github.com/bir3/gocompiler@v0.9.2202/src/cmd/compile/internal/ssa/loopreschedchecks.go (about) 1 // Copyright 2016 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 import ( 8 "github.com/bir3/gocompiler/src/cmd/compile/internal/types" 9 "fmt" 10 ) 11 12 // an edgeMem records a backedge, together with the memory 13 // phi functions at the target of the backedge that must 14 // be updated when a rescheduling check replaces the backedge. 15 type edgeMem struct { 16 e Edge 17 m *Value // phi for memory at dest of e 18 } 19 20 // a rewriteTarget is a value-argindex pair indicating 21 // where a rewrite is applied. Note that this is for values, 22 // not for block controls, because block controls are not targets 23 // for the rewrites performed in inserting rescheduling checks. 24 type rewriteTarget struct { 25 v *Value 26 i int 27 } 28 29 type rewrite struct { 30 before, after *Value // before is the expected value before rewrite, after is the new value installed. 31 rewrites []rewriteTarget // all the targets for this rewrite. 32 } 33 34 func (r *rewrite) String() string { 35 s := "\n\tbefore=" + r.before.String() + ", after=" + r.after.String() 36 for _, rw := range r.rewrites { 37 s += ", (i=" + fmt.Sprint(rw.i) + ", v=" + rw.v.LongString() + ")" 38 } 39 s += "\n" 40 return s 41 } 42 43 // insertLoopReschedChecks inserts rescheduling checks on loop backedges. 44 func insertLoopReschedChecks(f *Func) { 45 // TODO: when split information is recorded in export data, insert checks only on backedges that can be reached on a split-call-free path. 46 47 // Loop reschedule checks compare the stack pointer with 48 // the per-g stack bound. If the pointer appears invalid, 49 // that means a reschedule check is needed. 50 // 51 // Steps: 52 // 1. locate backedges. 53 // 2. Record memory definitions at block end so that 54 // the SSA graph for mem can be properly modified. 55 // 3. Ensure that phi functions that will-be-needed for mem 56 // are present in the graph, initially with trivial inputs. 57 // 4. Record all to-be-modified uses of mem; 58 // apply modifications (split into two steps to simplify and 59 // avoided nagging order-dependencies). 60 // 5. Rewrite backedges to include reschedule check, 61 // and modify destination phi function appropriately with new 62 // definitions for mem. 63 64 if f.NoSplit { // nosplit functions don't reschedule. 65 return 66 } 67 68 backedges := backedges(f) 69 if len(backedges) == 0 { // no backedges means no rescheduling checks. 70 return 71 } 72 73 lastMems := findLastMems(f) 74 75 idom := f.Idom() 76 po := f.postorder() 77 // The ordering in the dominator tree matters; it's important that 78 // the walk of the dominator tree also be a preorder (i.e., a node is 79 // visited only after all its non-backedge predecessors have been visited). 80 sdom := newSparseOrderedTree(f, idom, po) 81 82 if f.pass.debug > 1 { 83 fmt.Printf("before %s = %s\n", f.Name, sdom.treestructure(f.Entry)) 84 } 85 86 tofixBackedges := []edgeMem{} 87 88 for _, e := range backedges { // TODO: could filter here by calls in loops, if declared and inferred nosplit are recorded in export data. 89 tofixBackedges = append(tofixBackedges, edgeMem{e, nil}) 90 } 91 92 // It's possible that there is no memory state (no global/pointer loads/stores or calls) 93 if lastMems[f.Entry.ID] == nil { 94 lastMems[f.Entry.ID] = f.Entry.NewValue0(f.Entry.Pos, OpInitMem, types.TypeMem) 95 } 96 97 memDefsAtBlockEnds := f.Cache.allocValueSlice(f.NumBlocks()) // For each block, the mem def seen at its bottom. Could be from earlier block. 