github.com/bir3/gocompiler@v0.9.2202/src/cmd/compile/internal/ssagen/abi.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssagen 6 7 import ( 8 "fmt" 9 "github.com/bir3/gocompiler/src/internal/buildcfg" 10 "log" 11 "os" 12 "strings" 13 14 "github.com/bir3/gocompiler/src/cmd/compile/internal/abi" 15 "github.com/bir3/gocompiler/src/cmd/compile/internal/base" 16 "github.com/bir3/gocompiler/src/cmd/compile/internal/ir" 17 "github.com/bir3/gocompiler/src/cmd/compile/internal/objw" 18 "github.com/bir3/gocompiler/src/cmd/compile/internal/typecheck" 19 "github.com/bir3/gocompiler/src/cmd/compile/internal/types" 20 "github.com/bir3/gocompiler/src/cmd/internal/obj" 21 "github.com/bir3/gocompiler/src/cmd/internal/obj/wasm" 22 ) 23 24 // SymABIs records information provided by the assembler about symbol 25 // definition ABIs and reference ABIs. 26 type SymABIs struct { 27 defs map[string]obj.ABI 28 refs map[string]obj.ABISet 29 } 30 31 func NewSymABIs() *SymABIs { 32 return &SymABIs{ 33 defs: make(map[string]obj.ABI), 34 refs: make(map[string]obj.ABISet), 35 } 36 } 37 38 // canonicalize returns the canonical name used for a linker symbol in 39 // s's maps. Symbols in this package may be written either as "".X or 40 // with the package's import path already in the symbol. This rewrites 41 // both to use the full path, which matches compiler-generated linker 42 // symbol names. 43 func (s *SymABIs) canonicalize(linksym string) string { 44 if strings.HasPrefix(linksym, `"".`) { 45 panic("non-canonical symbol name: " + linksym) 46 } 47 return linksym 48 } 49 50 // ReadSymABIs reads a symabis file that specifies definitions and 51 // references of text symbols by ABI. 52 // 53 // The symabis format is a set of lines, where each line is a sequence 54 // of whitespace-separated fields. The first field is a verb and is 55 // either "def" for defining a symbol ABI or "ref" for referencing a 56 // symbol using an ABI. For both "def" and "ref", the second field is 57 // the symbol name and the third field is the ABI name, as one of the 58 // named cmd/internal/obj.ABI constants. 59 func (s *SymABIs) ReadSymABIs(file string) { 60 data, err := os.ReadFile(file) 61 if err != nil { 62 log.Fatalf("-symabis: %v", err) 63 } 64 65 for lineNum, line := range strings.Split(string(data), "\n") { 66 lineNum++ // 1-based 67 line = strings.TrimSpace(line) 68 if line == "" || strings.HasPrefix(line, "#") { 69 continue 70 } 71 72 parts := strings.Fields(line) 73 switch parts[0] { 74 case "def", "ref": 75 // Parse line. 76 if len(parts) != 3 { 77 log.Fatalf(`%s:%d: invalid symabi: syntax is "%s sym abi"`, file, lineNum, parts[0]) 78 } 79 sym, abistr := parts[1], parts[2] 80 abi, valid := obj.ParseABI(abistr) 81 if !valid { 82 log.Fatalf(`%s:%d: invalid symabi: unknown abi "%s"`, file, lineNum, abistr) 83 } 84 85 sym = s.canonicalize(sym) 86 87 // Record for later. 88 if parts[0] == "def" { 89 s.defs[sym] = abi 90 } else { 91 s.refs[sym] |= obj.ABISetOf(abi) 92 } 93 default: 94 log.Fatalf(`%s:%d: invalid symabi type "%s"`, file, lineNum, parts[0]) 95 } 96 } 97 } 98 99 // GenABIWrappers applies ABI information to Funcs and generates ABI 100 // wrapper functions where necessary. 101 func (s *SymABIs) GenABIWrappers() { 102 // For cgo exported symbols, we tell the linker to export the 103 // definition ABI to C. That also means that we don't want to 104 // create ABI wrappers even if there's a linkname. 105 // 106 // TODO(austin): Maybe we want to create the ABI wrappers, but 107 // ensure the linker exports the right ABI definition under 108 // the unmangled name? 109 cgoExports := make(map[string][]*[]string) 110 for i, prag := range typecheck.Target.CgoPragmas { 111 switch prag[0] { 112 case "cgo_export_static", "cgo_export_dynamic": 113 symName := s.canonicalize(prag[1]) 114 pprag := &typecheck.Target.CgoPragmas[i] 115 cgoExports[symName] = append(cgoExports[symName], pprag) 116 } 117 } 118 119 // Apply ABI defs and refs to Funcs and generate wrappers. 