github.com/bir3/gocompiler@v0.9.2202/src/cmd/compile/internal/ssa/deadcode.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 import ( 8 "github.com/bir3/gocompiler/src/cmd/internal/src" 9 ) 10 11 // findlive returns the reachable blocks and live values in f. 12 // The caller should call f.Cache.freeBoolSlice(live) when it is done with it. 13 func findlive(f *Func) (reachable []bool, live []bool) { 14 reachable = ReachableBlocks(f) 15 var order []*Value 16 live, order = liveValues(f, reachable) 17 f.Cache.freeValueSlice(order) 18 return 19 } 20 21 // ReachableBlocks returns the reachable blocks in f. 22 func ReachableBlocks(f *Func) []bool { 23 reachable := make([]bool, f.NumBlocks()) 24 reachable[f.Entry.ID] = true 25 p := make([]*Block, 0, 64) // stack-like worklist 26 p = append(p, f.Entry) 27 for len(p) > 0 { 28 // Pop a reachable block 29 b := p[len(p)-1] 30 p = p[:len(p)-1] 31 // Mark successors as reachable 32 s := b.Succs 33 if b.Kind == BlockFirst { 34 s = s[:1] 35 } 36 for _, e := range s { 37 c := e.b 38 if int(c.ID) >= len(reachable) { 39 f.Fatalf("block %s >= f.NumBlocks()=%d?", c, len(reachable)) 40 } 41 if !reachable[c.ID] { 42 reachable[c.ID] = true 43 p = append(p, c) // push 44 } 45 } 46 } 47 return reachable 48 } 49 50 // liveValues returns the live values in f and a list of values that are eligible 51 // to be statements in reversed data flow order. 52 // The second result is used to help conserve statement boundaries for debugging. 53 // reachable is a map from block ID to whether the block is reachable. 54 // The caller should call f.Cache.freeBoolSlice(live) and f.Cache.freeValueSlice(liveOrderStmts). 55 // when they are done with the return values. 56 func liveValues(f *Func, reachable []bool) (live []bool, liveOrderStmts []*Value) { 57 live = f.Cache.allocBoolSlice(f.NumValues()) 58 liveOrderStmts = f.Cache.allocValueSlice(f.NumValues())[:0] 59 60 // After regalloc, consider all values to be live. 61 // See the comment at the top of regalloc.go and in deadcode for details. 62 if f.RegAlloc != nil { 63 for i := range live { 64 live[i] = true 65 } 66 return 67 } 68 69 // Record all the inline indexes we need 70 var liveInlIdx map[int]bool 71 pt := f.Config.ctxt.PosTable 72 for _, b := range f.Blocks { 73 for _, v := range b.Values { 74 i := pt.Pos(v.Pos).Base().InliningIndex() 75 if i < 0 { 76 continue 77 } 78 if liveInlIdx == nil { 79 liveInlIdx = map[int]bool{} 80 } 81 liveInlIdx[i] = true 82 } 83 i := pt.Pos(b.Pos).Base().InliningIndex() 84 if i < 0 { 85 continue 86 } 87 if liveInlIdx == nil { 88 liveInlIdx = map[int]bool{} 89 } 90 liveInlIdx[i] = true 91 } 92 93 // Find all live values 94 q := f.Cache.allocValueSlice(f.NumValues())[:0] 95 defer f.Cache.freeValueSlice(q) 96 97 // Starting set: all control values of reachable blocks are live. 98 // Calls are live (because callee can observe the memory state). 