98 defer f.Cache.freeValueSlice(memDefsAtBlockEnds) 99 100 // Propagate last mem definitions forward through successor blocks. 101 for i := len(po) - 1; i >= 0; i-- { 102 b := po[i] 103 mem := lastMems[b.ID] 104 for j := 0; mem == nil; j++ { // if there's no def, then there's no phi, so the visible mem is identical in all predecessors. 105 // loop because there might be backedges that haven't been visited yet. 106 mem = memDefsAtBlockEnds[b.Preds[j].b.ID] 107 } 108 memDefsAtBlockEnds[b.ID] = mem 109 if f.pass.debug > 2 { 110 fmt.Printf("memDefsAtBlockEnds[%s] = %s\n", b, mem) 111 } 112 } 113 114 // Maps from block to newly-inserted phi function in block. 115 newmemphis := make(map[*Block]rewrite) 116 117 // Insert phi functions as necessary for future changes to flow graph. 118 for i, emc := range tofixBackedges { 119 e := emc.e 120 h := e.b 121 122 // find the phi function for the memory input at "h", if there is one. 123 var headerMemPhi *Value // look for header mem phi 124 125 for _, v := range h.Values { 126 if v.Op == OpPhi && v.Type.IsMemory() { 127 headerMemPhi = v 128 } 129 } 130 131 if headerMemPhi == nil { 132 // if the header is nil, make a trivial phi from the dominator 133 mem0 := memDefsAtBlockEnds[idom[h.ID].ID] 134 headerMemPhi = newPhiFor(h, mem0) 135 newmemphis[h] = rewrite{before: mem0, after: headerMemPhi} 136 addDFphis(mem0, h, h, f, memDefsAtBlockEnds, newmemphis, sdom) 137 138 } 139 tofixBackedges[i].m = headerMemPhi 140 141 } 142 if f.pass.debug > 0 { 143 for b, r := range newmemphis { 144 fmt.Printf("before b=%s, rewrite=%s\n", b, r.String()) 145 } 146 } 147 148 // dfPhiTargets notes inputs to phis in dominance frontiers that should not 149 // be rewritten as part of the dominated children of some outer rewrite. 150 dfPhiTargets := make(map[rewriteTarget]bool) 151 152 rewriteNewPhis(f.Entry, f.Entry, f, memDefsAtBlockEnds, newmemphis, dfPhiTargets, sdom) 153 154 if f.pass.debug > 0 { 155 for b, r := range newmemphis { 156 fmt.Printf("after b=%s, rewrite=%s\n", b, r.String()) 157 } 158 } 159 160 // Apply collected rewrites. 161 for _, r := range newmemphis { 162 for _, rw := range r.rewrites { 163 rw.v.SetArg(rw.i, r.after) 164 } 165 } 166 167 // Rewrite backedges to include reschedule checks. 168 for _, emc := range tofixBackedges { 169 e := emc.e 170 headerMemPhi := emc.m 171 h := e.b 172 i := e.i 173 p := h.Preds[i] 174 bb := p.b 175 mem0 := headerMemPhi.Args[i] 176 // bb e->p h, 177 // Because we're going to insert a rare-call, make sure the 178 // looping edge still looks likely. 179 likely := BranchLikely 180 if p.i != 0 { 181 likely = BranchUnlikely 182 } 183 if bb.Kind != BlockPlain { // backedges can be unconditional. e.g., if x { something; continue } 184 bb.Likely = likely 185 } 186 187 // rewrite edge to include reschedule check 188 // existing edges: 189 // 190 // bb.Succs[p.i] == Edge{h, i} 191 // h.Preds[i] == p == Edge{bb,p.i} 192 // 193 // new block(s): 194 // test: 195 // if sp < g.limit { goto sched } 196 // goto join 197 // sched: 198 // mem1 := call resched (mem0) 199 // goto join 200 // join: 201 // mem2 := phi(mem0, mem1) 202 // goto h 203 // 204 // and correct arg i of headerMemPhi and headerCtrPhi 205 // 206 // EXCEPT: join block containing only phi functions is bad 207 // for the register allocator. Therefore, there is no 208 // join, and branches targeting join must instead target 209 // the header, and the other phi functions within header are 210 // adjusted for the additional input. 