == 0 => (ANDLconst [c & 0x7fff] x)
   581  
   582  // Don't extend before storing
   583  (MOVWstore [off] {sym} ptr (MOVWL(S|Z)X x) mem) => (MOVWstore [off] {sym} ptr x mem)
   584  (MOVBstore [off] {sym} ptr (MOVBL(S|Z)X x) mem) => (MOVBstore [off] {sym} ptr x mem)
   585  
   586  // fold constants into memory operations
   587  // Note that this is not always a good idea because if not all the uses of
   588  // the ADDLconst get eliminated, we still have to compute the ADDLconst and we now
   589  // have potentially two live values (ptr and (ADDLconst [off] ptr)) instead of one.
   590  // Nevertheless, let's do it!
   591  (MOV(L|W|B|SS|SD)load  [off1] {sym} (ADDLconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) =>
   592      (MOV(L|W|B|SS|SD)load  [off1+off2] {sym} ptr mem)
   593  (MOV(L|W|B|SS|SD)store  [off1] {sym} (ADDLconst [off2] ptr) val mem) && is32Bit(int64(off1)+int64(off2)) =>
   594      (MOV(L|W|B|SS|SD)store  [off1+off2] {sym} ptr val mem)
   595  
   596  ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
   597  	((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {sym} val base mem)
   598  ((ADD|SUB|MUL|DIV)SSload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
   599  	((ADD|SUB|MUL|DIV)SSload [off1+off2] {sym} val base mem)
   600  ((ADD|SUB|MUL|DIV)SDload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) =>
   601  	((ADD|SUB|MUL|DIV)SDload [off1+off2] {sym} val base mem)
   602  ((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym} (ADDLconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) =>
   603  	((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {sym} base val mem)
   604  ((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym} (ADDLconst [off2] base) mem) && valoff1.canAdd32(off2) =>
   605  	((ADD|AND|OR|XOR)Lconstmodify [valoff1.addOffset32(off2)] {sym} base mem)
   606  
   607  // Fold constants into stores.
   608  (MOVLstore [off] {sym} ptr (MOVLconst [c]) mem) =>
   609  	(MOVLstoreconst [makeValAndOff(c,off)] {sym} ptr mem)
   610  (MOVWstore [off] {sym} ptr (MOVLconst [c]) mem) =>
   611  	(MOVWstoreconst [makeValAndOff(c,off)] {sym} ptr mem)
   612  (MOVBstore [off] {sym} ptr (MOVLconst [c]) mem) =>
   613  	(MOVBstoreconst [makeValAndOff(c,off)] {sym} ptr mem)
   614  
   615  // Fold address offsets into constant stores.
   616  (MOV(L|W|B)storeconst [sc] {s} (ADDLconst [off] ptr) mem) && sc.canAdd32(off) =>
   617  	(MOV(L|W|B)storeconst [sc.addOffset32(off)] {s} ptr mem)
   618  
   619  // We need to fold LEAL into the MOVx ops so that the live variable analysis knows
   620  // what variables are being read/written by the ops.
   621  // Note: we turn off this merging for operations on globals when building
   622  // position-independent code (when Flag_shared is set).
   623  // PIC needs a spare register to load the PC into.  Having the LEAL be
   624  // a separate instruction gives us that register.  Having the LEAL be
   625  // a separate instruction also allows it to be CSEd (which is good because
   626  // it compiles to a thunk call).
