github.com/bir3/gocompiler@v0.9.2202/src/cmd/compile/internal/walk/range.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package walk 6 7 import ( 8 "unicode/utf8" 9 10 "github.com/bir3/gocompiler/src/cmd/compile/internal/base" 11 "github.com/bir3/gocompiler/src/cmd/compile/internal/ir" 12 "github.com/bir3/gocompiler/src/cmd/compile/internal/reflectdata" 13 "github.com/bir3/gocompiler/src/cmd/compile/internal/ssagen" 14 "github.com/bir3/gocompiler/src/cmd/compile/internal/typecheck" 15 "github.com/bir3/gocompiler/src/cmd/compile/internal/types" 16 "github.com/bir3/gocompiler/src/cmd/internal/src" 17 "github.com/bir3/gocompiler/src/cmd/internal/sys" 18 ) 19 20 func cheapComputableIndex(width int64) bool { 21 switch ssagen.Arch.LinkArch.Family { 22 // MIPS does not have R+R addressing 23 // Arm64 may lack ability to generate this code in our assembler, 24 // but the architecture supports it. 25 case sys.PPC64, sys.S390X: 26 return width == 1 27 case sys.AMD64, sys.I386, sys.ARM64, sys.ARM: 28 switch width { 29 case 1, 2, 4, 8: 30 return true 31 } 32 } 33 return false 34 } 35 36 // walkRange transforms various forms of ORANGE into 37 // simpler forms. The result must be assigned back to n. 38 // Node n may also be modified in place, and may also be 39 // the returned node. 40 func walkRange(nrange *ir.RangeStmt) ir.Node { 41 base.Assert(!nrange.DistinctVars) // Should all be rewritten before escape analysis 42 if isMapClear(nrange) { 43 return mapRangeClear(nrange) 44 } 45 46 nfor := ir.NewForStmt(nrange.Pos(), nil, nil, nil, nil, nrange.DistinctVars) 47 nfor.SetInit(nrange.Init()) 48 nfor.Label = nrange.Label 49 50 // variable name conventions: 51 // ohv1, hv1, hv2: hidden (old) val 1, 2 52 // ha, hit: hidden aggregate, iterator 53 // hn, hp: hidden len, pointer 54 // hb: hidden bool 55 // a, v1, v2: not hidden aggregate, val 1, 2 56 57 a := nrange.X 58 t := a.Type() 59 lno := ir.SetPos(a) 60 61 v1, v2 := nrange.Key, nrange.Value 62 63 if ir.IsBlank(v2) { 64 v2 = nil 65 } 66 67 if ir.IsBlank(v1) && v2 == nil { 68 v1 = nil 69 } 70 71 if v1 == nil && v2 != nil { 72 base.Fatalf("walkRange: v2 != nil while v1 == nil") 73 } 74 75 var body []ir.Node 76 var init []ir.Node 77 switch k := t.Kind(); { 78 default: 79 base.Fatalf("walkRange") 80 81 case types.IsInt[k]: 82 hv1 := typecheck.TempAt(base.Pos, ir.CurFunc, t) 83 hn := typecheck.TempAt(base.Pos, ir.CurFunc, t) 84 85 init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) 86 init = append(init, ir.NewAssignStmt(base.Pos, hn, a)) 87 88 nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn) 89 nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1))) 90 91 if v1 != nil { 92 body = []ir.Node{rangeAssign(nrange, hv1)} 93 } 94 95 case k == types.TARRAY, k == types.TSLICE, k == types.TPTR: // TPTR is pointer-to-array 96 if nn := arrayRangeClear(nrange, v1, v2, a); nn != nil { 97 base.Pos = lno 98 return nn 99 } 100 101 // Element type of the iteration 102 var elem *types.Type 103 switch t.Kind() { 104 case types.TSLICE, types.TARRAY: 105 elem = t.Elem() 106 case types.TPTR: 107 elem = t.Elem().Elem() 108 } 109 110 // order.stmt arranged for a copy of the array/slice variable if needed. 111 ha := a 112 113 hv1 := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT]) 114 hn := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT]) 115 116 init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) 117 init = append(init, ir.NewAssignStmt(base.Pos, hn, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha))) 118 119 nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn) 120 nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1))) 121 122 // for range ha { body } 123 if v1 == nil { 124 break 125 } 126 127 // for v1 := range ha { body } 128 if v2 == nil { 129 body = []ir.Node{rangeAssign(nrange, hv1)} 130 break 131 } 132 