211 212 test := f.NewBlock(BlockIf) 213 sched := f.NewBlock(BlockPlain) 214 215 test.Pos = bb.Pos 216 sched.Pos = bb.Pos 217 218 // if sp < g.limit { goto sched } 219 // goto header 220 221 cfgtypes := &f.Config.Types 222 pt := cfgtypes.Uintptr 223 g := test.NewValue1(bb.Pos, OpGetG, pt, mem0) 224 sp := test.NewValue0(bb.Pos, OpSP, pt) 225 cmpOp := OpLess64U 226 if pt.Size() == 4 { 227 cmpOp = OpLess32U 228 } 229 limaddr := test.NewValue1I(bb.Pos, OpOffPtr, pt, 2*pt.Size(), g) 230 lim := test.NewValue2(bb.Pos, OpLoad, pt, limaddr, mem0) 231 cmp := test.NewValue2(bb.Pos, cmpOp, cfgtypes.Bool, sp, lim) 232 test.SetControl(cmp) 233 234 // if true, goto sched 235 test.AddEdgeTo(sched) 236 237 // if false, rewrite edge to header. 238 // do NOT remove+add, because that will perturb all the other phi functions 239 // as well as messing up other edges to the header. 240 test.Succs = append(test.Succs, Edge{h, i}) 241 h.Preds[i] = Edge{test, 1} 242 headerMemPhi.SetArg(i, mem0) 243 244 test.Likely = BranchUnlikely 245 246 // sched: 247 // mem1 := call resched (mem0) 248 // goto header 249 resched := f.fe.Syslook("goschedguarded") 250 call := sched.NewValue1A(bb.Pos, OpStaticCall, types.TypeResultMem, StaticAuxCall(resched, bb.Func.ABIDefault.ABIAnalyzeTypes(nil, nil)), mem0) 251 mem1 := sched.NewValue1I(bb.Pos, OpSelectN, types.TypeMem, 0, call) 252 sched.AddEdgeTo(h) 253 headerMemPhi.AddArg(mem1) 254 255 bb.Succs[p.i] = Edge{test, 0} 256 test.Preds = append(test.Preds, Edge{bb, p.i}) 257 258 // Must correct all the other phi functions in the header for new incoming edge. 259 // Except for mem phis, it will be the same value seen on the original 260 // backedge at index i. 261 for _, v := range h.Values { 262 if v.Op == OpPhi && v != headerMemPhi { 263 v.AddArg(v.Args[i]) 264 } 265 } 266 } 267 268 f.invalidateCFG() 269 270 if f.pass.debug > 1 { 271 sdom = newSparseTree(f, f.Idom()) 272 fmt.Printf("after %s = %s\n", f.Name, sdom.treestructure(f.Entry)) 273 } 274 } 275 276 // newPhiFor inserts a new Phi function into b, 277 // with all inputs set to v. 278 func newPhiFor(b *Block, v *Value) *Value { 279 phiV := b.NewValue0(b.Pos, OpPhi, v.Type) 280 281 for range b.Preds { 282 phiV.AddArg(v) 283 } 284 return phiV 285 } 286 287 // rewriteNewPhis updates newphis[h] to record all places where the new phi function inserted 288 // in block h will replace a previous definition. Block b is the block currently being processed; 289 // if b has its own phi definition then it takes the place of h. 290 // defsForUses provides information about other definitions of the variable that are present 291 // (and if nil, indicates that the variable is no longer live) 292 // sdom must yield a preorder of the flow graph if recursively walked, root-to-children. 293 // The result of newSparseOrderedTree with order supplied by a dfs-postorder satisfies this 294 // requirement. 295 func rewriteNewPhis(h, b *Block, f *Func, defsForUses []*Value, newphis map[*Block]rewrite, dfPhiTargets map[rewriteTarget]bool, sdom SparseTree) { 296 // If b is a block with a new phi, then a new rewrite applies below it in the dominator tree. 297 if _, ok := newphis[b]; ok { 298 h = b 299 } 300 change := newphis[h] 301 x := change.before 302 y := change.after 303 304 // Apply rewrites to this block 305 if x != nil { // don't waste time on the common case of no definition. 