   627  (MOV(L|W|B|SS|SD|BLSX|WLSX)load  [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)
   628    && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   629          (MOV(L|W|B|SS|SD|BLSX|WLSX)load  [off1+off2] {mergeSym(sym1,sym2)} base mem)
   630  
   631  (MOV(L|W|B|SS|SD)store  [off1] {sym1} (LEAL [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2)
   632    && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   633  	(MOV(L|W|B|SS|SD)store  [off1+off2] {mergeSym(sym1,sym2)} base val mem)
   634  
   635  (MOV(L|W|B)storeconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) && canMergeSym(sym1, sym2) && sc.canAdd32(off)
   636    && (ptr.Op != OpSB || !config.ctxt.Flag_shared) =>
   637  	(MOV(L|W|B)storeconst [sc.addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem)
   638  
   639  ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
   640  	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   641  	((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
   642  ((ADD|SUB|MUL|DIV)SSload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
   643  	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   644  	((ADD|SUB|MUL|DIV)SSload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
   645  ((ADD|SUB|MUL|DIV)SDload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
   646  	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   647  	((ADD|SUB|MUL|DIV)SDload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
   648  ((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym1} (LEAL [off2] {sym2} base) val mem)
   649  	&& is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   650  	((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem)
   651  ((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym1} (LEAL [off2] {sym2} base) mem)
   652  	&& valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) =>
   653  	((ADD|AND|OR|XOR)Lconstmodify [valoff1.addOffset32(off2)] {mergeSym(sym1,sym2)} base mem)
   654  
   655  // Merge load/store to op
   656  ((ADD|AND|OR|XOR|SUB|MUL)L x l:(MOVLload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|AND|OR|XOR|SUB|MUL)Lload x [off] {sym} ptr mem)
   657  ((ADD|SUB|MUL|DIV)SD x l:(MOVSDload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SDload x [off] {sym} ptr mem)
   658  ((ADD|SUB|MUL|DIV)SS x l:(MOVSSload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SSload x [off] {sym} ptr mem)
   659  (MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lload x [off] {sym} ptr mem) mem) && y.Uses==1 && clobber(y) => ((ADD|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
   660  (MOVLstore {sym} [off] ptr y:((ADD|SUB|AND|OR|XOR)L l:(MOVLload [off] {sym} ptr mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y, l) =>
   661  	((ADD|SUB|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
   662  (MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lconst [c] l:(MOVLload [off] {sym} ptr mem)) mem)
   663  	&& y.Uses==1 && l.Uses==1 && clobber(y, l) =>
   664  	((ADD|AND|OR|XOR)Lconstmodify [makeValAndOff(c,off)] {sym} ptr mem)
   665  
   666  // fold LEALs together
   667  (LEAL [off1] {sym1} (LEAL [off2] {sym2} x)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   668        (LEAL [off1+off2] {mergeSym(sym1,sym2)} x)
   669  
   670  // LEAL into LEAL1
   671  (LEAL1 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
   672         (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y)
   673  
   674  // LEAL1 into LEAL
   675  (LEAL [off1] {sym1} (LEAL1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   676         (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y)
   677  
   678  // LEAL into LEAL[248]
   679  (LEAL2 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
   680         (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y)
   681  (LEAL4 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
   682         (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y)
   683  (LEAL8 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB =>
   684         (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y)
   685  
   686  // LEAL[248] into LEAL
   687  (LEAL [off1] {sym1} (LEAL2 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   688        (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y)
   689  (LEAL [off1] {sym1} (LEAL4 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   690        (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y)
   691  (LEAL [off1] {sym1} (LEAL8 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   692        (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y)
   693  
   694  // LEAL[1248] into LEAL[1248]. Only some such merges are possible.
   695  (LEAL1 [off1] {sym1} x (LEAL1 [off2] {sym2} y y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   696        (LEAL2 [off1+off2] {mergeSym(sym1, sym2)} x y)
   697  (LEAL1 [off1] {sym1} x (LEAL1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) =>
   698        (LEAL2 [off1+off2] {mergeSym(sym1, sym2)} y x)
   699  (LEAL2 [off1] {sym} x (LEAL1 [off2] {nil} y y)) && is32Bit(int64(off1)+2*int64(off2)) =>
   700        (LEAL4 [off1+2*off2] {sym} x y)
   701  (LEAL4 [off1] {sym} x (LEAL1 [off2] {nil} y y)) && is32Bit(int64(off1)+4*int64(off2)) =>
   702        (LEAL8 [off1+4*off2] {sym} x y)
   703  
   704  // Absorb InvertFlags into branches.