120 // 121 // This may generate new decls for the wrappers, but we 122 // specifically *don't* want to visit those, lest we create 123 // wrappers for wrappers. 124 for _, fn := range typecheck.Target.Funcs { 125 nam := fn.Nname 126 if ir.IsBlank(nam) { 127 continue 128 } 129 sym := nam.Sym() 130 131 symName := sym.Linkname 132 if symName == "" { 133 symName = sym.Pkg.Prefix + "." + sym.Name 134 } 135 symName = s.canonicalize(symName) 136 137 // Apply definitions. 138 defABI, hasDefABI := s.defs[symName] 139 if hasDefABI { 140 if len(fn.Body) != 0 { 141 base.ErrorfAt(fn.Pos(), 0, "%v defined in both Go and assembly", fn) 142 } 143 fn.ABI = defABI 144 } 145 146 if fn.Pragma&ir.CgoUnsafeArgs != 0 { 147 // CgoUnsafeArgs indicates the function (or its callee) uses 148 // offsets to dispatch arguments, which currently using ABI0 149 // frame layout. Pin it to ABI0. 150 fn.ABI = obj.ABI0 151 } 152 153 // If cgo-exported, add the definition ABI to the cgo 154 // pragmas. 155 cgoExport := cgoExports[symName] 156 for _, pprag := range cgoExport { 157 // The export pragmas have the form: 158 // 159 // cgo_export_* <local> [<remote>] 160 // 161 // If <remote> is omitted, it's the same as 162 // <local>. 163 // 164 // Expand to 165 // 166 // cgo_export_* <local> <remote> <ABI> 167 if len(*pprag) == 2 { 168 *pprag = append(*pprag, (*pprag)[1]) 169 } 170 // Add the ABI argument. 171 *pprag = append(*pprag, fn.ABI.String()) 172 } 173 174 // Apply references. 175 if abis, ok := s.refs[symName]; ok { 176 fn.ABIRefs |= abis 177 } 178 // Assume all functions are referenced at least as 179 // ABIInternal, since they may be referenced from 180 // other packages. 181 fn.ABIRefs.Set(obj.ABIInternal, true) 182 183 // If a symbol is defined in this package (either in 184 // Go or assembly) and given a linkname, it may be 185 // referenced from another package, so make it 186 // callable via any ABI. It's important that we know 187 // it's defined in this package since other packages 188 // may "pull" symbols using linkname and we don't want 189 // to create duplicate ABI wrappers. 190 // 191 // However, if it's given a linkname for exporting to 192 // C, then we don't make ABI wrappers because the cgo 193 // tool wants the original definition. 194 hasBody := len(fn.Body) != 0 195 if sym.Linkname != "" && (hasBody || hasDefABI) && len(cgoExport) == 0 { 196 fn.ABIRefs |= obj.ABISetCallable 197 } 198 199 // Double check that cgo-exported symbols don't get 200 // any wrappers. 201 if len(cgoExport) > 0 && fn.ABIRefs&^obj.ABISetOf(fn.ABI) != 0 { 202 base.Fatalf("cgo exported function %v cannot have ABI wrappers", fn) 203 } 204 205 if !buildcfg.Experiment.RegabiWrappers { 206 continue 207 } 208 209 forEachWrapperABI(fn, makeABIWrapper) 210 } 211 } 212 213 func forEachWrapperABI(fn *ir.Func, cb func(fn *ir.Func, wrapperABI obj.ABI)) { 214 need := fn.ABIRefs &^ obj.ABISetOf(fn.ABI) 215 if need == 0 { 216 return 217 } 218 219 for wrapperABI := obj.ABI(0); wrapperABI < obj.ABICount; wrapperABI++ { 220 if !need.Get(wrapperABI) { 221 continue 222 } 223 cb(fn, wrapperABI) 224 } 225 } 226 227 // makeABIWrapper creates a new function that will be called with 228 // wrapperABI and calls "f" using f.ABI. 229 func makeABIWrapper(f *ir.Func, wrapperABI obj.ABI) { 230 if base.Debug.ABIWrap != 0 { 231 fmt.Fprintf(os.Stderr, "=-= %v to %v wrapper for %v\n", wrapperABI, f.ABI, f) 232 } 233 234 // Q: is this needed? 235 savepos := base.Pos 236 savedcurfn := ir.CurFunc 237 238 pos := base.AutogeneratedPos 239 base.Pos = pos 240 241 // At the moment we don't support wrapping a method, we'd need machinery 242 // below to handle the receiver. Panic if we see this scenario. 