306 p := &change.rewrites 307 for _, v := range b.Values { 308 if v == y { // don't rewrite self -- phi inputs are handled below. 309 continue 310 } 311 for i, w := range v.Args { 312 if w != x { 313 continue 314 } 315 tgt := rewriteTarget{v, i} 316 317 // It's possible dominated control flow will rewrite this instead. 318 // Visiting in preorder (a property of how sdom was constructed) 319 // ensures that these are seen in the proper order. 320 if dfPhiTargets[tgt] { 321 continue 322 } 323 *p = append(*p, tgt) 324 if f.pass.debug > 1 { 325 fmt.Printf("added block target for h=%v, b=%v, x=%v, y=%v, tgt.v=%s, tgt.i=%d\n", 326 h, b, x, y, v, i) 327 } 328 } 329 } 330 331 // Rewrite appropriate inputs of phis reached in successors 332 // in dominance frontier, self, and dominated. 333 // If the variable def reaching uses in b is itself defined in b, then the new phi function 334 // does not reach the successors of b. (This assumes a bit about the structure of the 335 // phi use-def graph, but it's true for memory.) 336 if dfu := defsForUses[b.ID]; dfu != nil && dfu.Block != b { 337 for _, e := range b.Succs { 338 s := e.b 339 340 for _, v := range s.Values { 341 if v.Op == OpPhi && v.Args[e.i] == x { 342 tgt := rewriteTarget{v, e.i} 343 *p = append(*p, tgt) 344 dfPhiTargets[tgt] = true 345 if f.pass.debug > 1 { 346 fmt.Printf("added phi target for h=%v, b=%v, s=%v, x=%v, y=%v, tgt.v=%s, tgt.i=%d\n", 347 h, b, s, x, y, v.LongString(), e.i) 348 } 349 break 350 } 351 } 352 } 353 } 354 newphis[h] = change 355 } 356 357 for c := sdom[b.ID].child; c != nil; c = sdom[c.ID].sibling { 358 rewriteNewPhis(h, c, f, defsForUses, newphis, dfPhiTargets, sdom) // TODO: convert to explicit stack from recursion. 359 } 360 } 361 362 // addDFphis creates new trivial phis that are necessary to correctly reflect (within SSA) 363 // a new definition for variable "x" inserted at h (usually but not necessarily a phi). 364 // These new phis can only occur at the dominance frontier of h; block s is in the dominance 365 // frontier of h if h does not strictly dominate s and if s is a successor of a block b where 366 // either b = h or h strictly dominates b. 367 // These newly created phis are themselves new definitions that may require addition of their 368 // own trivial phi functions in their own dominance frontier, and this is handled recursively. 369 func addDFphis(x *Value, h, b *Block, f *Func, defForUses []*Value, newphis map[*Block]rewrite, sdom SparseTree) { 370 oldv := defForUses[b.ID] 371 if oldv != x { // either a new definition replacing x, or nil if it is proven that there are no uses reachable from b 372 return 373 } 374 idom := f.Idom() 375 outer: 376 for _, e := range b.Succs { 377 s := e.b 378 // check phi functions in the dominance frontier 379 if sdom.isAncestor(h, s) { 380 continue // h dominates s, successor of b, therefore s is not in the frontier. 381 } 382 if _, ok := newphis[s]; ok { 383 continue // successor s of b already has a new phi function, so there is no need to add another. 384 } 385 if x != nil { 386 for _, v := range s.Values { 387 if v.Op == OpPhi && v.Args[e.i] == x { 388 continue outer // successor s of b has an old phi function, so there is no need to add another. 389 } 390 } 391 } 392 393 old := defForUses[idom[s.ID].ID] // new phi function is correct-but-redundant, combining value "old" on all inputs. 