   705  (LT (InvertFlags cmp) yes no) => (GT cmp yes no)
   706  (GT (InvertFlags cmp) yes no) => (LT cmp yes no)
   707  (LE (InvertFlags cmp) yes no) => (GE cmp yes no)
   708  (GE (InvertFlags cmp) yes no) => (LE cmp yes no)
   709  (ULT (InvertFlags cmp) yes no) => (UGT cmp yes no)
   710  (UGT (InvertFlags cmp) yes no) => (ULT cmp yes no)
   711  (ULE (InvertFlags cmp) yes no) => (UGE cmp yes no)
   712  (UGE (InvertFlags cmp) yes no) => (ULE cmp yes no)
   713  (EQ (InvertFlags cmp) yes no) => (EQ cmp yes no)
   714  (NE (InvertFlags cmp) yes no) => (NE cmp yes no)
   715  
   716  // Constant comparisons.
   717  (CMPLconst (MOVLconst [x]) [y]) && x==y                       => (FlagEQ)
   718  (CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)<uint32(y) => (FlagLT_ULT)
   719  (CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)>uint32(y) => (FlagLT_UGT)
   720  (CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)<uint32(y) => (FlagGT_ULT)
   721  (CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)>uint32(y) => (FlagGT_UGT)
   722  
   723  (CMPWconst (MOVLconst [x]) [y]) && int16(x)==y                       => (FlagEQ)
   724  (CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)<uint16(y) => (FlagLT_ULT)
   725  (CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)>uint16(y) => (FlagLT_UGT)
   726  (CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)<uint16(y) => (FlagGT_ULT)
   727  (CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)>uint16(y) => (FlagGT_UGT)
   728  
   729  (CMPBconst (MOVLconst [x]) [y]) && int8(x)==y                      => (FlagEQ)
   730  (CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)<uint8(y) => (FlagLT_ULT)
   731  (CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)>uint8(y) => (FlagLT_UGT)
   732  (CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)<uint8(y) => (FlagGT_ULT)
   733  (CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)>uint8(y) => (FlagGT_UGT)
   734  
   735  // Other known comparisons.
   736  (CMPLconst (SHRLconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 32 && (1<<uint64(32-c)) <= uint64(n) => (FlagLT_ULT)
   737  (CMPLconst (ANDLconst _ [m]) [n]) && 0 <= m && m < n => (FlagLT_ULT)
   738  (CMPWconst (ANDLconst _ [m]) [n]) && 0 <= int16(m) && int16(m) < n => (FlagLT_ULT)
   739  (CMPBconst (ANDLconst _ [m]) [n]) && 0 <= int8(m) && int8(m) < n => (FlagLT_ULT)
   740  // TODO: DIVxU also.
   741  
   742  // Absorb flag constants into SBB ops.
   743  (SBBLcarrymask (FlagEQ)) => (MOVLconst [0])
   744  (SBBLcarrymask (FlagLT_ULT)) => (MOVLconst [-1])
   745  (SBBLcarrymask (FlagLT_UGT)) => (MOVLconst [0])
   746  (SBBLcarrymask (FlagGT_ULT)) => (MOVLconst [-1])
   747  (SBBLcarrymask (FlagGT_UGT)) => (MOVLconst [0])
   748  
   749  // Absorb flag constants into branches.