243 ft := f.Nname.Type() 244 if ft.NumRecvs() != 0 { 245 base.ErrorfAt(f.Pos(), 0, "makeABIWrapper support for wrapping methods not implemented") 246 return 247 } 248 249 // Reuse f's types.Sym to create a new ODCLFUNC/function. 250 // TODO(mdempsky): Means we can't set sym.Def in Declfunc, ugh. 251 fn := ir.NewFunc(pos, pos, f.Sym(), types.NewSignature(nil, 252 typecheck.NewFuncParams(ft.Params()), 253 typecheck.NewFuncParams(ft.Results()))) 254 fn.ABI = wrapperABI 255 typecheck.DeclFunc(fn) 256 257 fn.SetABIWrapper(true) 258 fn.SetDupok(true) 259 260 // ABI0-to-ABIInternal wrappers will be mainly loading params from 261 // stack into registers (and/or storing stack locations back to 262 // registers after the wrapped call); in most cases they won't 263 // need to allocate stack space, so it should be OK to mark them 264 // as NOSPLIT in these cases. In addition, my assumption is that 265 // functions written in assembly are NOSPLIT in most (but not all) 266 // cases. In the case of an ABIInternal target that has too many 267 // parameters to fit into registers, the wrapper would need to 268 // allocate stack space, but this seems like an unlikely scenario. 269 // Hence: mark these wrappers NOSPLIT. 270 // 271 // ABIInternal-to-ABI0 wrappers on the other hand will be taking 272 // things in registers and pushing them onto the stack prior to 273 // the ABI0 call, meaning that they will always need to allocate 274 // stack space. If the compiler marks them as NOSPLIT this seems 275 // as though it could lead to situations where the linker's 276 // nosplit-overflow analysis would trigger a link failure. On the 277 // other hand if they not tagged NOSPLIT then this could cause 278 // problems when building the runtime (since there may be calls to 279 // asm routine in cases where it's not safe to grow the stack). In 280 // most cases the wrapper would be (in effect) inlined, but are 281 // there (perhaps) indirect calls from the runtime that could run 282 // into trouble here. 283 // FIXME: at the moment all.bash does not pass when I leave out 284 // NOSPLIT for these wrappers, so all are currently tagged with NOSPLIT. 285 fn.Pragma |= ir.Nosplit 286 287 // Generate call. Use tail call if no params and no returns, 288 // but a regular call otherwise. 289 // 290 // Note: ideally we would be using a tail call in cases where 291 // there are params but no returns for ABI0->ABIInternal wrappers, 292 // provided that all params fit into registers (e.g. we don't have 293 // to allocate any stack space). Doing this will require some 294 // extra work in typecheck/walk/ssa, might want to add a new node 295 // OTAILCALL or something to this effect. 296 tailcall := fn.Type().NumResults() == 0 && fn.Type().NumParams() == 0 && fn.Type().NumRecvs() == 0 297 if base.Ctxt.Arch.Name == "ppc64le" && base.Ctxt.Flag_dynlink { 298 // cannot tailcall on PPC64 with dynamic linking, as we need 299 // to restore R2 after call. 300 tailcall = false 301 } 302 if base.Ctxt.Arch.Name == "amd64" && wrapperABI == obj.ABIInternal { 303 // cannot tailcall from ABIInternal to ABI0 on AMD64, as we need 304 // to special registers (X15) when returning to ABIInternal. 305 tailcall = false 306 } 307 308 var tail ir.Node 309 call := ir.NewCallExpr(base.Pos, ir.OCALL, f.Nname, nil) 310 call.Args = ir.ParamNames(fn.Type()) 311 call.IsDDD = fn.Type().IsVariadic() 312 tail = call 313 if tailcall { 314 tail = ir.NewTailCallStmt(base.Pos, call) 315 } else if fn.Type().NumResults() > 0 { 316 n := ir.NewReturnStmt(base.Pos, nil) 317 n.Results = []ir.Node{call} 318 tail = n 319 } 320 fn.Body.Append(tail) 321 322 typecheck.FinishFuncBody() 323 324 ir.CurFunc = fn 325 typecheck.Stmts(fn.Body) 326 327 // Restore previous context. 