133 // for v1, v2 := range ha { body } 134 if cheapComputableIndex(elem.Size()) { 135 // v1, v2 = hv1, ha[hv1] 136 tmp := ir.NewIndexExpr(base.Pos, ha, hv1) 137 tmp.SetBounded(true) 138 body = []ir.Node{rangeAssign2(nrange, hv1, tmp)} 139 break 140 } 141 142 // Slice to iterate over 143 var hs ir.Node 144 if t.IsSlice() { 145 hs = ha 146 } else { 147 var arr ir.Node 148 if t.IsPtr() { 149 arr = ha 150 } else { 151 arr = typecheck.NodAddr(ha) 152 arr.SetType(t.PtrTo()) 153 arr.SetTypecheck(1) 154 } 155 hs = ir.NewSliceExpr(base.Pos, ir.OSLICEARR, arr, nil, nil, nil) 156 // old typechecker doesn't know OSLICEARR, so we set types explicitly 157 hs.SetType(types.NewSlice(elem)) 158 hs.SetTypecheck(1) 159 } 160 161 // We use a "pointer" to keep track of where we are in the backing array 162 // of the slice hs. This pointer starts at hs.ptr and gets incremented 163 // by the element size each time through the loop. 164 // 165 // It's tricky, though, as on the last iteration this pointer gets 166 // incremented to point past the end of the backing array. We can't 167 // let the garbage collector see that final out-of-bounds pointer. 168 // 169 // To avoid this, we keep the "pointer" alternately in 2 variables, one 170 // pointer typed and one uintptr typed. Most of the time it lives in the 171 // regular pointer variable, but when it might be out of bounds (after it 172 // has been incremented, but before the loop condition has been checked) 173 // it lives briefly in the uintptr variable. 174 // 175 // hp contains the pointer version (of type *T, where T is the element type). 176 // It is guaranteed to always be in range, keeps the backing store alive, 177 // and is updated on stack copies. If a GC occurs when this function is 178 // suspended at any safepoint, this variable ensures correct operation. 179 // 180 // hu contains the equivalent uintptr version. It may point past the 181 // end, but doesn't keep the backing store alive and doesn't get updated 182 // on a stack copy. If a GC occurs while this function is on the top of 183 // the stack, then the last frame is scanned conservatively and hu will 184 // act as a reference to the backing array to ensure it is not collected. 185 // 186 // The "pointer" we're moving across the backing array lives in one 187 // or the other of hp and hu as the loop proceeds. 188 // 189 // hp is live during most of the body of the loop. But it isn't live 190 // at the very top of the loop, when we haven't checked i<n yet, and 191 // it could point off the end of the backing store. 192 // hu is live only at the very top and very bottom of the loop. 193 // In particular, only when it cannot possibly be live across a call. 194 // 195 // So we do 196 // hu = uintptr(unsafe.Pointer(hs.ptr)) 197 // for i := 0; i < hs.len; i++ { 198 // hp = (*T)(unsafe.Pointer(hu)) 199 // v1, v2 = i, *hp 200 // ... body of loop ... 201 // hu = uintptr(unsafe.Pointer(hp)) + elemsize 202 // } 203 // 204 // Between the assignments to hu and the assignment back to hp, there 205 // must not be any calls. 206 207 // Pointer to current iteration position. Start on entry to the loop 208 // with the pointer in hu. 209 ptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, hs) 210 ptr.SetBounded(true) 211 huVal := ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], ptr) 212 huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUINTPTR], huVal) 213 hu := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TUINTPTR]) 214 init = append(init, ir.NewAssignStmt(base.Pos, hu, huVal)) 215 216 // Convert hu to hp at the top of the loop (after the condition has been checked). 