   750  (EQ (FlagEQ) yes no) => (First yes no)
   751  (EQ (FlagLT_ULT) yes no) => (First no yes)
   752  (EQ (FlagLT_UGT) yes no) => (First no yes)
   753  (EQ (FlagGT_ULT) yes no) => (First no yes)
   754  (EQ (FlagGT_UGT) yes no) => (First no yes)
   755  
   756  (NE (FlagEQ) yes no) => (First no yes)
   757  (NE (FlagLT_ULT) yes no) => (First yes no)
   758  (NE (FlagLT_UGT) yes no) => (First yes no)
   759  (NE (FlagGT_ULT) yes no) => (First yes no)
   760  (NE (FlagGT_UGT) yes no) => (First yes no)
   761  
   762  (LT (FlagEQ) yes no) => (First no yes)
   763  (LT (FlagLT_ULT) yes no) => (First yes no)
   764  (LT (FlagLT_UGT) yes no) => (First yes no)
   765  (LT (FlagGT_ULT) yes no) => (First no yes)
   766  (LT (FlagGT_UGT) yes no) => (First no yes)
   767  
   768  (LE (FlagEQ) yes no) => (First yes no)
   769  (LE (FlagLT_ULT) yes no) => (First yes no)
   770  (LE (FlagLT_UGT) yes no) => (First yes no)
   771  (LE (FlagGT_ULT) yes no) => (First no yes)
   772  (LE (FlagGT_UGT) yes no) => (First no yes)
   773  
   774  (GT (FlagEQ) yes no) => (First no yes)
   775  (GT (FlagLT_ULT) yes no) => (First no yes)
   776  (GT (FlagLT_UGT) yes no) => (First no yes)
   777  (GT (FlagGT_ULT) yes no) => (First yes no)
   778  (GT (FlagGT_UGT) yes no) => (First yes no)
   779  
   780  (GE (FlagEQ) yes no) => (First yes no)
   781  (GE (FlagLT_ULT) yes no) => (First no yes)
   782  (GE (FlagLT_UGT) yes no) => (First no yes)
   783  (GE (FlagGT_ULT) yes no) => (First yes no)
   784  (GE (FlagGT_UGT) yes no) => (First yes no)
   785  
   786  (ULT (FlagEQ) yes no) => (First no yes)
   787  (ULT (FlagLT_ULT) yes no) => (First yes no)
   788  (ULT (FlagLT_UGT) yes no) => (First no yes)
   789  (ULT (FlagGT_ULT) yes no) => (First yes no)
   790  (ULT (FlagGT_UGT) yes no) => (First no yes)
   791  
   792  (ULE (FlagEQ) yes no) => (First yes no)
   793  (ULE (FlagLT_ULT) yes no) => (First yes no)
   794  (ULE (FlagLT_UGT) yes no) => (First no yes)
   795  (ULE (FlagGT_ULT) yes no) => (First yes no)
   796  (ULE (FlagGT_UGT) yes no) => (First no yes)
   797  
   798  (UGT (FlagEQ) yes no) => (First no yes)
   799  (UGT (FlagLT_ULT) yes no) => (First no yes)
   800  (UGT (FlagLT_UGT) yes no) => (First yes no)
   801  (UGT (FlagGT_ULT) yes no) => (First no yes)
   802  (UGT (FlagGT_UGT) yes no) => (First yes no)
   803  
   804  (UGE (FlagEQ) yes no) => (First yes no)
   805  (UGE (FlagLT_ULT) yes no) => (First no yes)
   806  (UGE (FlagLT_UGT) yes no) => (First yes no)
   807  (UGE (FlagGT_ULT) yes no) => (First no yes)
   808  (UGE (FlagGT_UGT) yes no) => (First yes no)
   809  
   810  // Absorb flag constants into SETxx ops.