99 for _, b := range f.Blocks { 100 if !reachable[b.ID] { 101 continue 102 } 103 for _, v := range b.ControlValues() { 104 if !live[v.ID] { 105 live[v.ID] = true 106 q = append(q, v) 107 if v.Pos.IsStmt() != src.PosNotStmt { 108 liveOrderStmts = append(liveOrderStmts, v) 109 } 110 } 111 } 112 for _, v := range b.Values { 113 if (opcodeTable[v.Op].call || opcodeTable[v.Op].hasSideEffects || opcodeTable[v.Op].nilCheck) && !live[v.ID] { 114 live[v.ID] = true 115 q = append(q, v) 116 if v.Pos.IsStmt() != src.PosNotStmt { 117 liveOrderStmts = append(liveOrderStmts, v) 118 } 119 } 120 if v.Op == OpInlMark { 121 if !liveInlIdx[int(v.AuxInt)] { 122 // We don't need marks for bodies that 123 // have been completely optimized away. 124 // TODO: save marks only for bodies which 125 // have a faulting instruction or a call? 126 continue 127 } 128 live[v.ID] = true 129 q = append(q, v) 130 if v.Pos.IsStmt() != src.PosNotStmt { 131 liveOrderStmts = append(liveOrderStmts, v) 132 } 133 } 134 } 135 } 136 137 // Compute transitive closure of live values. 138 for len(q) > 0 { 139 // pop a reachable value 140 v := q[len(q)-1] 141 q[len(q)-1] = nil 142 q = q[:len(q)-1] 143 for i, x := range v.Args { 144 if v.Op == OpPhi && !reachable[v.Block.Preds[i].b.ID] { 145 continue 146 } 147 if !live[x.ID] { 148 live[x.ID] = true 149 q = append(q, x) // push 150 if x.Pos.IsStmt() != src.PosNotStmt { 151 liveOrderStmts = append(liveOrderStmts, x) 152 } 153 } 154 } 155 } 156 157 return 158 } 159 160 // deadcode removes dead code from f. 161 func deadcode(f *Func) { 162 // deadcode after regalloc is forbidden for now. Regalloc 163 // doesn't quite generate legal SSA which will lead to some 164 // required moves being eliminated. See the comment at the 165 // top of regalloc.go for details. 166 if f.RegAlloc != nil { 167 f.Fatalf("deadcode after regalloc") 168 } 169 170 // Find reachable blocks. 171 reachable := ReachableBlocks(f) 172 173 // Get rid of edges from dead to live code. 174 for _, b := range f.Blocks { 175 if reachable[b.ID] { 176 continue 177 } 178 for i := 0; i < len(b.Succs); { 179 e := b.Succs[i] 180 if reachable[e.b.ID] { 181 b.removeEdge(i) 182 } else { 183 i++ 184 } 185 } 186 } 187 188 // Get rid of dead edges from live code. 189 for _, b := range f.Blocks { 190 if !reachable[b.ID] { 191 continue 192 } 193 if b.Kind != BlockFirst { 194 continue 195 } 196 b.removeEdge(1) 197 b.Kind = BlockPlain 198 b.Likely = BranchUnknown 199 } 200 201 // Splice out any copies introduced during dead block removal. 202 copyelim(f) 203 204 // Find live values. 205 live, order := liveValues(f, reachable) 206 defer func() { f.Cache.freeBoolSlice(live) }() 207 defer func() { f.Cache.freeValueSlice(order) }() 208 209 // Remove dead & duplicate entries from namedValues map. 210 s := f.newSparseSet(f.NumValues()) 211 defer f.retSparseSet(s) 212 i := 0 213 for _, name := range f.Names { 214 j := 0 215 s.clear() 216 values := f.NamedValues[*name] 217 for _, v := range values { 218 if live[v.ID] && !s.contains(v.ID) { 219 values[j] = v 220 j++ 221 s.add(v.ID) 222 } 223 } 224 if j == 0 { 225 delete(f.NamedValues, *name) 226 } else { 227 f.Names[i] = name 228 i++ 229 for k := len(values) - 1; k >= j; k-- { 230 values[k] = nil 231 } 232 f.NamedValues[*name] = values[:j] 233 } 234 } 235 clearNames := f.Names[i:] 236 for j := range clearNames { 237 clearNames[j] = nil 238 } 239 f.Names = f.Names[:i] 240 241 pendingLines := f.cachedLineStarts // Holds statement boundaries that need to be moved to a new value/block 242 pendingLines.clear() 243 244 // Unlink values and conserve statement boundaries 245 for i, b := range f.Blocks { 246 if !reachable[b.ID] { 247 // TODO what if control is statement boundary? Too late here. 248 b.ResetControls() 249 } 250 for _, v := range b.Values { 251 if !live[v.ID] { 252 