217 hpVal := ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], hu) 218 hpVal.SetCheckPtr(true) // disable checkptr on this conversion 219 hpVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, elem.PtrTo(), hpVal) 220 hp := typecheck.TempAt(base.Pos, ir.CurFunc, elem.PtrTo()) 221 body = append(body, ir.NewAssignStmt(base.Pos, hp, hpVal)) 222 223 // Assign variables on the LHS of the range statement. Use *hp to get the element. 224 e := ir.NewStarExpr(base.Pos, hp) 225 e.SetBounded(true) 226 a := rangeAssign2(nrange, hv1, e) 227 body = append(body, a) 228 229 // Advance pointer for next iteration of the loop. 230 // This reads from hp and writes to hu. 231 huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], hp) 232 huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUINTPTR], huVal) 233 as := ir.NewAssignStmt(base.Pos, hu, ir.NewBinaryExpr(base.Pos, ir.OADD, huVal, ir.NewInt(base.Pos, elem.Size()))) 234 nfor.Post = ir.NewBlockStmt(base.Pos, []ir.Node{nfor.Post, as}) 235 236 case k == types.TMAP: 237 // order.stmt allocated the iterator for us. 238 // we only use a once, so no copy needed. 239 ha := a 240 241 hit := nrange.Prealloc 242 th := hit.Type() 243 // depends on layout of iterator struct. 244 // See cmd/compile/internal/reflectdata/reflect.go:MapIterType 245 keysym := th.Field(0).Sym 246 elemsym := th.Field(1).Sym // ditto 247 248 fn := typecheck.LookupRuntime("mapiterinit", t.Key(), t.Elem(), th) 249 init = append(init, mkcallstmt1(fn, reflectdata.RangeMapRType(base.Pos, nrange), ha, typecheck.NodAddr(hit))) 250 nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), typecheck.NodNil()) 251 252 fn = typecheck.LookupRuntime("mapiternext", th) 253 nfor.Post = mkcallstmt1(fn, typecheck.NodAddr(hit)) 254 255 key := ir.NewStarExpr(base.Pos, typecheck.ConvNop(ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), types.NewPtr(t.Key()))) 256 if v1 == nil { 257 body = nil 258 } else if v2 == nil { 259 body = []ir.Node{rangeAssign(nrange, key)} 260 } else { 261 elem := ir.NewStarExpr(base.Pos, typecheck.ConvNop(ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, elemsym), types.NewPtr(t.Elem()))) 262 body = []ir.Node{rangeAssign2(nrange, key, elem)} 263 } 264 265 case k == types.TCHAN: 266 // order.stmt arranged for a copy of the channel variable. 267 ha := a 268 269 hv1 := typecheck.TempAt(base.Pos, ir.CurFunc, t.Elem()) 270 hv1.SetTypecheck(1) 271 if t.Elem().HasPointers() { 272 init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) 273 } 274 hb := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TBOOL]) 275 276 nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, hb, ir.NewBool(base.Pos, false)) 277 lhs := []ir.Node{hv1, hb} 278 rhs := []ir.Node{ir.NewUnaryExpr(base.Pos, ir.ORECV, ha)} 279 a := ir.NewAssignListStmt(base.Pos, ir.OAS2RECV, lhs, rhs) 280 a.SetTypecheck(1) 281 nfor.Cond = ir.InitExpr([]ir.Node{a}, nfor.Cond) 282 if v1 == nil { 283 body = nil 284 } else { 285 body = []ir.Node{rangeAssign(nrange, hv1)} 286 } 287 // Zero hv1. This prevents hv1 from being the sole, inaccessible 288 // reference to an otherwise GC-able value during the next channel receive. 289 // See issue 15281. 290 body = append(body, ir.NewAssignStmt(base.Pos, hv1, nil)) 291 292 case k == types.TSTRING: 293 // Transform string range statements like "for v1, v2 = range a" into 294 // 295 // ha := a 296 // for hv1 := 0; hv1 < len(ha); { 297 // hv1t := hv1 298 // hv2 := rune(ha[hv1]) 299 // if hv2 < utf8.RuneSelf { 300 // hv1++ 301 // } else { 302 // hv2, hv1 = decoderune(ha, hv1) 303 // } 304 // v1, v2 = hv1t, hv2 305 // // original body 306 // } 307 308 // order.stmt arranged for a copy of the string variable. 