   811  (SETEQ (FlagEQ)) => (MOVLconst [1])
   812  (SETEQ (FlagLT_ULT)) => (MOVLconst [0])
   813  (SETEQ (FlagLT_UGT)) => (MOVLconst [0])
   814  (SETEQ (FlagGT_ULT)) => (MOVLconst [0])
   815  (SETEQ (FlagGT_UGT)) => (MOVLconst [0])
   816  
   817  (SETNE (FlagEQ)) => (MOVLconst [0])
   818  (SETNE (FlagLT_ULT)) => (MOVLconst [1])
   819  (SETNE (FlagLT_UGT)) => (MOVLconst [1])
   820  (SETNE (FlagGT_ULT)) => (MOVLconst [1])
   821  (SETNE (FlagGT_UGT)) => (MOVLconst [1])
   822  
   823  (SETL (FlagEQ)) => (MOVLconst [0])
   824  (SETL (FlagLT_ULT)) => (MOVLconst [1])
   825  (SETL (FlagLT_UGT)) => (MOVLconst [1])
   826  (SETL (FlagGT_ULT)) => (MOVLconst [0])
   827  (SETL (FlagGT_UGT)) => (MOVLconst [0])
   828  
   829  (SETLE (FlagEQ)) => (MOVLconst [1])
   830  (SETLE (FlagLT_ULT)) => (MOVLconst [1])
   831  (SETLE (FlagLT_UGT)) => (MOVLconst [1])
   832  (SETLE (FlagGT_ULT)) => (MOVLconst [0])
   833  (SETLE (FlagGT_UGT)) => (MOVLconst [0])
   834  
   835  (SETG (FlagEQ)) => (MOVLconst [0])
   836  (SETG (FlagLT_ULT)) => (MOVLconst [0])
   837  (SETG (FlagLT_UGT)) => (MOVLconst [0])
   838  (SETG (FlagGT_ULT)) => (MOVLconst [1])
   839  (SETG (FlagGT_UGT)) => (MOVLconst [1])
   840  
   841  (SETGE (FlagEQ)) => (MOVLconst [1])
   842  (SETGE (FlagLT_ULT)) => (MOVLconst [0])
   843  (SETGE (FlagLT_UGT)) => (MOVLconst [0])
   844  (SETGE (FlagGT_ULT)) => (MOVLconst [1])
   845  (SETGE (FlagGT_UGT)) => (MOVLconst [1])
   846  
   847  (SETB (FlagEQ)) => (MOVLconst [0])
   848  (SETB (FlagLT_ULT)) => (MOVLconst [1])
   849  (SETB (FlagLT_UGT)) => (MOVLconst [0])
   850  (SETB (FlagGT_ULT)) => (MOVLconst [1])
   851  (SETB (FlagGT_UGT)) => (MOVLconst [0])
   852  
   853  (SETBE (FlagEQ)) => (MOVLconst [1])
   854  (SETBE (FlagLT_ULT)) => (MOVLconst [1])
   855  (SETBE (FlagLT_UGT)) => (MOVLconst [0])
   856  (SETBE (FlagGT_ULT)) => (MOVLconst [1])
   857  (SETBE (FlagGT_UGT)) => (MOVLconst [0])
   858  
   859  (SETA (FlagEQ)) => (MOVLconst [0])
   860  (SETA (FlagLT_ULT)) => (MOVLconst [0])
   861  (SETA (FlagLT_UGT)) => (MOVLconst [1])
   862  (SETA (FlagGT_ULT)) => (MOVLconst [0])
   863  (SETA (FlagGT_UGT)) => (MOVLconst [1])
   864  
   865  (SETAE (FlagEQ)) => (MOVLconst [1])
   866  (SETAE (FlagLT_ULT)) => (MOVLconst [0])
   867  (SETAE (FlagLT_UGT)) => (MOVLconst [1])
   868  (SETAE (FlagGT_ULT)) => (MOVLconst [0])
   869  (SETAE (FlagGT_UGT)) => (MOVLconst [1])
   870  
   871  // Remove redundant *const ops
   872  (ADDLconst [c] x) && c==0  => x
   873  (SUBLconst [c] x) && c==0  => x
   874  (ANDLconst [c] _) && c==0  => (MOVLconst [0])
   875  (ANDLconst [c] x) && c==-1 => x
   876  (ORLconst [c] x)  && c==0  => x
   877  (ORLconst [c] _)  && c==-1 => (MOVLconst [-1])
   878  (XORLconst [c] x) && c==0  => x
   879  // TODO: since we got rid of the W/B versions, we might miss
   880  // things like (ANDLconst [0x100] x) which were formerly
   881  // (ANDBconst [0] x).  Probably doesn't happen very often.