v.resetArgs() 253 if v.Pos.IsStmt() == src.PosIsStmt && reachable[b.ID] { 254 pendingLines.set(v.Pos, int32(i)) // TODO could be more than one pos for a line 255 } 256 } 257 } 258 } 259 260 // Find new homes for lost lines -- require earliest in data flow with same line that is also in same block 261 for i := len(order) - 1; i >= 0; i-- { 262 w := order[i] 263 if j := pendingLines.get(w.Pos); j > -1 && f.Blocks[j] == w.Block { 264 w.Pos = w.Pos.WithIsStmt() 265 pendingLines.remove(w.Pos) 266 } 267 } 268 269 // Any boundary that failed to match a live value can move to a block end 270 pendingLines.foreachEntry(func(j int32, l uint, bi int32) { 271 b := f.Blocks[bi] 272 if b.Pos.Line() == l && b.Pos.FileIndex() == j { 273 b.Pos = b.Pos.WithIsStmt() 274 } 275 }) 276 277 // Remove dead values from blocks' value list. Return dead 278 // values to the allocator. 279 for _, b := range f.Blocks { 280 i := 0 281 for _, v := range b.Values { 282 if live[v.ID] { 283 b.Values[i] = v 284 i++ 285 } else { 286 f.freeValue(v) 287 } 288 } 289 b.truncateValues(i) 290 } 291 292 // Remove unreachable blocks. Return dead blocks to allocator. 293 i = 0 294 for _, b := range f.Blocks { 295 if reachable[b.ID] { 296 f.Blocks[i] = b 297 i++ 298 } else { 299 if len(b.Values) > 0 { 300 b.Fatalf("live values in unreachable block %v: %v", b, b.Values) 301 } 302 f.freeBlock(b) 303 } 304 } 305 // zero remainder to help GC 306 tail := f.Blocks[i:] 307 for j := range tail { 308 tail[j] = nil 309 } 310 f.Blocks = f.Blocks[:i] 311 } 312 313 // removeEdge removes the i'th outgoing edge from b (and 314 // the corresponding incoming edge from b.Succs[i].b). 315 // Note that this potentially reorders successors of b, so it 316 // must be used very carefully. 317 func (b *Block) removeEdge(i int) { 318 e := b.Succs[i] 319 c := e.b 320 j := e.i 321 322 // Adjust b.Succs 323 b.removeSucc(i) 324 325 // Adjust c.Preds 326 c.removePred(j) 327 328 // Remove phi args from c's phis. 329 for _, v := range c.Values { 330 if v.Op != OpPhi { 331 continue 332 } 333 c.removePhiArg(v, j) 334 // Note: this is trickier than it looks. Replacing 335 // a Phi with a Copy can in general cause problems because 336 // Phi and Copy don't have exactly the same semantics. 337 // Phi arguments always come from a predecessor block, 338 // whereas copies don't. This matters in loops like: 339 // 1: x = (Phi y) 340 // y = (Add x 1) 341 // goto 1 342 // If we replace Phi->Copy, we get 343 // 1: x = (Copy y) 344 // y = (Add x 1) 345 // goto 1 346 // (Phi y) refers to the *previous* value of y, whereas 347 // (Copy y) refers to the *current* value of y. 348 // The modified code has a cycle and the scheduler 349 // will barf on it. 350 // 351 // Fortunately, this situation can only happen for dead 352 // code loops. We know the code we're working with is 353 // not dead, so we're ok. 354 // Proof: If we have a potential bad cycle, we have a 355 // situation like this: 356 // x = (Phi z) 357 // y = (op1 x ...) 358 // z = (op2 y ...) 359 // Where opX are not Phi ops. But such a situation 360 // implies a cycle in the dominator graph. In the 361 // example, x.Block dominates y.Block, y.Block dominates 362 // z.Block, and z.Block dominates x.Block (treating 363 // "dominates" as reflexive). Cycles in the dominator 364 // graph can only happen in an unreachable cycle. 365 } 366 }