309 ha := a 310 311 hv1 := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT]) 312 hv1t := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT]) 313 hv2 := typecheck.TempAt(base.Pos, ir.CurFunc, types.RuneType) 314 315 // hv1 := 0 316 init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) 317 318 // hv1 < len(ha) 319 nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha)) 320 321 if v1 != nil { 322 // hv1t = hv1 323 body = append(body, ir.NewAssignStmt(base.Pos, hv1t, hv1)) 324 } 325 326 // hv2 := rune(ha[hv1]) 327 nind := ir.NewIndexExpr(base.Pos, ha, hv1) 328 nind.SetBounded(true) 329 body = append(body, ir.NewAssignStmt(base.Pos, hv2, typecheck.Conv(nind, types.RuneType))) 330 331 // if hv2 < utf8.RuneSelf 332 nif := ir.NewIfStmt(base.Pos, nil, nil, nil) 333 nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv2, ir.NewInt(base.Pos, utf8.RuneSelf)) 334 335 // hv1++ 336 nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1)))} 337 338 // } else { 339 // hv2, hv1 = decoderune(ha, hv1) 340 fn := typecheck.LookupRuntime("decoderune") 341 call := mkcall1(fn, fn.Type().ResultsTuple(), &nif.Else, ha, hv1) 342 a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{hv2, hv1}, []ir.Node{call}) 343 nif.Else.Append(a) 344 345 body = append(body, nif) 346 347 if v1 != nil { 348 if v2 != nil { 349 // v1, v2 = hv1t, hv2 350 body = append(body, rangeAssign2(nrange, hv1t, hv2)) 351 } else { 352 // v1 = hv1t 353 body = append(body, rangeAssign(nrange, hv1t)) 354 } 355 } 356 } 357 358 typecheck.Stmts(init) 359 360 nfor.PtrInit().Append(init...) 361 362 typecheck.Stmts(nfor.Cond.Init()) 363 364 nfor.Cond = typecheck.Expr(nfor.Cond) 365 nfor.Cond = typecheck.DefaultLit(nfor.Cond, nil) 366 nfor.Post = typecheck.Stmt(nfor.Post) 367 typecheck.Stmts(body) 368 nfor.Body.Append(body...) 369 nfor.Body.Append(nrange.Body...) 370 371 var n ir.Node = nfor 372 373 n = walkStmt(n) 374 375 base.Pos = lno 376 return n 377 } 378 379 // rangeAssign returns "n.Key = key". 380 func rangeAssign(n *ir.RangeStmt, key ir.Node) ir.Node { 381 key = rangeConvert(n, n.Key.Type(), key, n.KeyTypeWord, n.KeySrcRType) 382 return ir.NewAssignStmt(n.Pos(), n.Key, key) 383 } 384 385 // rangeAssign2 returns "n.Key, n.Value = key, value". 386 func rangeAssign2(n *ir.RangeStmt, key, value ir.Node) ir.Node { 387 // Use OAS2 to correctly handle assignments 388 // of the form "v1, a[v1] = range". 389 key = rangeConvert(n, n.Key.Type(), key, n.KeyTypeWord, n.KeySrcRType) 390 value = rangeConvert(n, n.Value.Type(), value, n.ValueTypeWord, n.ValueSrcRType) 391 return ir.NewAssignListStmt(n.Pos(), ir.OAS2, []ir.Node{n.Key, n.Value}, []ir.Node{key, value}) 392 } 393 394 // rangeConvert returns src, converted to dst if necessary. If a 395 // conversion is necessary, then typeWord and srcRType are copied to 396 // their respective ConvExpr fields. 397 func rangeConvert(nrange *ir.RangeStmt, dst *types.Type, src, typeWord, srcRType ir.Node) ir.Node { 398 src = typecheck.Expr(src) 399 if dst.Kind() == types.TBLANK || types.Identical(dst, src.Type()) { 400 return src 401 } 402 403 n := ir.NewConvExpr(nrange.Pos(), ir.OCONV, dst, src) 404 n.TypeWord = typeWord 405 n.SrcRType = srcRType 406 return typecheck.Expr(n) 407 } 408 409 // isMapClear checks if n is of the form: 410 // 411 // for k := range m { 412 // delete(m, k) 413 // } 414 // 415 // where == for keys of map m is reflexive. 416 func isMapClear(n *ir.RangeStmt) bool { 417 if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { 418 return false 419 } 420 421 t := n.X.Type() 422 if n.Op() != ir.ORANGE || t.Kind() != types.TMAP || n.Key == nil || n.Value != nil { 423 return false 424 } 425 426 k := n.Key 427 // Require k to be a new variable name. 428 if !ir.DeclaredBy(k, n) { 429 return false 430 } 431 432 if len(n.Body) != 1 { 433 return false 434 } 435 436 stmt := n.Body[0] // only stmt in body 437 if stmt == nil || stmt.Op() != ir.ODELETE { 438 return false 439 } 440 441 m := n.X 442 if delete := stmt.(*ir.CallExpr); !ir.SameSafeExpr(delete.Args[0], m) || !ir.SameSafeExpr(delete.Args[1], k) { 443 return false 444 } 445 446 // Keys where equality is not reflexive can not be deleted from maps. 447 if !types.IsReflexive(t.Key()) { 448 return false 449 } 450 451 return true 452 } 453 454 // mapRangeClear constructs a call to runtime.mapclear for the map range idiom. 