   882  // If we cared, we might do:
   883  //  (ANDLconst <t> [c] x) && t.Size()==1 && int8(x)==0 => (MOVLconst [0])
   884  
   885  // Convert constant subtracts to constant adds
   886  (SUBLconst [c] x) => (ADDLconst [-c] x)
   887  
   888  // generic constant folding
   889  // TODO: more of this
   890  (ADDLconst [c] (MOVLconst [d])) => (MOVLconst [c+d])
   891  (ADDLconst [c] (ADDLconst [d] x)) => (ADDLconst [c+d] x)
   892  (SARLconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)])
   893  (SARWconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)])
   894  (SARBconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)])
   895  (NEGL (MOVLconst [c])) => (MOVLconst [-c])
   896  (MULLconst [c] (MOVLconst [d])) => (MOVLconst [c*d])
   897  (ANDLconst [c] (MOVLconst [d])) => (MOVLconst [c&d])
   898  (ORLconst [c] (MOVLconst [d])) => (MOVLconst [c|d])
   899  (XORLconst [c] (MOVLconst [d])) => (MOVLconst [c^d])
   900  (NOTL (MOVLconst [c])) => (MOVLconst [^c])
   901  
   902  // generic simplifications
   903  // TODO: more of this
   904  (ADDL x (NEGL y)) => (SUBL x y)
   905  (SUBL x x) => (MOVLconst [0])
   906  (ANDL x x) => x
   907  (ORL x x) => x
   908  (XORL x x) => (MOVLconst [0])
   909  
   910  // checking AND against 0.
   911  (CMP(L|W|B)const l:(ANDL x y) [0]) && l.Uses==1 => (TEST(L|W|B) x y)
   912  (CMPLconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTLconst [c] x)
   913  (CMPWconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTWconst [int16(c)] x)
   914  (CMPBconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTBconst [int8(c)] x)
   915  
   916  // TEST %reg,%reg is shorter than CMP
   917  (CMP(L|W|B)const x [0]) => (TEST(L|W|B) x x)
   918  
   919  // Convert LEAL1 back to ADDL if we can
   920  (LEAL1 [0] {nil} x y) => (ADDL x y)
   921  
   922  // For PIC, break floating-point constant loading into two instructions so we have
   923  // a register to use for holding the address of the constant pool entry.
   924  (MOVSSconst [c]) && config.ctxt.Flag_shared => (MOVSSconst2 (MOVSSconst1 [c]))
   925  (MOVSDconst [c]) && config.ctxt.Flag_shared => (MOVSDconst2 (MOVSDconst1 [c]))
   926  
   927  (CMP(L|W|B) l:(MOV(L|W|B)load {sym} [off] ptr mem) x) && canMergeLoad(v, l) && clobber(l) => (CMP(L|W|B)load {sym} [off] ptr x mem)
   928  (CMP(L|W|B) x l:(MOV(L|W|B)load {sym} [off] ptr mem)) && canMergeLoad(v, l) && clobber(l) => (InvertFlags (CMP(L|W|B)load {sym} [off] ptr x mem))
   929  
   930  (CMP(L|W|B)const l:(MOV(L|W|B)load {sym} [off] ptr mem) [c])
   931  	&& l.Uses == 1
   932  	&& clobber(l) =>
   933    @l.Block (CMP(L|W|B)constload {sym} [makeValAndOff(int32(c),off)] ptr mem)
   934  
   935  (CMPLload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPLconstload {sym} [makeValAndOff(c,off)] ptr mem)
   936  (CMPWload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPWconstload {sym} [makeValAndOff(int32(int16(c)),off)] ptr mem)
   937  (CMPBload {sym} [off] ptr (MOVLconst [c]) mem) => (CMPBconstload {sym} [makeValAndOff(int32(int8(c)),off)] ptr mem)
   938  
   939  (MOVBload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read8(sym, int64(off)))])
   940  (MOVWload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read16(sym, int64(off), config.ctxt.Arch.ByteOrder))])
   941  (MOVLload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read32(sym, int64(off), config.ctxt.Arch.ByteOrder))])