394 headerPhi := newPhiFor(s, old) 395 // the new phi will replace "old" in block s and all blocks dominated by s. 396 newphis[s] = rewrite{before: old, after: headerPhi} // record new phi, to have inputs labeled "old" rewritten to "headerPhi" 397 addDFphis(old, s, s, f, defForUses, newphis, sdom) // the new definition may also create new phi functions. 398 } 399 for c := sdom[b.ID].child; c != nil; c = sdom[c.ID].sibling { 400 addDFphis(x, h, c, f, defForUses, newphis, sdom) // TODO: convert to explicit stack from recursion. 401 } 402 } 403 404 // findLastMems maps block ids to last memory-output op in a block, if any. 405 func findLastMems(f *Func) []*Value { 406 407 var stores []*Value 408 lastMems := f.Cache.allocValueSlice(f.NumBlocks()) 409 defer f.Cache.freeValueSlice(lastMems) 410 storeUse := f.newSparseSet(f.NumValues()) 411 defer f.retSparseSet(storeUse) 412 for _, b := range f.Blocks { 413 // Find all the stores in this block. Categorize their uses: 414 // storeUse contains stores which are used by a subsequent store. 415 storeUse.clear() 416 stores = stores[:0] 417 var memPhi *Value 418 for _, v := range b.Values { 419 if v.Op == OpPhi { 420 if v.Type.IsMemory() { 421 memPhi = v 422 } 423 continue 424 } 425 if v.Type.IsMemory() { 426 stores = append(stores, v) 427 for _, a := range v.Args { 428 if a.Block == b && a.Type.IsMemory() { 429 storeUse.add(a.ID) 430 } 431 } 432 } 433 } 434 if len(stores) == 0 { 435 lastMems[b.ID] = memPhi 436 continue 437 } 438 439 // find last store in the block 440 var last *Value 441 for _, v := range stores { 442 if storeUse.contains(v.ID) { 443 continue 444 } 445 if last != nil { 446 b.Fatalf("two final stores - simultaneous live stores %s %s", last, v) 447 } 448 last = v 449 } 450 if last == nil { 451 b.Fatalf("no last store found - cycle?") 452 } 453 454 // If this is a tuple containing a mem, select just 455 // the mem. This will generate ops we don't need, but 456 // it's the easiest thing to do. 457 if last.Type.IsTuple() { 458 last = b.NewValue1(last.Pos, OpSelect1, types.TypeMem, last) 459 } else if last.Type.IsResults() { 460 last = b.NewValue1I(last.Pos, OpSelectN, types.TypeMem, int64(last.Type.NumFields()-1), last) 461 } 462 463 lastMems[b.ID] = last 464 } 465 return lastMems 466 } 467 468 // mark values 469 type markKind uint8 470 471 const ( 472 notFound markKind = iota // block has not been discovered yet 473 notExplored // discovered and in queue, outedges not processed yet 474 explored // discovered and in queue, outedges processed 475 done // all done, in output ordering 476 ) 477 478 type backedgesState struct { 479 b *Block 480 i int 481 } 482 483 // backedges returns a slice of successor edges that are back 484 // edges. For reducible loops, edge.b is the header. 485 func backedges(f *Func) []Edge { 486 edges := []Edge{} 487 mark := make([]markKind, f.NumBlocks()) 488 stack := []backedgesState{} 489 490 mark[f.Entry.ID] = notExplored 491 stack = append(stack, backedgesState{f.Entry, 0}) 492 493 for len(stack) > 0 { 494 l := len(stack) 495 x := stack[l-1] 496 if x.i < len(x.b.Succs) { 497 e := x.b.Succs[x.i] 498 stack[l-1].i++ 499 s := e.b 500 if mark[s.ID] == notFound { 501 mark[s.ID] = notExplored 502 stack = append(stack, backedgesState{s, 0}) 503 } else if mark[s.ID] == notExplored { 504 edges = append(edges, e) 505 } 506 } else { 507 mark[x.b.ID] = done 508 stack = stack[0 : l-1] 509 } 510 } 511 return edges 512 }