455 func mapRangeClear(nrange *ir.RangeStmt) ir.Node { 456 m := nrange.X 457 origPos := ir.SetPos(m) 458 defer func() { base.Pos = origPos }() 459 460 return mapClear(m, reflectdata.RangeMapRType(base.Pos, nrange)) 461 } 462 463 // mapClear constructs a call to runtime.mapclear for the map m. 464 func mapClear(m, rtyp ir.Node) ir.Node { 465 t := m.Type() 466 467 // instantiate mapclear(typ *type, hmap map[any]any) 468 fn := typecheck.LookupRuntime("mapclear", t.Key(), t.Elem()) 469 n := mkcallstmt1(fn, rtyp, m) 470 return walkStmt(typecheck.Stmt(n)) 471 } 472 473 // Lower n into runtime·memclr if possible, for 474 // fast zeroing of slices and arrays (issue 5373). 475 // Look for instances of 476 // 477 // for i := range a { 478 // a[i] = zero 479 // } 480 // 481 // in which the evaluation of a is side-effect-free. 482 // 483 // Parameters are as in walkRange: "for v1, v2 = range a". 484 func arrayRangeClear(loop *ir.RangeStmt, v1, v2, a ir.Node) ir.Node { 485 if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { 486 return nil 487 } 488 489 if v1 == nil || v2 != nil { 490 return nil 491 } 492 493 if len(loop.Body) != 1 || loop.Body[0] == nil { 494 return nil 495 } 496 497 stmt1 := loop.Body[0] // only stmt in body 498 if stmt1.Op() != ir.OAS { 499 return nil 500 } 501 stmt := stmt1.(*ir.AssignStmt) 502 if stmt.X.Op() != ir.OINDEX { 503 return nil 504 } 505 lhs := stmt.X.(*ir.IndexExpr) 506 x := lhs.X 507 if a.Type().IsPtr() && a.Type().Elem().IsArray() { 508 if s, ok := x.(*ir.StarExpr); ok && s.Op() == ir.ODEREF { 509 x = s.X 510 } 511 } 512 513 if !ir.SameSafeExpr(x, a) || !ir.SameSafeExpr(lhs.Index, v1) { 514 return nil 515 } 516 517 if !ir.IsZero(stmt.Y) { 518 return nil 519 } 520 521 return arrayClear(stmt.Pos(), a, loop) 522 } 523 524 // arrayClear constructs a call to runtime.memclr for fast zeroing of slices and arrays. 525 func arrayClear(wbPos src.XPos, a ir.Node, nrange *ir.RangeStmt) ir.Node { 526 elemsize := typecheck.RangeExprType(a.Type()).Elem().Size() 527 if elemsize <= 0 { 528 return nil 529 } 530 531 // Convert to 532 // if len(a) != 0 { 533 // hp = &a[0] 534 // hn = len(a)*sizeof(elem(a)) 535 // memclr{NoHeap,Has}Pointers(hp, hn) 536 // i = len(a) - 1 537 // } 538 n := ir.NewIfStmt(base.Pos, nil, nil, nil) 539 n.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, 0)) 540 541 // hp = &a[0] 542 hp := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TUNSAFEPTR]) 543 544 ix := ir.NewIndexExpr(base.Pos, a, ir.NewInt(base.Pos, 0)) 545 ix.SetBounded(true) 546 addr := typecheck.ConvNop(typecheck.NodAddr(ix), types.Types[types.TUNSAFEPTR]) 547 n.Body.Append(ir.NewAssignStmt(base.Pos, hp, addr)) 548 549 // hn = len(a) * sizeof(elem(a)) 550 hn := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TUINTPTR]) 551 mul := typecheck.Conv(ir.NewBinaryExpr(base.Pos, ir.OMUL, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, elemsize)), types.Types[types.TUINTPTR]) 552 n.Body.Append(ir.NewAssignStmt(base.Pos, hn, mul)) 553 554 var fn ir.Node 555 if a.Type().Elem().HasPointers() { 556 // memclrHasPointers(hp, hn) 557 ir.CurFunc.SetWBPos(wbPos) 558 fn = mkcallstmt("memclrHasPointers", hp, hn) 559 } else { 560 // memclrNoHeapPointers(hp, hn) 561 fn = mkcallstmt("memclrNoHeapPointers", hp, hn) 562 } 563 564 n.Body.Append(fn) 565 566 // For array range clear, also set "i = len(a) - 1" 567 if nrange != nil { 568 idx := ir.NewAssignStmt(base.Pos, nrange.Key, ir.NewBinaryExpr(base.Pos, ir.OSUB, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, 1))) 569 n.Body.Append(idx) 570 } 571 572 n.Cond = typecheck.Expr(n.Cond) 573 n.Cond = typecheck.DefaultLit(n.Cond, nil) 574 typecheck.Stmts(n.Body) 575 return walkStmt(n) 576 }