328 base.Pos = savepos 329 ir.CurFunc = savedcurfn 330 } 331 332 // CreateWasmImportWrapper creates a wrapper for imported WASM functions to 333 // adapt them to the Go calling convention. The body for this function is 334 // generated in cmd/internal/obj/wasm/wasmobj.go 335 func CreateWasmImportWrapper(fn *ir.Func) bool { 336 if fn.WasmImport == nil { 337 return false 338 } 339 if buildcfg.GOARCH != "wasm" { 340 base.FatalfAt(fn.Pos(), "CreateWasmImportWrapper call not supported on %s: func was %v", buildcfg.GOARCH, fn) 341 } 342 343 ir.InitLSym(fn, true) 344 345 setupWasmABI(fn) 346 347 pp := objw.NewProgs(fn, 0) 348 defer pp.Free() 349 pp.Text.To.Type = obj.TYPE_TEXTSIZE 350 pp.Text.To.Val = int32(types.RoundUp(fn.Type().ArgWidth(), int64(types.RegSize))) 351 // Wrapper functions never need their own stack frame 352 pp.Text.To.Offset = 0 353 pp.Flush() 354 355 return true 356 } 357 358 func paramsToWasmFields(f *ir.Func, result *abi.ABIParamResultInfo, abiParams []abi.ABIParamAssignment) []obj.WasmField { 359 wfs := make([]obj.WasmField, len(abiParams)) 360 for i, p := range abiParams { 361 t := p.Type 362 switch t.Kind() { 363 case types.TINT32, types.TUINT32: 364 wfs[i].Type = obj.WasmI32 365 case types.TINT64, types.TUINT64: 366 wfs[i].Type = obj.WasmI64 367 case types.TFLOAT32: 368 wfs[i].Type = obj.WasmF32 369 case types.TFLOAT64: 370 wfs[i].Type = obj.WasmF64 371 case types.TUNSAFEPTR: 372 wfs[i].Type = obj.WasmPtr 373 default: 374 base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: unsupported parameter type %s", f.WasmImport.Module, f.WasmImport.Name, t.String()) 375 } 376 wfs[i].Offset = p.FrameOffset(result) 377 } 378 return wfs 379 } 380 381 func resultsToWasmFields(f *ir.Func, result *abi.ABIParamResultInfo, abiParams []abi.ABIParamAssignment) []obj.WasmField { 382 if len(abiParams) > 1 { 383 base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: too many return values", f.WasmImport.Module, f.WasmImport.Name) 384 return nil 385 } 386 wfs := make([]obj.WasmField, len(abiParams)) 387 for i, p := range abiParams { 388 t := p.Type 389 switch t.Kind() { 390 case types.TINT32, types.TUINT32: 391 wfs[i].Type = obj.WasmI32 392 case types.TINT64, types.TUINT64: 393 wfs[i].Type = obj.WasmI64 394 case types.TFLOAT32: 395 wfs[i].Type = obj.WasmF32 396 case types.TFLOAT64: 397 wfs[i].Type = obj.WasmF64 398 default: 399 base.ErrorfAt(f.Pos(), 0, "go:wasmimport %s %s: unsupported result type %s", f.WasmImport.Module, f.WasmImport.Name, t.String()) 400 } 401 wfs[i].Offset = p.FrameOffset(result) 402 } 403 return wfs 404 } 405 406 // setupTextLSym initializes the LSym for a with-body text symbol. 407 func setupWasmABI(f *ir.Func) { 408 wi := obj.WasmImport{ 409 Module: f.WasmImport.Module, 410 Name: f.WasmImport.Name, 411 } 412 if wi.Module == wasm.GojsModule { 413 // Functions that are imported from the "gojs" module use a special 414 // ABI that just accepts the stack pointer. 415 // Example: 416 // 417 // //go:wasmimport gojs add 418 // func importedAdd(a, b uint) uint 419 // 420 // will roughly become 421 // 422 // (import "gojs" "add" (func (param i32))) 423 wi.Params = []obj.WasmField{{Type: obj.WasmI32}} 424 } else { 425 // All other imported functions use the normal WASM ABI. 426 // Example: 427 // 428 // //go:wasmimport a_module add 429 // func importedAdd(a, b uint) uint 430 // 431 // will roughly become 432 // 433 // (import "a_module" "add" (func (param i32 i32) (result i32))) 434 abiConfig := AbiForBodylessFuncStackMap(f) 435 abiInfo := abiConfig.ABIAnalyzeFuncType(f.Type()) 436 wi.Params = paramsToWasmFields(f, abiInfo, abiInfo.InParams()) 437 wi.Results = resultsToWasmFields(f, abiInfo, abiInfo.OutParams()) 438 } 439 f.LSym.Func().WasmImport = &wi 440 }